dm-verity-fec.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861
  1. /*
  2. * Copyright (C) 2015 Google, Inc.
  3. *
  4. * Author: Sami Tolvanen <samitolvanen@google.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 2 of the License, or (at your option)
  9. * any later version.
  10. */
  11. #include "dm-verity-fec.h"
  12. #include <linux/math64.h>
  13. #include <linux/sysfs.h>
  14. #define DM_MSG_PREFIX "verity-fec"
  15. /*
  16. * If error correction has been configured, returns true.
  17. */
  18. bool verity_fec_is_enabled(struct dm_verity *v)
  19. {
  20. return v->fec && v->fec->dev;
  21. }
  22. /*
  23. * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
  24. * length fields.
  25. */
  26. static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
  27. {
  28. return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
  29. }
  30. /*
  31. * Return an interleaved offset for a byte in RS block.
  32. */
  33. static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
  34. {
  35. u32 mod;
  36. mod = do_div(offset, v->fec->rsn);
  37. return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
  38. }
  39. /*
  40. * Decode an RS block using Reed-Solomon.
  41. */
  42. static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
  43. u8 *data, u8 *fec, int neras)
  44. {
  45. int i;
  46. uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
  47. for (i = 0; i < v->fec->roots; i++)
  48. par[i] = fec[i];
  49. return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
  50. fio->erasures, 0, NULL);
  51. }
  52. /*
  53. * Read error-correcting codes for the requested RS block. Returns a pointer
  54. * to the data block. Caller is responsible for releasing buf.
  55. */
  56. static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
  57. unsigned *offset, struct dm_buffer **buf)
  58. {
  59. u64 position, block;
  60. u8 *res;
  61. position = (index + rsb) * v->fec->roots;
  62. block = position >> v->data_dev_block_bits;
  63. *offset = (unsigned)(position - (block << v->data_dev_block_bits));
  64. res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
  65. if (unlikely(IS_ERR(res))) {
  66. DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
  67. v->data_dev->name, (unsigned long long)rsb,
  68. (unsigned long long)(v->fec->start + block),
  69. PTR_ERR(res));
  70. *buf = NULL;
  71. }
  72. return res;
  73. }
  74. /* Loop over each preallocated buffer slot. */
  75. #define fec_for_each_prealloc_buffer(__i) \
  76. for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
  77. /* Loop over each extra buffer slot. */
  78. #define fec_for_each_extra_buffer(io, __i) \
  79. for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
  80. /* Loop over each allocated buffer. */
  81. #define fec_for_each_buffer(io, __i) \
  82. for (__i = 0; __i < (io)->nbufs; __i++)
  83. /* Loop over each RS block in each allocated buffer. */
  84. #define fec_for_each_buffer_rs_block(io, __i, __j) \
  85. fec_for_each_buffer(io, __i) \
  86. for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
  87. /*
  88. * Return a pointer to the current RS block when called inside
  89. * fec_for_each_buffer_rs_block.
  90. */
  91. static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
  92. struct dm_verity_fec_io *fio,
  93. unsigned i, unsigned j)
  94. {
  95. return &fio->bufs[i][j * v->fec->rsn];
  96. }
  97. /*
  98. * Return an index to the current RS block when called inside
  99. * fec_for_each_buffer_rs_block.
  100. */
  101. static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
  102. {
  103. return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
  104. }
  105. /*
  106. * Decode all RS blocks from buffers and copy corrected bytes into fio->output
  107. * starting from block_offset.
  108. */
  109. static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
  110. u64 rsb, int byte_index, unsigned block_offset,
  111. int neras)
  112. {
  113. int r, corrected = 0, res;
  114. struct dm_buffer *buf;
  115. unsigned n, i, offset;
  116. u8 *par, *block;
  117. par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
  118. if (IS_ERR(par))
  119. return PTR_ERR(par);
  120. /*
  121. * Decode the RS blocks we have in bufs. Each RS block results in
  122. * one corrected target byte and consumes fec->roots parity bytes.
