btree.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  4. *
  5. * Uses a block device as cache for other block devices; optimized for SSDs.
  6. * All allocation is done in buckets, which should match the erase block size
  7. * of the device.
  8. *
  9. * Buckets containing cached data are kept on a heap sorted by priority;
  10. * bucket priority is increased on cache hit, and periodically all the buckets
  11. * on the heap have their priority scaled down. This currently is just used as
  12. * an LRU but in the future should allow for more intelligent heuristics.
  13. *
  14. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15. * counter. Garbage collection is used to remove stale pointers.
  16. *
  17. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18. * as keys are inserted we only sort the pages that have not yet been written.
  19. * When garbage collection is run, we resort the entire node.
  20. *
  21. * All configuration is done via sysfs; see Documentation/bcache.txt.
  22. */
  23. #include "bcache.h"
  24. #include "btree.h"
  25. #include "debug.h"
  26. #include "extents.h"
  27. #include <linux/slab.h>
  28. #include <linux/bitops.h>
  29. #include <linux/hash.h>
  30. #include <linux/kthread.h>
  31. #include <linux/prefetch.h>
  32. #include <linux/random.h>
  33. #include <linux/rcupdate.h>
  34. #include <linux/sched/clock.h>
  35. #include <linux/rculist.h>
  36. #include <trace/events/bcache.h>
  37. /*
  38. * Todo:
  39. * register_bcache: Return errors out to userspace correctly
  40. *
  41. * Writeback: don't undirty key until after a cache flush
  42. *
  43. * Create an iterator for key pointers
  44. *
  45. * On btree write error, mark bucket such that it won't be freed from the cache
  46. *
  47. * Journalling:
  48. * Check for bad keys in replay
  49. * Propagate barriers
  50. * Refcount journal entries in journal_replay
  51. *
  52. * Garbage collection:
  53. * Finish incremental gc
  54. * Gc should free old UUIDs, data for invalid UUIDs
  55. *
  56. * Provide a way to list backing device UUIDs we have data cached for, and
  57. * probably how long it's been since we've seen them, and a way to invalidate
  58. * dirty data for devices that will never be attached again
  59. *
  60. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  61. * that based on that and how much dirty data we have we can keep writeback
  62. * from being starved
  63. *
  64. * Add a tracepoint or somesuch to watch for writeback starvation
  65. *
  66. * When btree depth > 1 and splitting an interior node, we have to make sure
  67. * alloc_bucket() cannot fail. This should be true but is not completely
  68. * obvious.
  69. *
  70. * Plugging?
  71. *
  72. * If data write is less than hard sector size of ssd, round up offset in open
  73. * bucket to the next whole sector
  74. *
  75. * Superblock needs to be fleshed out for multiple cache devices
  76. *
  77. * Add a sysfs tunable for the number of writeback IOs in flight
  78. *
  79. * Add a sysfs tunable for the number of open data buckets
  80. *
  81. * IO tracking: Can we track when one process is doing io on behalf of another?
  82. * IO tracking: Don't use just an average, weigh more recent stuff higher
  83. *
  84. * Test module load/unload
  85. */
  86. #define MAX_NEED_GC 64
  87. #define MAX_SAVE_PRIO 72
  88. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  89. #define PTR_HASH(c, k) \
  90. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  91. #define insert_lock(s, b) ((b)->level <= (s)->lock)
  92. /*
  93. * These macros are for recursing down the btree - they handle the details of
  94. * locking and looking up nodes in the cache for you. They're best treated as
  95. * mere syntax when reading code that uses them.
  96. *
  97. * op->lock determines whether we take a read or a write lock at a given depth.
  98. * If you've got a read lock and find that you need a write lock (i.e. you're
  99. * going to have to split), set op->lock and return -EINTR; btree_root() will
  100. * call you again and you'll have the correct lock.
