dm-thin-metadata.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 2
  75. #define SECTOR_TO_BLOCK_SHIFT 3
  76. /*
  77. * For btree insert:
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. * For btree remove:
  81. * 2 for shadow spine +
  82. * 4 for rebalance 3 child node
  83. */
  84. #define THIN_MAX_CONCURRENT_LOCKS 6
  85. /* This should be plenty */
  86. #define SPACE_MAP_ROOT_SIZE 128
  87. /*
  88. * Little endian on-disk superblock and device details.
  89. */
  90. struct thin_disk_superblock {
  91. __le32 csum; /* Checksum of superblock except for this field. */
  92. __le32 flags;
  93. __le64 blocknr; /* This block number, dm_block_t. */
  94. __u8 uuid[16];
  95. __le64 magic;
  96. __le32 version;
  97. __le32 time;
  98. __le64 trans_id;
  99. /*
  100. * Root held by userspace transactions.
  101. */
  102. __le64 held_root;
  103. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  104. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  105. /*
  106. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  107. */
  108. __le64 data_mapping_root;
  109. /*
  110. * Device detail root mapping dev_id -> device_details
  111. */
  112. __le64 device_details_root;
  113. __le32 data_block_size; /* In 512-byte sectors. */
  114. __le32 metadata_block_size; /* In 512-byte sectors. */
  115. __le64 metadata_nr_blocks;
  116. __le32 compat_flags;
  117. __le32 compat_ro_flags;
  118. __le32 incompat_flags;
  119. } __packed;
  120. struct disk_device_details {
  121. __le64 mapped_blocks;
  122. __le64 transaction_id; /* When created. */
  123. __le32 creation_time;
  124. __le32 snapshotted_time;
  125. } __packed;
  126. struct dm_pool_metadata {
  127. struct hlist_node hash;
  128. struct block_device *bdev;
  129. struct dm_block_manager *bm;
  130. struct dm_space_map *metadata_sm;
  131. struct dm_space_map *data_sm;
  132. struct dm_transaction_manager *tm;
  133. struct dm_transaction_manager *nb_tm;
  134. /*
  135. * Two-level btree.
  136. * First level holds thin_dev_t.
  137. * Second level holds mappings.
  138. */
  139. struct dm_btree_info info;
  140. /*
  141. * Non-blocking version of the above.
  142. */
  143. struct dm_btree_info nb_info;
  144. /*
  145. * Just the top level for deleting whole devices.
  146. */
  147. struct dm_btree_info tl_info;
  148. /*
  149. * Just the bottom level for creating new devices.
  150. */
  151. struct dm_btree_info bl_info;
  152. /*
  153. * Describes the device details btree.
  154. */
  155. struct dm_btree_info details_info;
  156. struct rw_semaphore root_lock;
  157. uint32_t time;
  158. dm_block_t root;
  159. dm_block_t details_root;
  160. struct list_head thin_devices;
  161. uint64_t trans_id;
  162. unsigned long flags;
  163. sector_t data_block_size;
  164. /*
  165. * We reserve a section of the metadata for commit overhead.
  166. * All reported space does *not* include this.
  167. */
  168. dm_block_t metadata_reserve;
  169. /*
  170. * Set if a transaction has to be aborted but the attempt to roll back
  171. * to the previous (good) transaction failed. The only pool metadata
  172. * operation possible in this state is the closing of the device.
  173. */
  174. bool fail_io:1;
  175. /*
  176. * Reading the space map roots can fail, so we read it into these
  177. * buffers before the superblock is locked and updated.
  178. */
  179. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  180. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  181. };
  182. struct dm_thin_device {
  183. struct list_head list;
  184. struct dm_pool_metadata *pmd;
  185. dm_thin_id id;
  186. int open_count;
  187. bool changed:1;
  188. bool aborted_with_changes:1;
  189. uint64_t mapped_blocks;
  190. uint64_t transaction_id;
  191. uint32_t creation_time;
  192. uint32_t snapshotted_time;
  193. };
  194. /*----------------------------------------------------------------
  195. * superblock validator
  196. *--------------------------------------------------------------*/
  197. #define SUPERBLOCK_CSUM_XOR 160774
  198. static void sb_prepare_for_write(struct dm_block_validator *v,
  199. struct dm_block *b,
  200. size_t block_size)
  201. {
  202. struct thin_disk_superblock *disk_super = dm_block_data(b);
  203. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  204. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  205. block_size - sizeof(__le32),
  206. SUPERBLOCK_CSUM_XOR));
  207. }
  208. static int sb_check(struct dm_block_validator *v,
  209. struct dm_block *b,
  210. size_t block_size)
  211. {
  212. struct thin_disk_superblock *disk_super = dm_block_data(b);
  213. __le32 csum_le;
  214. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  215. DMERR("sb_check failed: blocknr %llu: "
  216. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  217. (unsigned long long)dm_block_location(b));
  218. return -ENOTBLK;
  219. }
  220. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  221. DMERR("sb_check failed: magic %llu: "
  222. "wanted %llu", le64_to_cpu(disk_super->magic),
  223. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  224. return -EILSEQ;
  225. }
  226. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  227. block_size - sizeof(__le32),
  228. SUPERBLOCK_CSUM_XOR));
  229. if (csum_le != disk_super->csum) {
  230. DMERR("sb_check failed: csum %u: wanted %u",
  231. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  232. return -EILSEQ;
  233. }
  234. return 0;
  235. }
  236. static struct dm_block_validator sb_validator = {
  237. .name = "superblock",
  238. .prepare_for_write = sb_prepare_for_write,
  239. .check = sb_check
  240. };
  241. /*----------------------------------------------------------------
  242. * Methods for the btree value types
  243. *--------------------------------------------------------------*/
  244. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  245. {
  246. return (b << 24) | t;
  247. }
  248. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  249. {
  250. *b = v >> 24;
  251. *t = v & ((1 << 24) - 1);
  252. }
  253. static void data_block_inc(void *context, const void *value_le)
  254. {
  255. struct dm_space_map *sm = context;
  256. __le64 v_le;
  257. uint64_t b;
  258. uint32_t t;
  259. memcpy(&v_le, value_le, sizeof(v_le));
  260. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  261. dm_sm_inc_block(sm, b);
  262. }
  263. static void data_block_dec(void *context, const void *value_le)
  264. {
  265. struct dm_space_map *sm = context;
  266. __le64 v_le;
  267. uint64_t b;
  268. uint32_t t;
  269. memcpy(&v_le, value_le, sizeof(v_le));
  270. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  271. dm_sm_dec_block(sm, b);
  272. }
  273. static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
  274. {
  275. __le64 v1_le, v2_le;
  276. uint64_t b1, b2;
  277. uint32_t t;
  278. memcpy(&v1_le, value1_le, sizeof(v1_le));
  279. memcpy(&v2_le, value2_le, sizeof(v2_le));
  280. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  281. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  282. return b1 == b2;
  283. }
  284. static void subtree_inc(void *context, const void *value)
  285. {
  286. struct dm_btree_info *info = context;
  287. __le64 root_le;
  288. uint64_t root;