  123. */
  124. fec_for_each_buffer_rs_block(fio, n, i) {
  125. block = fec_buffer_rs_block(v, fio, n, i);
  126. res = fec_decode_rs8(v, fio, block, &par[offset], neras);
  127. if (res < 0) {
  128. r = res;
  129. goto error;
  130. }
  131. corrected += res;
  132. fio->output[block_offset] = block[byte_index];
  133. block_offset++;
  134. if (block_offset >= 1 << v->data_dev_block_bits)
  135. goto done;
  136. /* read the next block when we run out of parity bytes */
  137. offset += v->fec->roots;
  138. if (offset >= 1 << v->data_dev_block_bits) {
  139. dm_bufio_release(buf);
  140. par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
  141. if (unlikely(IS_ERR(par)))
  142. return PTR_ERR(par);
  143. }
  144. }
  145. done:
  146. r = corrected;
  147. error:
  148. dm_bufio_release(buf);
  149. if (r < 0 && neras)
  150. DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
  151. v->data_dev->name, (unsigned long long)rsb, r);
  152. else if (r > 0) {
  153. DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
  154. v->data_dev->name, (unsigned long long)rsb, r);
  155. atomic_add_unless(&v->fec->corrected, 1, INT_MAX);
  156. }
  157. return r;
  158. }
  159. /*
  160. * Locate data block erasures using verity hashes.
  161. */
  162. static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
  163. u8 *want_digest, u8 *data)
  164. {
  165. if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
  166. data, 1 << v->data_dev_block_bits,
  167. verity_io_real_digest(v, io))))
  168. return 0;
  169. return memcmp(verity_io_real_digest(v, io), want_digest,
  170. v->digest_size) != 0;
  171. }
  172. /*
  173. * Read data blocks that are part of the RS block and deinterleave as much as
  174. * fits into buffers. Check for erasure locations if @neras is non-NULL.
  175. */
  176. static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
  177. u64 rsb, u64 target, unsigned block_offset,
  178. int *neras)
  179. {
  180. bool is_zero;
  181. int i, j, target_index = -1;
  182. struct dm_buffer *buf;
  183. struct dm_bufio_client *bufio;
  184. struct dm_verity_fec_io *fio = fec_io(io);
  185. u64 block, ileaved;
  186. u8 *bbuf, *rs_block;
  187. u8 want_digest[v->digest_size];
  188. unsigned n, k;
  189. if (neras)
  190. *neras = 0;
  191. /*
  192. * read each of the rsn data blocks that are part of the RS block, and
  193. * interleave contents to available bufs
  194. */
  195. for (i = 0; i < v->fec->rsn; i++) {
  196. ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
  197. /*
  198. * target is the data block we want to correct, target_index is
  199. * the index of this block within the rsn RS blocks
  200. */
  201. if (ileaved == target)
  202. target_index = i;
  203. block = ileaved >> v->data_dev_block_bits;
  204. bufio = v->fec->data_bufio;
  205. if (block >= v->data_blocks) {
  206. block -= v->data_blocks;
  207. /*
  208. * blocks outside the area were assumed to contain
  209. * zeros when encoding data was generated
  210. */
  211. if (unlikely(block >= v->fec->hash_blocks))
  212. continue;
  213. block += v->hash_start;
  214. bufio = v->bufio;
  215. }
  216. bbuf = dm_bufio_read(bufio, block, &buf);
  217. if (unlikely(IS_ERR(bbuf))) {
  218. DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
  219. v->data_dev->name,
  220. (unsigned long long)rsb,
  221. (unsigned long long)block, PTR_ERR(bbuf));
  222. /* assume the block is corrupted */
  223. if (neras && *neras <= v->fec->roots)
  224. fio->erasures[(*neras)++] = i;
  225. continue;
  226. }
  227. /* locate erasures if the block is on the data device */
  228. if (bufio == v->fec->data_bufio &&
  229. verity_hash_for_block(v, io, block, want_digest,
  230. &is_zero) == 0) {
  231. /* skip known zero blocks entirely */
  232. if (is_zero)
  233. goto done;
  234. /*
  235. * skip if we have already found the theoretical
  236. * maximum number (i.e. fec->roots) of erasures
  237. */
  238. if (neras && *neras <= v->fec->roots &&
  239. fec_is_erasure(v, io, want_digest, bbuf))
  240. fio->erasures[(*neras)++] = i;
  241. }
  242. /*
  243. * deinterleave and copy the bytes that fit into bufs,
  244. * starting from block_offset
  245. */
  246. fec_for_each_buffer_rs_block(fio, n, j) {
  247. k = fec_buffer_rs_index(n, j) + block_offset;
  248. if (k >= 1 << v->data_dev_block_bits)
  249. goto done;
  250. rs_block = fec_buffer_rs_block(v, fio, n, j);
  251. rs_block[i] = bbuf[k];
  252. }
  253. done:
  254. dm_bufio_release(buf);
  255. }
  256. return target_index;
  257. }
  258. /*
  259. * Allocate RS control structure and FEC buffers from preallocated mempools,
  260. * and attempt to allocate as many extra buffers as available.