  101. */
  102. /**
  103. * btree - recurse down the btree on a specified key
  104. * @fn: function to call, which will be passed the child node
  105. * @key: key to recurse on
  106. * @b: parent btree node
  107. * @op: pointer to struct btree_op
  108. */
  109. #define btree(fn, key, b, op, ...) \
  110. ({ \
  111. int _r, l = (b)->level - 1; \
  112. bool _w = l <= (op)->lock; \
  113. struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
  114. _w, b); \
  115. if (!IS_ERR(_child)) { \
  116. _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
  117. rw_unlock(_w, _child); \
  118. } else \
  119. _r = PTR_ERR(_child); \
  120. _r; \
  121. })
  122. /**
  123. * btree_root - call a function on the root of the btree
  124. * @fn: function to call, which will be passed the child node
  125. * @c: cache set
  126. * @op: pointer to struct btree_op
  127. */
  128. #define btree_root(fn, c, op, ...) \
  129. ({ \
  130. int _r = -EINTR; \
  131. do { \
  132. struct btree *_b = (c)->root; \
  133. bool _w = insert_lock(op, _b); \
  134. rw_lock(_w, _b, _b->level); \
  135. if (_b == (c)->root && \
  136. _w == insert_lock(op, _b)) { \
  137. _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
  138. } \
  139. rw_unlock(_w, _b); \
  140. bch_cannibalize_unlock(c); \
  141. if (_r == -EINTR) \
  142. schedule(); \
  143. } while (_r == -EINTR); \
  144. \
  145. finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
  146. _r; \
  147. })
  148. static inline struct bset *write_block(struct btree *b)
  149. {
  150. return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
  151. }
  152. static void bch_btree_init_next(struct btree *b)
  153. {
  154. /* If not a leaf node, always sort */
  155. if (b->level && b->keys.nsets)
  156. bch_btree_sort(&b->keys, &b->c->sort);
  157. else
  158. bch_btree_sort_lazy(&b->keys, &b->c->sort);
  159. if (b->written < btree_blocks(b))
  160. bch_bset_init_next(&b->keys, write_block(b),
  161. bset_magic(&b->c->sb));
  162. }
  163. /* Btree key manipulation */
  164. void bkey_put(struct cache_set *c, struct bkey *k)
  165. {
  166. unsigned i;
  167. for (i = 0; i < KEY_PTRS(k); i++)
  168. if (ptr_available(c, k, i))
  169. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  170. }
  171. /* Btree IO */
  172. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  173. {
  174. uint64_t crc = b->key.ptr[0];
  175. void *data = (void *) i + 8, *end = bset_bkey_last(i);
  176. crc = bch_crc64_update(crc, data, end - data);
  177. return crc ^ 0xffffffffffffffffULL;
  178. }
  179. void bch_btree_node_read_done(struct btree *b)
  180. {
  181. const char *err = "bad btree header";
  182. struct bset *i = btree_bset_first(b);
  183. struct btree_iter *iter;
  184. iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
  185. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  186. iter->used = 0;
  187. #ifdef CONFIG_BCACHE_DEBUG
  188. iter->b = &b->keys;
  189. #endif
  190. if (!i->seq)
  191. goto err;
  192. for (;
  193. b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
  194. i = write_block(b)) {
  195. err = "unsupported bset version";
  196. if (i->version > BCACHE_BSET_VERSION)
  197. goto err;
  198. err = "bad btree header";
  199. if (b->written + set_blocks(i, block_bytes(b->c)) >
  200. btree_blocks(b))
  201. goto err;
  202. err = "bad magic";
  203. if (i->magic != bset_magic(&b->c->sb))
  204. goto err;
  205. err = "bad checksum";
  206. switch (i->version) {
  207. case 0:
  208. if (i->csum != csum_set(i))
  209. goto err;
  210. break;
  211. case BCACHE_BSET_VERSION:
  212. if (i->csum != btree_csum_set(b, i))
  213. goto err;
  214. break;
  215. }
  216. err = "empty set";
  217. if (i != b->keys.set[0].data && !i->keys)
  218. goto err;
  219. bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
  220. b->written += set_blocks(i, block_bytes(b->c));
  221. }
  222. err = "corrupted btree";
  223. for (i = write_block(b);
  224. bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
  225. i = ((void *) i) + block_bytes(b->c))