  289. memcpy(&root_le, value, sizeof(root_le));
  290. root = le64_to_cpu(root_le);
  291. dm_tm_inc(info->tm, root);
  292. }
  293. static void subtree_dec(void *context, const void *value)
  294. {
  295. struct dm_btree_info *info = context;
  296. __le64 root_le;
  297. uint64_t root;
  298. memcpy(&root_le, value, sizeof(root_le));
  299. root = le64_to_cpu(root_le);
  300. if (dm_btree_del(info, root))
  301. DMERR("btree delete failed");
  302. }
  303. static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
  304. {
  305. __le64 v1_le, v2_le;
  306. memcpy(&v1_le, value1_le, sizeof(v1_le));
  307. memcpy(&v2_le, value2_le, sizeof(v2_le));
  308. return v1_le == v2_le;
  309. }
  310. /*----------------------------------------------------------------*/
  311. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  312. struct dm_block **sblock)
  313. {
  314. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  315. &sb_validator, sblock);
  316. }
  317. static int superblock_lock(struct dm_pool_metadata *pmd,
  318. struct dm_block **sblock)
  319. {
  320. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  321. &sb_validator, sblock);
  322. }
  323. static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  324. {
  325. int r;
  326. unsigned i;
  327. struct dm_block *b;
  328. __le64 *data_le, zero = cpu_to_le64(0);
  329. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  330. /*
  331. * We can't use a validator here - it may be all zeroes.
  332. */
  333. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  334. if (r)
  335. return r;
  336. data_le = dm_block_data(b);
  337. *result = 1;
  338. for (i = 0; i < block_size; i++) {
  339. if (data_le[i] != zero) {
  340. *result = 0;
  341. break;
  342. }
  343. }
  344. dm_bm_unlock(b);
  345. return 0;
  346. }
  347. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  348. {
  349. pmd->info.tm = pmd->tm;
  350. pmd->info.levels = 2;
  351. pmd->info.value_type.context = pmd->data_sm;
  352. pmd->info.value_type.size = sizeof(__le64);
  353. pmd->info.value_type.inc = data_block_inc;
  354. pmd->info.value_type.dec = data_block_dec;
  355. pmd->info.value_type.equal = data_block_equal;
  356. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  357. pmd->nb_info.tm = pmd->nb_tm;
  358. pmd->tl_info.tm = pmd->tm;
  359. pmd->tl_info.levels = 1;
  360. pmd->tl_info.value_type.context = &pmd->bl_info;
  361. pmd->tl_info.value_type.size = sizeof(__le64);
  362. pmd->tl_info.value_type.inc = subtree_inc;
  363. pmd->tl_info.value_type.dec = subtree_dec;
  364. pmd->tl_info.value_type.equal = subtree_equal;
  365. pmd->bl_info.tm = pmd->tm;
  366. pmd->bl_info.levels = 1;
  367. pmd->bl_info.value_type.context = pmd->data_sm;
  368. pmd->bl_info.value_type.size = sizeof(__le64);
  369. pmd->bl_info.value_type.inc = data_block_inc;
  370. pmd->bl_info.value_type.dec = data_block_dec;
  371. pmd->bl_info.value_type.equal = data_block_equal;
  372. pmd->details_info.tm = pmd->tm;
  373. pmd->details_info.levels = 1;
  374. pmd->details_info.value_type.context = NULL;
  375. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  376. pmd->details_info.value_type.inc = NULL;
  377. pmd->details_info.value_type.dec = NULL;
  378. pmd->details_info.value_type.equal = NULL;
  379. }
  380. static int save_sm_roots(struct dm_pool_metadata *pmd)
  381. {
  382. int r;
  383. size_t len;
  384. r = dm_sm_root_size(pmd->metadata_sm, &len);
  385. if (r < 0)
  386. return r;
  387. r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
  388. if (r < 0)
  389. return r;
  390. r = dm_sm_root_size(pmd->data_sm, &len);
  391. if (r < 0)
  392. return r;
  393. return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
  394. }
  395. static void copy_sm_roots(struct dm_pool_metadata *pmd,
  396. struct thin_disk_superblock *disk)
  397. {
  398. memcpy(&disk->metadata_space_map_root,
  399. &pmd->metadata_space_map_root,
  400. sizeof(pmd->metadata_space_map_root));
  401. memcpy(&disk->data_space_map_root,
  402. &pmd->data_space_map_root,
  403. sizeof(pmd->data_space_map_root));
  404. }
  405. static int __write_initial_superblock(struct dm_pool_metadata *pmd)
  406. {
  407. int r;
  408. struct dm_block *sblock;
  409. struct thin_disk_superblock *disk_super;
  410. sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
  411. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  412. bdev_size = THIN_METADATA_MAX_SECTORS;
  413. r = dm_sm_commit(pmd->data_sm);
  414. if (r < 0)
  415. return r;
  416. r = dm_tm_pre_commit(pmd->tm);
  417. if (r < 0)
  418. return r;
  419. r = save_sm_roots(pmd);
  420. if (r < 0)
  421. return r;
  422. r = superblock_lock_zero(pmd, &sblock);
  423. if (r)
  424. return r;
  425. disk_super = dm_block_data(sblock);
  426. disk_super->flags = 0;
  427. memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
  428. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  429. disk_super->version = cpu_to_le32(THIN_VERSION);
  430. disk_super->time = 0;
  431. disk_super->trans_id = 0;
  432. disk_super->held_root = 0;
  433. copy_sm_roots(pmd, disk_super);
  434. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  435. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  436. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
  437. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  438. disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
  439. return dm_tm_commit(pmd->tm, sblock);
  440. }
  441. static int __format_metadata(struct dm_pool_metadata *pmd)
  442. {
  443. int r;
  444. r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  445. &pmd->tm, &pmd->metadata_sm);
  446. if (r < 0) {
  447. DMERR("tm_create_with_sm failed");
  448. return r;
  449. }
  450. pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
  451. if (IS_ERR(pmd->data_sm)) {
  452. DMERR("sm_disk_create failed");
  453. r = PTR_ERR(pmd->data_sm);
  454. goto bad_cleanup_tm;
  455. }
  456. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  457. if (!pmd->nb_tm) {
  458. DMERR("could not create non-blocking clone tm");
  459. r = -ENOMEM;
  460. goto bad_cleanup_data_sm;
  461. }
  462. __setup_btree_details(pmd);
  463. r = dm_btree_empty(&pmd->info, &pmd->root);
  464. if (r < 0)
  465. goto bad_cleanup_nb_tm;
  466. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  467. if (r < 0) {
  468. DMERR("couldn't create devices root");
  469. goto bad_cleanup_nb_tm;
  470. }
  471. r = __write_initial_superblock(pmd);
  472. if (r)
  473. goto bad_cleanup_nb_tm;
  474. return 0;
  475. bad_cleanup_nb_tm:
  476. dm_tm_destroy(pmd->nb_tm);
  477. bad_cleanup_data_sm:
  478. dm_sm_destroy(pmd->data_sm);
  479. bad_cleanup_tm:
  480. dm_tm_destroy(pmd->tm);
  481. dm_sm_destroy(pmd->metadata_sm);
  482. return r;
  483. }
  484. static int __check_incompat_features(struct thin_disk_superblock *disk_super,
  485. struct dm_pool_metadata *pmd)
  486. {
  487. uint32_t features;
  488. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  489. if (features) {
  490. DMERR("could not access metadata due to unsupported optional features (%lx).",
  491. (unsigned long)features);
  492. return -EINVAL;
  493. }
  494. /*
  495. * Check for read-only metadata to skip the following RDWR checks.