  261. */
  262. static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
  263. {
  264. unsigned n;
  265. if (!fio->rs)
  266. fio->rs = mempool_alloc(v->fec->rs_pool, GFP_NOIO);
  267. fec_for_each_prealloc_buffer(n) {
  268. if (fio->bufs[n])
  269. continue;
  270. fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOWAIT);
  271. if (unlikely(!fio->bufs[n])) {
  272. DMERR("failed to allocate FEC buffer");
  273. return -ENOMEM;
  274. }
  275. }
  276. /* try to allocate the maximum number of buffers */
  277. fec_for_each_extra_buffer(fio, n) {
  278. if (fio->bufs[n])
  279. continue;
  280. fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOWAIT);
  281. /* we can manage with even one buffer if necessary */
  282. if (unlikely(!fio->bufs[n]))
  283. break;
  284. }
  285. fio->nbufs = n;
  286. if (!fio->output)
  287. fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
  288. return 0;
  289. }
  290. /*
  291. * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
  292. * zeroed before deinterleaving.
  293. */
  294. static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
  295. {
  296. unsigned n;
  297. fec_for_each_buffer(fio, n)
  298. memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
  299. memset(fio->erasures, 0, sizeof(fio->erasures));
  300. }
  301. /*
  302. * Decode all RS blocks in a single data block and return the target block
  303. * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
  304. * hashes to locate erasures.
  305. */
  306. static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
  307. struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
  308. bool use_erasures)
  309. {
  310. int r, neras = 0;
  311. unsigned pos;
  312. r = fec_alloc_bufs(v, fio);
  313. if (unlikely(r < 0))
  314. return r;
  315. for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
  316. fec_init_bufs(v, fio);
  317. r = fec_read_bufs(v, io, rsb, offset, pos,
  318. use_erasures ? &neras : NULL);
  319. if (unlikely(r < 0))
  320. return r;
  321. r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
  322. if (r < 0)
  323. return r;
  324. pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
  325. }
  326. /* Always re-validate the corrected block against the expected hash */
  327. r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
  328. 1 << v->data_dev_block_bits,
  329. verity_io_real_digest(v, io));
  330. if (unlikely(r < 0))
  331. return r;
  332. if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
  333. v->digest_size)) {
  334. DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
  335. v->data_dev->name, (unsigned long long)rsb, neras);
  336. return -EILSEQ;
  337. }
  338. return 0;
  339. }
  340. static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
  341. size_t len)
  342. {
  343. struct dm_verity_fec_io *fio = fec_io(io);
  344. memcpy(data, &fio->output[fio->output_pos], len);
  345. fio->output_pos += len;
  346. return 0;
  347. }
  348. /*
  349. * Correct errors in a block. Copies corrected block to dest if non-NULL,
  350. * otherwise to a bio_vec starting from iter.
  351. */
  352. int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
  353. enum verity_block_type type, sector_t block, u8 *dest,
  354. struct bvec_iter *iter)
  355. {
  356. int r;
  357. struct dm_verity_fec_io *fio = fec_io(io);
  358. u64 offset, res, rsb;
  359. if (!verity_fec_is_enabled(v))
  360. return -EOPNOTSUPP;
  361. if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
  362. DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
  363. return -EIO;
  364. }
  365. fio->level++;
  366. if (type == DM_VERITY_BLOCK_TYPE_METADATA)
  367. block = block - v->hash_start + v->data_blocks;
  368. /*
  369. * For RS(M, N), the continuous FEC data is divided into blocks of N
  370. * bytes. Since block size may not be divisible by N, the last block
  371. * is zero padded when decoding.