  226. if (i->seq == b->keys.set[0].data->seq)
  227. goto err;
  228. bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
  229. i = b->keys.set[0].data;
  230. err = "short btree key";
  231. if (b->keys.set[0].size &&
  232. bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
  233. goto err;
  234. if (b->written < btree_blocks(b))
  235. bch_bset_init_next(&b->keys, write_block(b),
  236. bset_magic(&b->c->sb));
  237. out:
  238. mempool_free(iter, b->c->fill_iter);
  239. return;
  240. err:
  241. set_btree_node_io_error(b);
  242. bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
  243. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  244. bset_block_offset(b, i), i->keys);
  245. goto out;
  246. }
  247. static void btree_node_read_endio(struct bio *bio)
  248. {
  249. struct closure *cl = bio->bi_private;
  250. closure_put(cl);
  251. }
  252. static void bch_btree_node_read(struct btree *b)
  253. {
  254. uint64_t start_time = local_clock();
  255. struct closure cl;
  256. struct bio *bio;
  257. trace_bcache_btree_read(b);
  258. closure_init_stack(&cl);
  259. bio = bch_bbio_alloc(b->c);
  260. bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
  261. bio->bi_end_io = btree_node_read_endio;
  262. bio->bi_private = &cl;
  263. bio->bi_opf = REQ_OP_READ | REQ_META;
  264. bch_bio_map(bio, b->keys.set[0].data);
  265. bch_submit_bbio(bio, b->c, &b->key, 0);
  266. closure_sync(&cl);
  267. if (bio->bi_status)
  268. set_btree_node_io_error(b);
  269. bch_bbio_free(bio, b->c);
  270. if (btree_node_io_error(b))
  271. goto err;
  272. bch_btree_node_read_done(b);
  273. bch_time_stats_update(&b->c->btree_read_time, start_time);
  274. return;
  275. err:
  276. bch_cache_set_error(b->c, "io error reading bucket %zu",
  277. PTR_BUCKET_NR(b->c, &b->key, 0));
  278. }
  279. static void btree_complete_write(struct btree *b, struct btree_write *w)
  280. {
  281. if (w->prio_blocked &&
  282. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  283. wake_up_allocators(b->c);
  284. if (w->journal) {
  285. atomic_dec_bug(w->journal);
  286. __closure_wake_up(&b->c->journal.wait);
  287. }
  288. w->prio_blocked = 0;
  289. w->journal = NULL;
  290. }
  291. static void btree_node_write_unlock(struct closure *cl)
  292. {
  293. struct btree *b = container_of(cl, struct btree, io);
  294. up(&b->io_mutex);
  295. }
  296. static void __btree_node_write_done(struct closure *cl)
  297. {
  298. struct btree *b = container_of(cl, struct btree, io);
  299. struct btree_write *w = btree_prev_write(b);
  300. bch_bbio_free(b->bio, b->c);
  301. b->bio = NULL;
  302. btree_complete_write(b, w);
  303. if (btree_node_dirty(b))
  304. schedule_delayed_work(&b->work, 30 * HZ);
  305. closure_return_with_destructor(cl, btree_node_write_unlock);
  306. }
  307. static void btree_node_write_done(struct closure *cl)
  308. {
  309. struct btree *b = container_of(cl, struct btree, io);
  310. bio_free_pages(b->bio);
  311. __btree_node_write_done(cl);
  312. }
  313. static void btree_node_write_endio(struct bio *bio)
  314. {
  315. struct closure *cl = bio->bi_private;
  316. struct btree *b = container_of(cl, struct btree, io);
  317. if (bio->bi_status)
  318. set_btree_node_io_error(b);
  319. bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
  320. closure_put(cl);
  321. }
  322. static void do_btree_node_write(struct btree *b)
  323. {
  324. struct closure *cl = &b->io;
  325. struct bset *i = btree_bset_last(b);
  326. BKEY_PADDED(key) k;
  327. i->version = BCACHE_BSET_VERSION;
  328. i->csum = btree_csum_set(b, i);
  329. BUG_ON(b->bio);
  330. b->bio = bch_bbio_alloc(b->c);
  331. b->bio->bi_end_io = btree_node_write_endio;
  332. b->bio->bi_private = cl;
  333. b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
  334. b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
  335. bch_bio_map(b->bio, i);
  336. /*
  337. * If we're appending to a leaf node, we don't technically need FUA -
  338. * this write just needs to be persisted before the next journal write,
  339. * which will be marked FLUSH|FUA.