  496. */
  497. if (get_disk_ro(pmd->bdev->bd_disk))
  498. return 0;
  499. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  500. if (features) {
  501. DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
  502. (unsigned long)features);
  503. return -EINVAL;
  504. }
  505. return 0;
  506. }
  507. static int __open_metadata(struct dm_pool_metadata *pmd)
  508. {
  509. int r;
  510. struct dm_block *sblock;
  511. struct thin_disk_superblock *disk_super;
  512. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  513. &sb_validator, &sblock);
  514. if (r < 0) {
  515. DMERR("couldn't read superblock");
  516. return r;
  517. }
  518. disk_super = dm_block_data(sblock);
  519. /* Verify the data block size hasn't changed */
  520. if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
  521. DMERR("changing the data block size (from %u to %llu) is not supported",
  522. le32_to_cpu(disk_super->data_block_size),
  523. (unsigned long long)pmd->data_block_size);
  524. r = -EINVAL;
  525. goto bad_unlock_sblock;
  526. }
  527. r = __check_incompat_features(disk_super, pmd);
  528. if (r < 0)
  529. goto bad_unlock_sblock;
  530. r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  531. disk_super->metadata_space_map_root,
  532. sizeof(disk_super->metadata_space_map_root),
  533. &pmd->tm, &pmd->metadata_sm);
  534. if (r < 0) {
  535. DMERR("tm_open_with_sm failed");
  536. goto bad_unlock_sblock;
  537. }
  538. pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
  539. sizeof(disk_super->data_space_map_root));
  540. if (IS_ERR(pmd->data_sm)) {
  541. DMERR("sm_disk_open failed");
  542. r = PTR_ERR(pmd->data_sm);
  543. goto bad_cleanup_tm;
  544. }
  545. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  546. if (!pmd->nb_tm) {
  547. DMERR("could not create non-blocking clone tm");
  548. r = -ENOMEM;
  549. goto bad_cleanup_data_sm;
  550. }
  551. __setup_btree_details(pmd);
  552. dm_bm_unlock(sblock);
  553. return 0;
  554. bad_cleanup_data_sm:
  555. dm_sm_destroy(pmd->data_sm);
  556. bad_cleanup_tm:
  557. dm_tm_destroy(pmd->tm);
  558. dm_sm_destroy(pmd->metadata_sm);
  559. bad_unlock_sblock:
  560. dm_bm_unlock(sblock);
  561. return r;
  562. }
  563. static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
  564. {
  565. int r, unformatted;
  566. r = __superblock_all_zeroes(pmd->bm, &unformatted);
  567. if (r)
  568. return r;
  569. if (unformatted)
  570. return format_device ? __format_metadata(pmd) : -EPERM;
  571. return __open_metadata(pmd);
  572. }
  573. static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
  574. {
  575. int r;
  576. pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
  577. THIN_MAX_CONCURRENT_LOCKS);
  578. if (IS_ERR(pmd->bm)) {
  579. DMERR("could not create block manager");
  580. r = PTR_ERR(pmd->bm);
  581. pmd->bm = NULL;
  582. return r;
  583. }
  584. r = __open_or_format_metadata(pmd, format_device);
  585. if (r) {
  586. dm_block_manager_destroy(pmd->bm);
  587. pmd->bm = NULL;
  588. }
  589. return r;
  590. }
  591. static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
  592. {
  593. dm_sm_destroy(pmd->data_sm);
  594. dm_sm_destroy(pmd->metadata_sm);
  595. dm_tm_destroy(pmd->nb_tm);
  596. dm_tm_destroy(pmd->tm);
  597. dm_block_manager_destroy(pmd->bm);
  598. }
  599. static int __begin_transaction(struct dm_pool_metadata *pmd)
  600. {
  601. int r;
  602. struct thin_disk_superblock *disk_super;
  603. struct dm_block *sblock;
  604. /*
  605. * We re-read the superblock every time. Shouldn't need to do this
  606. * really.