  372. *
  373. * Each byte of the block is covered by a different RS(M, N) code,
  374. * and each code is interleaved over N blocks to make it less likely
  375. * that bursty corruption will leave us in unrecoverable state.
  376. */
  377. offset = block << v->data_dev_block_bits;
  378. res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
  379. /*
  380. * The base RS block we can feed to the interleaver to find out all
  381. * blocks required for decoding.
  382. */
  383. rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
  384. /*
  385. * Locating erasures is slow, so attempt to recover the block without
  386. * them first. Do a second attempt with erasures if the corruption is
  387. * bad enough.
  388. */
  389. r = fec_decode_rsb(v, io, fio, rsb, offset, false);
  390. if (r < 0) {
  391. r = fec_decode_rsb(v, io, fio, rsb, offset, true);
  392. if (r < 0)
  393. goto done;
  394. }
  395. if (dest)
  396. memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
  397. else if (iter) {
  398. fio->output_pos = 0;
  399. r = verity_for_bv_block(v, io, iter, fec_bv_copy);
  400. }
  401. done:
  402. fio->level--;
  403. return r;
  404. }
  405. /*
  406. * Clean up per-bio data.
  407. */
  408. void verity_fec_finish_io(struct dm_verity_io *io)
  409. {
  410. unsigned n;
  411. struct dm_verity_fec *f = io->v->fec;
  412. struct dm_verity_fec_io *fio = fec_io(io);
  413. if (!verity_fec_is_enabled(io->v))
  414. return;
  415. mempool_free(fio->rs, f->rs_pool);
  416. fec_for_each_prealloc_buffer(n)
  417. mempool_free(fio->bufs[n], f->prealloc_pool);
  418. fec_for_each_extra_buffer(fio, n)
  419. mempool_free(fio->bufs[n], f->extra_pool);
  420. mempool_free(fio->output, f->output_pool);
  421. }
  422. /*
  423. * Initialize per-bio data.
  424. */
  425. void verity_fec_init_io(struct dm_verity_io *io)
  426. {
  427. struct dm_verity_fec_io *fio = fec_io(io);
  428. if (!verity_fec_is_enabled(io->v))
  429. return;
  430. fio->rs = NULL;
  431. memset(fio->bufs, 0, sizeof(fio->bufs));
  432. fio->nbufs = 0;
  433. fio->output = NULL;
  434. fio->level = 0;
  435. }
  436. /*
  437. * Append feature arguments and values to the status table.
  438. */
  439. unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
  440. char *result, unsigned maxlen)
  441. {
  442. if (!verity_fec_is_enabled(v))
  443. return sz;
  444. DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
  445. DM_VERITY_OPT_FEC_BLOCKS " %llu "
  446. DM_VERITY_OPT_FEC_START " %llu "
  447. DM_VERITY_OPT_FEC_ROOTS " %d",
  448. v->fec->dev->name,
  449. (unsigned long long)v->fec->blocks,
  450. (unsigned long long)v->fec->start,
  451. v->fec->roots);
  452. return sz;
  453. }
  454. void verity_fec_dtr(struct dm_verity *v)
  455. {
  456. struct dm_verity_fec *f = v->fec;
  457. struct kobject *kobj = &f->kobj_holder.kobj;
  458. if (!verity_fec_is_enabled(v))
  459. goto out;
  460. mempool_destroy(f->rs_pool);
  461. mempool_destroy(f->prealloc_pool);
  462. mempool_destroy(f->extra_pool);
  463. mempool_destroy(f->output_pool);
  464. kmem_cache_destroy(f->cache);
  465. if (f->data_bufio)
  466. dm_bufio_client_destroy(f->data_bufio);
  467. if (f->bufio)
  468. dm_bufio_client_destroy(f->bufio);
  469. if (f->dev)
  470. dm_put_device(v->ti, f->dev);
  471. if (kobj->state_initialized) {
  472. kobject_put(kobj);
  473. wait_for_completion(dm_get_completion_from_kobject(kobj));
  474. }
  475. out:
  476. kfree(f);
  477. v->fec = NULL;
  478. }
  479. static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
  480. {
  481. struct dm_verity *v = (struct dm_verity *)pool_data;
  482. return init_rs(8, 0x11d, 0, 1, v->fec->roots);
  483. }
  484. static void fec_rs_free(void *element, void *pool_data)
  485. {
  486. struct rs_control *rs = (struct rs_control *)element;
  487. if (rs)
  488. free_rs(rs);
  489. }
  490. bool verity_is_fec_opt_arg(const char *arg_name)
  491. {
  492. return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
  493. !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
  494. !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
  495. !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