  340. *
  341. * Similarly if we're writing a new btree root - the pointer is going to
  342. * be in the next journal entry.
  343. *
  344. * But if we're writing a new btree node (that isn't a root) or
  345. * appending to a non leaf btree node, we need either FUA or a flush
  346. * when we write the parent with the new pointer. FUA is cheaper than a
  347. * flush, and writes appending to leaf nodes aren't blocking anything so
  348. * just make all btree node writes FUA to keep things sane.
  349. */
  350. bkey_copy(&k.key, &b->key);
  351. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
  352. bset_sector_offset(&b->keys, i));
  353. if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
  354. int j;
  355. struct bio_vec *bv;
  356. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  357. bio_for_each_segment_all(bv, b->bio, j)
  358. memcpy(page_address(bv->bv_page),
  359. base + j * PAGE_SIZE, PAGE_SIZE);
  360. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  361. continue_at(cl, btree_node_write_done, NULL);
  362. } else {
  363. b->bio->bi_vcnt = 0;
  364. bch_bio_map(b->bio, i);
  365. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  366. closure_sync(cl);
  367. continue_at_nobarrier(cl, __btree_node_write_done, NULL);
  368. }
  369. }
  370. void __bch_btree_node_write(struct btree *b, struct closure *parent)
  371. {
  372. struct bset *i = btree_bset_last(b);
  373. lockdep_assert_held(&b->write_lock);
  374. trace_bcache_btree_write(b);
  375. BUG_ON(current->bio_list);
  376. BUG_ON(b->written >= btree_blocks(b));
  377. BUG_ON(b->written && !i->keys);
  378. BUG_ON(btree_bset_first(b)->seq != i->seq);
  379. bch_check_keys(&b->keys, "writing");
  380. cancel_delayed_work(&b->work);
  381. /* If caller isn't waiting for write, parent refcount is cache set */
  382. down(&b->io_mutex);
  383. closure_init(&b->io, parent ?: &b->c->cl);
  384. clear_bit(BTREE_NODE_dirty, &b->flags);
  385. change_bit(BTREE_NODE_write_idx, &b->flags);
  386. do_btree_node_write(b);
  387. atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
  388. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  389. b->written += set_blocks(i, block_bytes(b->c));
  390. }
  391. void bch_btree_node_write(struct btree *b, struct closure *parent)
  392. {
  393. unsigned nsets = b->keys.nsets;
  394. lockdep_assert_held(&b->lock);
  395. __bch_btree_node_write(b, parent);
  396. /*
  397. * do verify if there was more than one set initially (i.e. we did a
  398. * sort) and we sorted down to a single set:
  399. */
  400. if (nsets && !b->keys.nsets)
  401. bch_btree_verify(b);
  402. bch_btree_init_next(b);
  403. }
  404. static void bch_btree_node_write_sync(struct btree *b)
  405. {
  406. struct closure cl;
  407. closure_init_stack(&cl);
  408. mutex_lock(&b->write_lock);
  409. bch_btree_node_write(b, &cl);
  410. mutex_unlock(&b->write_lock);
  411. closure_sync(&cl);
  412. }
  413. static void btree_node_write_work(struct work_struct *w)
  414. {
  415. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  416. mutex_lock(&b->write_lock);
  417. if (btree_node_dirty(b))
  418. __bch_btree_node_write(b, NULL);
  419. mutex_unlock(&b->write_lock);
  420. }
  421. static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