  607. */
  608. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  609. &sb_validator, &sblock);
  610. if (r)
  611. return r;
  612. disk_super = dm_block_data(sblock);
  613. pmd->time = le32_to_cpu(disk_super->time);
  614. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  615. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  616. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  617. pmd->flags = le32_to_cpu(disk_super->flags);
  618. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  619. dm_bm_unlock(sblock);
  620. return 0;
  621. }
  622. static int __write_changed_details(struct dm_pool_metadata *pmd)
  623. {
  624. int r;
  625. struct dm_thin_device *td, *tmp;
  626. struct disk_device_details details;
  627. uint64_t key;
  628. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  629. if (!td->changed)
  630. continue;
  631. key = td->id;
  632. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  633. details.transaction_id = cpu_to_le64(td->transaction_id);
  634. details.creation_time = cpu_to_le32(td->creation_time);
  635. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  636. __dm_bless_for_disk(&details);
  637. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  638. &key, &details, &pmd->details_root);
  639. if (r)
  640. return r;
  641. if (td->open_count)
  642. td->changed = 0;
  643. else {
  644. list_del(&td->list);
  645. kfree(td);
  646. }
  647. }
  648. return 0;
  649. }
  650. static int __commit_transaction(struct dm_pool_metadata *pmd)
  651. {
  652. int r;
  653. size_t metadata_len, data_len;
  654. struct thin_disk_superblock *disk_super;
  655. struct dm_block *sblock;
  656. /*
  657. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  658. */
  659. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  660. r = __write_changed_details(pmd);
  661. if (r < 0)
  662. return r;
  663. r = dm_sm_commit(pmd->data_sm);
  664. if (r < 0)
  665. return r;
  666. r = dm_tm_pre_commit(pmd->tm);
  667. if (r < 0)
  668. return r;
  669. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  670. if (r < 0)
  671. return r;
  672. r = dm_sm_root_size(pmd->data_sm, &data_len);
  673. if (r < 0)
  674. return r;
  675. r = save_sm_roots(pmd);
  676. if (r < 0)
  677. return r;
  678. r = superblock_lock(pmd, &sblock);
  679. if (r)
  680. return r;
  681. disk_super = dm_block_data(sblock);
  682. disk_super->time = cpu_to_le32(pmd->time);
  683. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  684. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  685. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  686. disk_super->flags = cpu_to_le32(pmd->flags);
  687. copy_sm_roots(pmd, disk_super);
  688. return dm_tm_commit(pmd->tm, sblock);
  689. }
  690. static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
  691. {
  692. int r;
  693. dm_block_t total;
  694. dm_block_t max_blocks = 4096; /* 16M */
  695. r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
  696. if (r) {
  697. DMERR("could not get size of metadata device");
  698. pmd->metadata_reserve = max_blocks;
  699. } else
  700. pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
  701. }
  702. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  703. sector_t data_block_size,
  704. bool format_device)
  705. {
  706. int r;
  707. struct dm_pool_metadata *pmd;
  708. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  709. if (!pmd) {
  710. DMERR("could not allocate metadata struct");
  711. return ERR_PTR(-ENOMEM);
  712. }
  713. init_rwsem(&pmd->root_lock);
  714. pmd->time = 0;
  715. INIT_LIST_HEAD(&pmd->thin_devices);
  716. pmd->fail_io = false;
  717. pmd->bdev = bdev;
  718. pmd->data_block_size = data_block_size;
  719. r = __create_persistent_data_objects(pmd, format_device);
  720. if (r) {
  721. kfree(pmd);
  722. return ERR_PTR(r);
  723. }
  724. r = __begin_transaction(pmd);
  725. if (r < 0) {
  726. if (dm_pool_metadata_close(pmd) < 0)
  727. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  728. return ERR_PTR(r);
  729. }
  730. __set_metadata_reserve(pmd);
  731. return pmd;
  732. }
  733. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  734. {
  735. int r;
  736. unsigned open_devices = 0;
  737. struct dm_thin_device *td, *tmp;
  738. down_read(&pmd->root_lock);
  739. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  740. if (td->open_count)
  741. open_devices++;
  742. else {
  743. list_del(&td->list);
  744. kfree(td);
  745. }
  746. }
  747. up_read(&pmd->root_lock);
  748. if (open_devices) {
  749. DMERR("attempt to close pmd when %u device(s) are still open",
  750. open_devices);
  751. return -EBUSY;
  752. }
  753. if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
  754. r = __commit_transaction(pmd);
  755. if (r < 0)
  756. DMWARN("%s: __commit_transaction() failed, error = %d",
  757. __func__, r);
  758. }
  759. if (!pmd->fail_io)
  760. __destroy_persistent_data_objects(pmd);
  761. kfree(pmd);
  762. return 0;
  763. }
  764. /*
  765. * __open_device: Returns @td corresponding to device with id @dev,
  766. * creating it if @create is set and incrementing @td->open_count.
  767. * On failure, @td is undefined.
  768. */
  769. static int __open_device(struct dm_pool_metadata *pmd,
  770. dm_thin_id dev, int create,
  771. struct dm_thin_device **td)
  772. {
  773. int r, changed = 0;
  774. struct dm_thin_device *td2;
  775. uint64_t key = dev;
  776. struct disk_device_details details_le;
  777. /*
  778. * If the device is already open, return it.
  779. */
  780. list_for_each_entry(td2, &pmd->thin_devices, list)
  781. if (td2->id == dev) {
  782. /*
  783. * May not create an already-open device.
  784. */
  785. if (create)
  786. return -EEXIST;
  787. td2->open_count++;
  788. *td = td2;
  789. return 0;
  790. }
  791. /*
  792. * Check the device exists.
  793. */
  794. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  795. &key, &details_le);
  796. if (r) {
  797. if (r != -ENODATA || !create)
  798. return r;
  799. /*
  800. * Create new device.
  801. */
  802. changed = 1;
  803. details_le.mapped_blocks = 0;
  804. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  805. details_le.creation_time = cpu_to_le32(pmd->time);
  806. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  807. }
  808. *td = kmalloc(sizeof(**td), GFP_NOIO);
  809. if (!*td)
  810. return -ENOMEM;
  811. (*td)->pmd = pmd;
  812. (*td)->id = dev;
  813. (*td)->open_count = 1;
  814. (*td)->changed = changed;
  815. (*td)->aborted_with_changes = false;
  816. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  817. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  818. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  819. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  820. list_add(&(*td)->list, &pmd->thin_devices);
  821. return 0;
  822. }
  823. static void __close_device(struct dm_thin_device *td)
  824. {
  825. --td->open_count;
  826. }
  827. static int __create_thin(struct dm_pool_metadata *pmd,
  828. dm_thin_id dev)
  829. {
  830. int r;
  831. dm_block_t dev_root;
  832. uint64_t key = dev;
  833. struct disk_device_details details_le;
  834. struct dm_thin_device *td;
  835. __le64 value;
  836. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  837. &key, &details_le);
  838. if (!r)
  839. return -EEXIST;
  840. /*
  841. * Create an empty btree for the mappings.
  842. */
  843. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  844. if (r)
  845. return r;
  846. /*
  847. * Insert it into the main mapping tree.