  496. }
  497. int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
  498. unsigned *argc, const char *arg_name)
  499. {
  500. int r;
  501. struct dm_target *ti = v->ti;
  502. const char *arg_value;
  503. unsigned long long num_ll;
  504. unsigned char num_c;
  505. char dummy;
  506. if (!*argc) {
  507. ti->error = "FEC feature arguments require a value";
  508. return -EINVAL;
  509. }
  510. arg_value = dm_shift_arg(as);
  511. (*argc)--;
  512. if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
  513. r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
  514. if (r) {
  515. ti->error = "FEC device lookup failed";
  516. return r;
  517. }
  518. } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
  519. if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
  520. ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
  521. >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
  522. ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
  523. return -EINVAL;
  524. }
  525. v->fec->blocks = num_ll;
  526. } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
  527. if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
  528. ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
  529. (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
  530. ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
  531. return -EINVAL;
  532. }
  533. v->fec->start = num_ll;
  534. } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
  535. if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
  536. num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
  537. num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
  538. ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
  539. return -EINVAL;
  540. }
  541. v->fec->roots = num_c;
  542. } else {
  543. ti->error = "Unrecognized verity FEC feature request";
  544. return -EINVAL;
  545. }
  546. return 0;
  547. }
  548. static ssize_t corrected_show(struct kobject *kobj, struct kobj_attribute *attr,
  549. char *buf)
  550. {
  551. struct dm_verity_fec *f = container_of(kobj, struct dm_verity_fec,
  552. kobj_holder.kobj);
  553. return sprintf(buf, "%d\n", atomic_read(&f->corrected));
  554. }
  555. static struct kobj_attribute attr_corrected = __ATTR_RO(corrected);
  556. static struct attribute *fec_attrs[] = {
  557. &attr_corrected.attr,
  558. NULL
  559. };
  560. static struct kobj_type fec_ktype = {
  561. .sysfs_ops = &kobj_sysfs_ops,
  562. .default_attrs = fec_attrs,
  563. .release = dm_kobject_release
  564. };
  565. /*
  566. * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
  567. */
  568. int verity_fec_ctr_alloc(struct dm_verity *v)
  569. {
  570. struct dm_verity_fec *f;
  571. f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
  572. if (!f) {
  573. v->ti->error = "Cannot allocate FEC structure";
  574. return -ENOMEM;
  575. }
  576. v->fec = f;
  577. return 0;
  578. }
  579. /*
  580. * Validate arguments and preallocate memory. Must be called after arguments
  581. * have been parsed using verity_fec_parse_opt_args.
  582. */
  583. int verity_fec_ctr(struct dm_verity *v)
  584. {
  585. int r;
  586. struct dm_verity_fec *f = v->fec;
  587. struct dm_target *ti = v->ti;
  588. struct mapped_device *md = dm_table_get_md(ti->table);
  589. u64 hash_blocks;
  590. if (!verity_fec_is_enabled(v)) {
  591. verity_fec_dtr(v);
  592. return 0;
  593. }
  594. /* Create a kobject and sysfs attributes */
  595. init_completion(&f->kobj_holder.completion);
  596. r = kobject_init_and_add(&f->kobj_holder.kobj, &fec_ktype,
  597. &disk_to_dev(dm_disk(md))->kobj, "%s", "fec");
  598. if (r) {
  599. ti->error = "Cannot create kobject";
  600. return r;
  601. }
  602. /*
  603. * FEC is computed over data blocks, possible metadata, and
  604. * hash blocks. In other words, FEC covers total of fec_blocks
  605. * blocks consisting of the following:
  606. *
  607. * data blocks | hash blocks | metadata (optional)
  608. *
  609. * We allow metadata after hash blocks to support a use case
  610. * where all data is stored on the same device and FEC covers
  611. * the entire area.