  422. {
  423. struct bset *i = btree_bset_last(b);
  424. struct btree_write *w = btree_current_write(b);
  425. lockdep_assert_held(&b->write_lock);
  426. BUG_ON(!b->written);
  427. BUG_ON(!i->keys);
  428. if (!btree_node_dirty(b))
  429. schedule_delayed_work(&b->work, 30 * HZ);
  430. set_btree_node_dirty(b);
  431. if (journal_ref) {
  432. if (w->journal &&
  433. journal_pin_cmp(b->c, w->journal, journal_ref)) {
  434. atomic_dec_bug(w->journal);
  435. w->journal = NULL;
  436. }
  437. if (!w->journal) {
  438. w->journal = journal_ref;
  439. atomic_inc(w->journal);
  440. }
  441. }
  442. /* Force write if set is too big */
  443. if (set_bytes(i) > PAGE_SIZE - 48 &&
  444. !current->bio_list)
  445. bch_btree_node_write(b, NULL);
  446. }
  447. /*
  448. * Btree in memory cache - allocation/freeing
  449. * mca -> memory cache
  450. */
  451. #define mca_reserve(c) (((c->root && c->root->level) \
  452. ? c->root->level : 1) * 8 + 16)
  453. #define mca_can_free(c) \
  454. max_t(int, 0, c->btree_cache_used - mca_reserve(c))
  455. static void mca_data_free(struct btree *b)
  456. {
  457. BUG_ON(b->io_mutex.count != 1);
  458. bch_btree_keys_free(&b->keys);
  459. b->c->btree_cache_used--;
  460. list_move(&b->list, &b->c->btree_cache_freed);
  461. }
  462. static void mca_bucket_free(struct btree *b)
  463. {
  464. BUG_ON(btree_node_dirty(b));
  465. b->key.ptr[0] = 0;
  466. hlist_del_init_rcu(&b->hash);
  467. list_move(&b->list, &b->c->btree_cache_freeable);
  468. }
  469. static unsigned btree_order(struct bkey *k)
  470. {
  471. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  472. }
  473. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  474. {
  475. if (!bch_btree_keys_alloc(&b->keys,
  476. max_t(unsigned,
  477. ilog2(b->c->btree_pages),
  478. btree_order(k)),
  479. gfp)) {
  480. b->c->btree_cache_used++;
  481. list_move(&b->list, &b->c->btree_cache);
  482. } else {
  483. list_move(&b->list, &b->c->btree_cache_freed);
  484. }
  485. }
  486. static struct btree *mca_bucket_alloc(struct cache_set *c,
  487. struct bkey *k, gfp_t gfp)
  488. {
  489. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  490. if (!b)
  491. return NULL;
  492. init_rwsem(&b->lock);
  493. lockdep_set_novalidate_class(&b->lock);
  494. mutex_init(&b->write_lock);
  495. lockdep_set_novalidate_class(&b->write_lock);
  496. INIT_LIST_HEAD(&b->list);
  497. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  498. b->c = c;
  499. sema_init(&b->io_mutex, 1);
  500. mca_data_alloc(b, k, gfp);
  501. return b;
  502. }
  503. static int mca_reap(struct btree *b, unsigned min_order, bool flush)
  504. {
  505. struct closure cl;
  506. closure_init_stack(&cl);
  507. lockdep_assert_held(&b->c->bucket_lock);
  508. if (!down_write_trylock(&b->lock))
  509. return -ENOMEM;
  510. BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
  511. if (b->keys.page_order < min_order)
  512. goto out_unlock;
  513. if (!flush) {
  514. if (btree_node_dirty(b))
  515. goto out_unlock;
  516. if (down_trylock(&b->io_mutex))
  517. goto out_unlock;
  518. up(&b->io_mutex);
  519. }
  520. mutex_lock(&b->write_lock);
  521. if (btree_node_dirty(b))
  522. __bch_btree_node_write(b, &cl);
  523. mutex_unlock(&b->write_lock);