  848. */
  849. value = cpu_to_le64(dev_root);
  850. __dm_bless_for_disk(&value);
  851. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  852. if (r) {
  853. dm_btree_del(&pmd->bl_info, dev_root);
  854. return r;
  855. }
  856. r = __open_device(pmd, dev, 1, &td);
  857. if (r) {
  858. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  859. dm_btree_del(&pmd->bl_info, dev_root);
  860. return r;
  861. }
  862. __close_device(td);
  863. return r;
  864. }
  865. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  866. {
  867. int r = -EINVAL;
  868. down_write(&pmd->root_lock);
  869. if (!pmd->fail_io)
  870. r = __create_thin(pmd, dev);
  871. up_write(&pmd->root_lock);
  872. return r;
  873. }
  874. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  875. struct dm_thin_device *snap,
  876. dm_thin_id origin, uint32_t time)
  877. {
  878. int r;
  879. struct dm_thin_device *td;
  880. r = __open_device(pmd, origin, 0, &td);
  881. if (r)
  882. return r;
  883. td->changed = 1;
  884. td->snapshotted_time = time;
  885. snap->mapped_blocks = td->mapped_blocks;
  886. snap->snapshotted_time = time;
  887. __close_device(td);
  888. return 0;
  889. }
  890. static int __create_snap(struct dm_pool_metadata *pmd,
  891. dm_thin_id dev, dm_thin_id origin)
  892. {
  893. int r;
  894. dm_block_t origin_root;
  895. uint64_t key = origin, dev_key = dev;
  896. struct dm_thin_device *td;
  897. struct disk_device_details details_le;
  898. __le64 value;
  899. /* check this device is unused */
  900. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  901. &dev_key, &details_le);
  902. if (!r)
  903. return -EEXIST;
  904. /* find the mapping tree for the origin */
  905. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  906. if (r)
  907. return r;
  908. origin_root = le64_to_cpu(value);
  909. /* clone the origin, an inc will do */
  910. dm_tm_inc(pmd->tm, origin_root);
  911. /* insert into the main mapping tree */
  912. value = cpu_to_le64(origin_root);
  913. __dm_bless_for_disk(&value);
  914. key = dev;
  915. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  916. if (r) {
  917. dm_tm_dec(pmd->tm, origin_root);
  918. return r;
  919. }
  920. pmd->time++;
  921. r = __open_device(pmd, dev, 1, &td);
  922. if (r)
  923. goto bad;
  924. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  925. __close_device(td);
  926. if (r)
  927. goto bad;
  928. return 0;
  929. bad:
  930. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  931. dm_btree_remove(&pmd->details_info, pmd->details_root,
  932. &key, &pmd->details_root);
  933. return r;
  934. }
  935. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  936. dm_thin_id dev,
  937. dm_thin_id origin)
  938. {
  939. int r = -EINVAL;
  940. down_write(&pmd->root_lock);
  941. if (!pmd->fail_io)
  942. r = __create_snap(pmd, dev, origin);
  943. up_write(&pmd->root_lock);
  944. return r;
  945. }
  946. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  947. {
  948. int r;
  949. uint64_t key = dev;
  950. struct dm_thin_device *td;
  951. /* TODO: failure should mark the transaction invalid */
  952. r = __open_device(pmd, dev, 0, &td);
  953. if (r)
  954. return r;
  955. if (td->open_count > 1) {
  956. __close_device(td);
  957. return -EBUSY;
  958. }
  959. list_del(&td->list);
  960. kfree(td);
  961. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  962. &key, &pmd->details_root);
  963. if (r)
  964. return r;
  965. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  966. if (r)
  967. return r;
  968. return 0;
  969. }
  970. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  971. dm_thin_id dev)
  972. {
  973. int r = -EINVAL;
  974. down_write(&pmd->root_lock);
  975. if (!pmd->fail_io)
  976. r = __delete_device(pmd, dev);
  977. up_write(&pmd->root_lock);
  978. return r;
  979. }
  980. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  981. uint64_t current_id,
  982. uint64_t new_id)
  983. {
  984. int r = -EINVAL;
  985. down_write(&pmd->root_lock);
  986. if (pmd->fail_io)
  987. goto out;
  988. if (pmd->trans_id != current_id) {
  989. DMERR("mismatched transaction id");
  990. goto out;
  991. }
  992. pmd->trans_id = new_id;
  993. r = 0;
  994. out:
  995. up_write(&pmd->root_lock);
  996. return r;
  997. }
  998. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  999. uint64_t *result)
  1000. {
  1001. int r = -EINVAL;
  1002. down_read(&pmd->root_lock);
  1003. if (!pmd->fail_io) {
  1004. *result = pmd->trans_id;
  1005. r = 0;
  1006. }
  1007. up_read(&pmd->root_lock);
  1008. return r;
  1009. }
  1010. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  1011. {
  1012. int r, inc;
  1013. struct thin_disk_superblock *disk_super;
  1014. struct dm_block *copy, *sblock;
  1015. dm_block_t held_root;
  1016. /*
  1017. * We commit to ensure the btree roots which we increment in a
  1018. * moment are up to date.
  1019. */
  1020. __commit_transaction(pmd);
  1021. /*
  1022. * Copy the superblock.
  1023. */
  1024. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  1025. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  1026. &sb_validator, &copy, &inc);
  1027. if (r)
  1028. return r;
  1029. BUG_ON(!inc);
  1030. held_root = dm_block_location(copy);
  1031. disk_super = dm_block_data(copy);
  1032. if (le64_to_cpu(disk_super->held_root)) {
  1033. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  1034. dm_tm_dec(pmd->tm, held_root);
  1035. dm_tm_unlock(pmd->tm, copy);
  1036. return -EBUSY;
  1037. }
  1038. /*
  1039. * Wipe the spacemap since we're not publishing this.
  1040. */
  1041. memset(&disk_super->data_space_map_root, 0,
  1042. sizeof(disk_super->data_space_map_root));
  1043. memset(&disk_super->metadata_space_map_root, 0,
  1044. sizeof(disk_super->metadata_space_map_root));
  1045. /*
  1046. * Increment the data structures that need to be preserved.
  1047. */
  1048. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  1049. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  1050. dm_tm_unlock(pmd->tm, copy);
  1051. /*
  1052. * Write the held root into the superblock.