  612. *
  613. * If metadata is included, we require it to be available on the
  614. * hash device after the hash blocks.
  615. */
  616. hash_blocks = v->hash_blocks - v->hash_start;
  617. /*
  618. * Require matching block sizes for data and hash devices for
  619. * simplicity.
  620. */
  621. if (v->data_dev_block_bits != v->hash_dev_block_bits) {
  622. ti->error = "Block sizes must match to use FEC";
  623. return -EINVAL;
  624. }
  625. if (!f->roots) {
  626. ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
  627. return -EINVAL;
  628. }
  629. f->rsn = DM_VERITY_FEC_RSM - f->roots;
  630. if (!f->blocks) {
  631. ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
  632. return -EINVAL;
  633. }
  634. f->rounds = f->blocks;
  635. if (sector_div(f->rounds, f->rsn))
  636. f->rounds++;
  637. /*
  638. * Due to optional metadata, f->blocks can be larger than
  639. * data_blocks and hash_blocks combined.
  640. */
  641. if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
  642. ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
  643. return -EINVAL;
  644. }
  645. /*
  646. * Metadata is accessed through the hash device, so we require
  647. * it to be large enough.
  648. */
  649. f->hash_blocks = f->blocks - v->data_blocks;
  650. if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
  651. ti->error = "Hash device is too small for "
  652. DM_VERITY_OPT_FEC_BLOCKS;
  653. return -E2BIG;
  654. }
  655. f->bufio = dm_bufio_client_create(f->dev->bdev,
  656. 1 << v->data_dev_block_bits,
  657. 1, 0, NULL, NULL);
  658. if (IS_ERR(f->bufio)) {
  659. ti->error = "Cannot initialize FEC bufio client";
  660. return PTR_ERR(f->bufio);
  661. }
  662. if (dm_bufio_get_device_size(f->bufio) <
  663. ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
  664. ti->error = "FEC device is too small";
  665. return -E2BIG;
  666. }
  667. f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
  668. 1 << v->data_dev_block_bits,
  669. 1, 0, NULL, NULL);
  670. if (IS_ERR(f->data_bufio)) {
  671. ti->error = "Cannot initialize FEC data bufio client";
  672. return PTR_ERR(f->data_bufio);
  673. }
  674. if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
  675. ti->error = "Data device is too small";
  676. return -E2BIG;
  677. }
  678. /* Preallocate an rs_control structure for each worker thread */
  679. f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
  680. fec_rs_free, (void *) v);
  681. if (!f->rs_pool) {
  682. ti->error = "Cannot allocate RS pool";
  683. return -ENOMEM;
  684. }
  685. f->cache = kmem_cache_create("dm_verity_fec_buffers",
  686. f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
  687. 0, 0, NULL);
  688. if (!f->cache) {
  689. ti->error = "Cannot create FEC buffer cache";
  690. return -ENOMEM;
  691. }
  692. /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
  693. f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
  694. DM_VERITY_FEC_BUF_PREALLOC,
  695. f->cache);
  696. if (!f->prealloc_pool) {
  697. ti->error = "Cannot allocate FEC buffer prealloc pool";
  698. return -ENOMEM;
  699. }
  700. f->extra_pool = mempool_create_slab_pool(0, f->cache);
  701. if (!f->extra_pool) {
  702. ti->error = "Cannot allocate FEC buffer extra pool";
  703. return -ENOMEM;
  704. }
  705. /* Preallocate an output buffer for each thread */
  706. f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
  707. 1 << v->data_dev_block_bits);
  708. if (!f->output_pool) {
  709. ti->error = "Cannot allocate FEC output pool";
  710. return -ENOMEM;
  711. }
  712. /* Reserve space for our per-bio data */
  713. ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
  714. return 0;
  715. }