  1053. */
  1054. r = superblock_lock(pmd, &sblock);
  1055. if (r) {
  1056. dm_tm_dec(pmd->tm, held_root);
  1057. return r;
  1058. }
  1059. disk_super = dm_block_data(sblock);
  1060. disk_super->held_root = cpu_to_le64(held_root);
  1061. dm_bm_unlock(sblock);
  1062. return 0;
  1063. }
  1064. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  1065. {
  1066. int r = -EINVAL;
  1067. down_write(&pmd->root_lock);
  1068. if (!pmd->fail_io)
  1069. r = __reserve_metadata_snap(pmd);
  1070. up_write(&pmd->root_lock);
  1071. return r;
  1072. }
  1073. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  1074. {
  1075. int r;
  1076. struct thin_disk_superblock *disk_super;
  1077. struct dm_block *sblock, *copy;
  1078. dm_block_t held_root;
  1079. r = superblock_lock(pmd, &sblock);
  1080. if (r)
  1081. return r;
  1082. disk_super = dm_block_data(sblock);
  1083. held_root = le64_to_cpu(disk_super->held_root);
  1084. disk_super->held_root = cpu_to_le64(0);
  1085. dm_bm_unlock(sblock);
  1086. if (!held_root) {
  1087. DMWARN("No pool metadata snapshot found: nothing to release.");
  1088. return -EINVAL;
  1089. }
  1090. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  1091. if (r)
  1092. return r;
  1093. disk_super = dm_block_data(copy);
  1094. dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
  1095. dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
  1096. dm_sm_dec_block(pmd->metadata_sm, held_root);
  1097. dm_tm_unlock(pmd->tm, copy);
  1098. return 0;
  1099. }
  1100. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  1101. {
  1102. int r = -EINVAL;
  1103. down_write(&pmd->root_lock);
  1104. if (!pmd->fail_io)
  1105. r = __release_metadata_snap(pmd);
  1106. up_write(&pmd->root_lock);
  1107. return r;
  1108. }
  1109. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  1110. dm_block_t *result)
  1111. {
  1112. int r;
  1113. struct thin_disk_superblock *disk_super;
  1114. struct dm_block *sblock;
  1115. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1116. &sb_validator, &sblock);
  1117. if (r)
  1118. return r;
  1119. disk_super = dm_block_data(sblock);
  1120. *result = le64_to_cpu(disk_super->held_root);
  1121. dm_bm_unlock(sblock);
  1122. return 0;
  1123. }
  1124. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1125. dm_block_t *result)
  1126. {
  1127. int r = -EINVAL;
  1128. down_read(&pmd->root_lock);
  1129. if (!pmd->fail_io)
  1130. r = __get_metadata_snap(pmd, result);
  1131. up_read(&pmd->root_lock);
  1132. return r;
  1133. }
  1134. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1135. struct dm_thin_device **td)
  1136. {
  1137. int r = -EINVAL;
  1138. down_write(&pmd->root_lock);
  1139. if (!pmd->fail_io)
  1140. r = __open_device(pmd, dev, 0, td);
  1141. up_write(&pmd->root_lock);
  1142. return r;
  1143. }
  1144. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1145. {
  1146. down_write(&td->pmd->root_lock);
  1147. __close_device(td);
  1148. up_write(&td->pmd->root_lock);
  1149. return 0;
  1150. }
  1151. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1152. {
  1153. return td->id;
  1154. }
  1155. /*
  1156. * Check whether @time (of block creation) is older than @td's last snapshot.
  1157. * If so then the associated block is shared with the last snapshot device.
  1158. * Any block on a device created *after* the device last got snapshotted is
  1159. * necessarily not shared.
  1160. */
  1161. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1162. {
  1163. return td->snapshotted_time > time;
  1164. }
  1165. static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
  1166. struct dm_thin_lookup_result *result)
  1167. {
  1168. uint64_t block_time = 0;
  1169. dm_block_t exception_block;
  1170. uint32_t exception_time;
  1171. block_time = le64_to_cpu(value);
  1172. unpack_block_time(block_time, &exception_block, &exception_time);
  1173. result->block = exception_block;
  1174. result->shared = __snapshotted_since(td, exception_time);
  1175. }
  1176. static int __find_block(struct dm_thin_device *td, dm_block_t block,
  1177. int can_issue_io, struct dm_thin_lookup_result *result)
  1178. {
  1179. int r;
  1180. __le64 value;
  1181. struct dm_pool_metadata *pmd = td->pmd;
  1182. dm_block_t keys[2] = { td->id, block };
  1183. struct dm_btree_info *info;
  1184. if (can_issue_io) {
  1185. info = &pmd->info;
  1186. } else
  1187. info = &pmd->nb_info;
  1188. r = dm_btree_lookup(info, pmd->root, keys, &value);
  1189. if (!r)
  1190. unpack_lookup_result(td, value, result);
  1191. return r;
  1192. }
  1193. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1194. int can_issue_io, struct dm_thin_lookup_result *result)
  1195. {
  1196. int r;
  1197. struct dm_pool_metadata *pmd = td->pmd;
  1198. down_read(&pmd->root_lock);
  1199. if (pmd->fail_io) {
  1200. up_read(&pmd->root_lock);
  1201. return -EINVAL;
  1202. }
  1203. r = __find_block(td, block, can_issue_io, result);
  1204. up_read(&pmd->root_lock);
  1205. return r;
  1206. }
  1207. static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
  1208. dm_block_t *vblock,
  1209. struct dm_thin_lookup_result *result)
  1210. {
  1211. int r;
  1212. __le64 value;
  1213. struct dm_pool_metadata *pmd = td->pmd;
  1214. dm_block_t keys[2] = { td->id, block };
  1215. r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
  1216. if (!r)
  1217. unpack_lookup_result(td, value, result);
  1218. return r;
  1219. }
  1220. static int __find_mapped_range(struct dm_thin_device *td,
  1221. dm_block_t begin, dm_block_t end,
  1222. dm_block_t *thin_begin, dm_block_t *thin_end,
  1223. dm_block_t *pool_begin, bool *maybe_shared)
  1224. {
  1225. int r;
  1226. dm_block_t pool_end;
  1227. struct dm_thin_lookup_result lookup;
  1228. if (end < begin)
  1229. return -ENODATA;
  1230. r = __find_next_mapped_block(td, begin, &begin, &lookup);
  1231. if (r)
  1232. return r;
  1233. if (begin >= end)
  1234. return -ENODATA;
  1235. *thin_begin = begin;
  1236. *pool_begin = lookup.block;
  1237. *maybe_shared = lookup.shared;
  1238. begin++;
  1239. pool_end = *pool_begin + 1;
  1240. while (begin != end) {
  1241. r = __find_block(td, begin, true, &lookup);
  1242. if (r) {
  1243. if (r == -ENODATA)
  1244. break;
  1245. else
  1246. return r;
  1247. }
  1248. if ((lookup.block != pool_end) ||
  1249. (lookup.shared != *maybe_shared))
  1250. break;
  1251. pool_end++;
  1252. begin++;
  1253. }
  1254. *thin_end = begin;
  1255. return 0;
  1256. }
  1257. int dm_thin_find_mapped_range(struct dm_thin_device *td,
  1258. dm_block_t begin, dm_block_t end,
  1259. dm_block_t *thin_begin, dm_block_t *thin_end,
  1260. dm_block_t *pool_begin, bool *maybe_shared)
  1261. {
  1262. int r = -EINVAL;
  1263. struct dm_pool_metadata *pmd = td->pmd;
  1264. down_read(&pmd->root_lock);
  1265. if (!pmd->fail_io) {
  1266. r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
  1267. pool_begin, maybe_shared);
  1268. }
  1269. up_read(&pmd->root_lock);
  1270. return r;
  1271. }
  1272. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1273. dm_block_t data_block)
  1274. {
  1275. int r, inserted;
  1276. __le64 value;
  1277. struct dm_pool_metadata *pmd = td->pmd;
  1278. dm_block_t keys[2] = { td->id, block };
  1279. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1280. __dm_bless_for_disk(&value);
  1281. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1282. &pmd->root, &inserted);
  1283. if (r)
  1284. return r;
  1285. td->changed = 1;
  1286. if (inserted)
  1287. td->mapped_blocks++;
  1288. return 0;
  1289. }
  1290. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1291. dm_block_t data_block)
  1292. {
  1293. int r = -EINVAL;
  1294. down_write(&td->pmd->root_lock);
  1295. if (!td->pmd->fail_io)
  1296. r = __insert(td, block, data_block);
  1297. up_write(&td->pmd->root_lock);
  1298. return r;
  1299. }
  1300. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1301. {
  1302. int r;
  1303. struct dm_pool_metadata *pmd = td->pmd;
  1304. dm_block_t keys[2] = { td->id, block };
  1305. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1306. if (r)
  1307. return r;
  1308. td->mapped_blocks--;
  1309. td->changed = 1;
  1310. return 0;
  1311. }
  1312. static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
  1313. {
  1314. int r;
  1315. unsigned count, total_count = 0;
  1316. struct dm_pool_metadata *pmd = td->pmd;
  1317. dm_block_t keys[1] = { td->id };
  1318. __le64 value;
  1319. dm_block_t mapping_root;
  1320. /*
  1321. * Find the mapping tree
  1322. */
  1323. r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
  1324. if (r)
  1325. return r;
  1326. /*
  1327. * Remove from the mapping tree, taking care to inc the
  1328. * ref count so it doesn't get deleted.
  1329. */
  1330. mapping_root = le64_to_cpu(value);
  1331. dm_tm_inc(pmd->tm, mapping_root);
  1332. r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
  1333. if (r)
  1334. return r;
  1335. /*
  1336. * Remove leaves stops at the first unmapped entry, so we have to
  1337. * loop round finding mapped ranges.
  1338. */
  1339. while (begin < end) {
  1340. r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
  1341. if (r == -ENODATA)
  1342. break;
  1343. if (r)
  1344. return r;
  1345. if (begin >= end)
  1346. break;
  1347. r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
  1348. if (r)
  1349. return r;
  1350. total_count += count;
  1351. }
  1352. td->mapped_blocks -= total_count;
  1353. td->changed = 1;
  1354. /*
  1355. * Reinsert the mapping tree.
  1356. */
  1357. value = cpu_to_le64(mapping_root);
  1358. __dm_bless_for_disk(&value);
  1359. return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
  1360. }
  1361. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1362. {
  1363. int r = -EINVAL;
  1364. down_write(&td->pmd->root_lock);
  1365. if (!td->pmd->fail_io)
  1366. r = __remove(td, block);
  1367. up_write(&td->pmd->root_lock);
  1368. return r;
  1369. }
  1370. int dm_thin_remove_range(struct dm_thin_device *td,
  1371. dm_block_t begin, dm_block_t end)
  1372. {
  1373. int r = -EINVAL;
  1374. down_write(&td->pmd->root_lock);
  1375. if (!td->pmd->fail_io)
  1376. r = __remove_range(td, begin, end);
  1377. up_write(&td->pmd->root_lock);
  1378. return r;
  1379. }
  1380. int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
  1381. {
  1382. int r;
  1383. uint32_t ref_count;
  1384. down_read(&pmd->root_lock);
  1385. r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
  1386. if (!r)
  1387. *result = (ref_count > 1);
  1388. up_read(&pmd->root_lock);
  1389. return r;
  1390. }
  1391. int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
  1392. {
  1393. int r = 0;
  1394. down_write(&pmd->root_lock);
  1395. for (; b != e; b++) {
  1396. r = dm_sm_inc_block(pmd->data_sm, b);
  1397. if (r)
  1398. break;
  1399. }
  1400. up_write(&pmd->root_lock);
  1401. return r;
  1402. }
  1403. int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
  1404. {
  1405. int r = 0;
  1406. down_write(&pmd->root_lock);
  1407. for (; b != e; b++) {
  1408. r = dm_sm_dec_block(pmd->data_sm, b);
  1409. if (r)
  1410. break;
  1411. }
  1412. up_write(&pmd->root_lock);
  1413. return r;
  1414. }
  1415. bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
  1416. {
  1417. int r;
  1418. down_read(&td->pmd->root_lock);
  1419. r = td->changed;
  1420. up_read(&td->pmd->root_lock);
  1421. return r;
  1422. }
  1423. bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
  1424. {
  1425. bool r = false;
  1426. struct dm_thin_device *td, *tmp;
  1427. down_read(&pmd->root_lock);
  1428. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  1429. if (td->changed) {
  1430. r = td->changed;
  1431. break;
  1432. }
  1433. }
  1434. up_read(&pmd->root_lock);
  1435. return r;
  1436. }
  1437. bool dm_thin_aborted_changes(struct dm_thin_device *td)
  1438. {
  1439. bool r;
  1440. down_read(&td->pmd->root_lock);
  1441. r = td->aborted_with_changes;
  1442. up_read(&td->pmd->root_lock);
  1443. return r;
  1444. }
  1445. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1446. {
  1447. int r = -EINVAL;
  1448. down_write(&pmd->root_lock);
  1449. if (!pmd->fail_io)
  1450. r = dm_sm_new_block(pmd->data_sm, result);
  1451. up_write(&pmd->root_lock);
  1452. return r;
  1453. }
  1454. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1455. {
  1456. int r = -EINVAL;
  1457. down_write(&pmd->root_lock);
  1458. if (pmd->fail_io)
  1459. goto out;
  1460. r = __commit_transaction(pmd);
  1461. if (r <= 0)
  1462. goto out;
  1463. /*
  1464. * Open the next transaction.
  1465. */
  1466. r = __begin_transaction(pmd);
  1467. out:
  1468. up_write(&pmd->root_lock);
  1469. return r;
  1470. }
  1471. static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
  1472. {
  1473. struct dm_thin_device *td;
  1474. list_for_each_entry(td, &pmd->thin_devices, list)
  1475. td->aborted_with_changes = td->changed;
  1476. }
  1477. int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
  1478. {
  1479. int r = -EINVAL;
  1480. down_write(&pmd->root_lock);
  1481. if (pmd->fail_io)
  1482. goto out;
  1483. __set_abort_with_changes_flags(pmd);
  1484. __destroy_persistent_data_objects(pmd);
  1485. r = __create_persistent_data_objects(pmd, false);
  1486. if (r)
  1487. pmd->fail_io = true;
  1488. out:
  1489. up_write(&pmd->root_lock);
  1490. return r;
  1491. }
  1492. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1493. {
  1494. int r = -EINVAL;
  1495. down_read(&pmd->root_lock);
  1496. if (!pmd->fail_io)
  1497. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1498. up_read(&pmd->root_lock);
  1499. return r;
  1500. }
  1501. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1502. dm_block_t *result)
  1503. {
  1504. int r = -EINVAL;
  1505. down_read(&pmd->root_lock);
  1506. if (!pmd->fail_io)
  1507. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1508. if (!r) {
  1509. if (*result < pmd->metadata_reserve)
  1510. *result = 0;
  1511. else
  1512. *result -= pmd->metadata_reserve;
  1513. }
  1514. up_read(&pmd->root_lock);
  1515. return r;
  1516. }
  1517. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1518. dm_block_t *result)
  1519. {
  1520. int r = -EINVAL;
  1521. down_read(&pmd->root_lock);
  1522. if (!pmd->fail_io)
  1523. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1524. up_read(&pmd->root_lock);
  1525. return r;
  1526. }
  1527. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1528. {
  1529. int r = -EINVAL;
  1530. down_read(&pmd->root_lock);
  1531. if (!pmd->fail_io)
  1532. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1533. up_read(&pmd->root_lock);
  1534. return r;
  1535. }
  1536. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1537. {
  1538. int r = -EINVAL;
  1539. struct dm_pool_metadata *pmd = td->pmd;
  1540. down_read(&pmd->root_lock);
  1541. if (!pmd->fail_io) {
  1542. *result = td->mapped_blocks;
  1543. r = 0;
  1544. }
  1545. up_read(&pmd->root_lock);
  1546. return r;
  1547. }
  1548. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1549. {
  1550. int r;
  1551. __le64 value_le;
  1552. dm_block_t thin_root;
  1553. struct dm_pool_metadata *pmd = td->pmd;
  1554. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1555. if (r)
  1556. return r;
  1557. thin_root = le64_to_cpu(value_le);
  1558. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1559. }
  1560. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1561. dm_block_t *result)
  1562. {
  1563. int r = -EINVAL;
  1564. struct dm_pool_metadata *pmd = td->pmd;
  1565. down_read(&pmd->root_lock);
  1566. if (!pmd->fail_io)
  1567. r = __highest_block(td, result);
  1568. up_read(&pmd->root_lock);
  1569. return r;
  1570. }
  1571. static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
  1572. {
  1573. int r;
  1574. dm_block_t old_count;
  1575. r = dm_sm_get_nr_blocks(sm, &old_count);
  1576. if (r)
  1577. return r;
  1578. if (new_count == old_count)
  1579. return 0;
  1580. if (new_count < old_count) {
  1581. DMERR("cannot reduce size of space map");
  1582. return -EINVAL;
  1583. }
  1584. return dm_sm_extend(sm, new_count - old_count);
  1585. }
  1586. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1587. {
  1588. int r = -EINVAL;
  1589. down_write(&pmd->root_lock);
  1590. if (!pmd->fail_io)
  1591. r = __resize_space_map(pmd->data_sm, new_count);
  1592. up_write(&pmd->root_lock);
  1593. return r;
  1594. }
  1595. int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1596. {
  1597. int r = -EINVAL;
  1598. down_write(&pmd->root_lock);
  1599. if (!pmd->fail_io) {
  1600. r = __resize_space_map(pmd->metadata_sm, new_count);
  1601. if (!r)
  1602. __set_metadata_reserve(pmd);
  1603. }
  1604. up_write(&pmd->root_lock);
  1605. return r;
  1606. }
  1607. void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
  1608. {
  1609. down_write(&pmd->root_lock);
  1610. dm_bm_set_read_only(pmd->bm);
  1611. up_write(&pmd->root_lock);
  1612. }
  1613. void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
  1614. {
  1615. down_write(&pmd->root_lock);
  1616. dm_bm_set_read_write(pmd->bm);
  1617. up_write(&pmd->root_lock);
  1618. }
  1619. int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
  1620. dm_block_t threshold,
  1621. dm_sm_threshold_fn fn,
  1622. void *context)
  1623. {
  1624. int r;
  1625. down_write(&pmd->root_lock);
  1626. r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
  1627. up_write(&pmd->root_lock);
  1628. return r;
  1629. }
  1630. int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
  1631. {
  1632. int r;
  1633. struct dm_block *sblock;
  1634. struct thin_disk_superblock *disk_super;
  1635. down_write(&pmd->root_lock);
  1636. pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
  1637. r = superblock_lock(pmd, &sblock);
  1638. if (r) {
  1639. DMERR("couldn't read superblock");
  1640. goto out;
  1641. }
  1642. disk_super = dm_block_data(sblock);
  1643. disk_super->flags = cpu_to_le32(pmd->flags);
  1644. dm_bm_unlock(sblock);
  1645. out:
  1646. up_write(&pmd->root_lock);
  1647. return r;
  1648. }
  1649. bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
  1650. {
  1651. bool needs_check;
  1652. down_read(&pmd->root_lock);
  1653. needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
  1654. up_read(&pmd->root_lock);
  1655. return needs_check;
  1656. }
  1657. void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
  1658. {
  1659. down_read(&pmd->root_lock);
  1660. if (!pmd->fail_io)
  1661. dm_tm_issue_prefetches(pmd->tm);
  1662. up_read(&pmd->root_lock);
  1663. }