  524. closure_sync(&cl);
  525. /* wait for any in flight btree write */
  526. down(&b->io_mutex);
  527. up(&b->io_mutex);
  528. return 0;
  529. out_unlock:
  530. rw_unlock(true, b);
  531. return -ENOMEM;
  532. }
  533. static unsigned long bch_mca_scan(struct shrinker *shrink,
  534. struct shrink_control *sc)
  535. {
  536. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  537. struct btree *b, *t;
  538. unsigned long i, nr = sc->nr_to_scan;
  539. unsigned long freed = 0;
  540. if (c->shrinker_disabled)
  541. return SHRINK_STOP;
  542. if (c->btree_cache_alloc_lock)
  543. return SHRINK_STOP;
  544. /* Return -1 if we can't do anything right now */
  545. if (sc->gfp_mask & __GFP_IO)
  546. mutex_lock(&c->bucket_lock);
  547. else if (!mutex_trylock(&c->bucket_lock))
  548. return -1;
  549. /*
  550. * It's _really_ critical that we don't free too many btree nodes - we
  551. * have to always leave ourselves a reserve. The reserve is how we
  552. * guarantee that allocating memory for a new btree node can always
  553. * succeed, so that inserting keys into the btree can always succeed and
  554. * IO can always make forward progress:
  555. */
  556. nr /= c->btree_pages;
  557. if (nr == 0)
  558. nr = 1;
  559. nr = min_t(unsigned long, nr, mca_can_free(c));
  560. i = 0;
  561. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  562. if (freed >= nr)
  563. break;
  564. if (++i > 3 &&
  565. !mca_reap(b, 0, false)) {
  566. mca_data_free(b);
  567. rw_unlock(true, b);
  568. freed++;
  569. }
  570. }
  571. for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
  572. if (list_empty(&c->btree_cache))
  573. goto out;
  574. b = list_first_entry(&c->btree_cache, struct btree, list);
  575. list_rotate_left(&c->btree_cache);
  576. if (!b->accessed &&
  577. !mca_reap(b, 0, false)) {
  578. mca_bucket_free(b);
  579. mca_data_free(b);
  580. rw_unlock(true, b);
  581. freed++;
  582. } else
  583. b->accessed = 0;
  584. }
  585. out:
  586. mutex_unlock(&c->bucket_lock);
  587. return freed;
  588. }
  589. static unsigned long bch_mca_count(struct shrinker *shrink,
  590. struct shrink_control *sc)
  591. {
  592. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  593. if (c->shrinker_disabled)
  594. return 0;
  595. if (c->btree_cache_alloc_lock)
  596. return 0;
  597. return mca_can_free(c) * c->btree_pages;
  598. }
  599. void bch_btree_cache_free(struct cache_set *c)
  600. {
  601. struct btree *b;
  602. struct closure cl;
  603. closure_init_stack(&cl);
  604. if (c->shrink.list.next)
  605. unregister_shrinker(&c->shrink);
  606. mutex_lock(&c->bucket_lock);
  607. #ifdef CONFIG_BCACHE_DEBUG
  608. if (c->verify_data)
  609. list_move(&c->verify_data->list, &c->btree_cache);
  610. free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
  611. #endif
  612. list_splice(&c->btree_cache_freeable,
  613. &c->btree_cache);
  614. while (!list_empty(&c->btree_cache)) {
  615. b = list_first_entry(&c->btree_cache, struct btree, list);
  616. if (btree_node_dirty(b))
  617. btree_complete_write(b, btree_current_write(b));
  618. clear_bit(BTREE_NODE_dirty, &b->flags);
  619. mca_data_free(b);
  620. }
  621. while (!list_empty(&c->btree_cache_freed)) {
  622. b = list_first_entry(&c->btree_cache_freed,
  623. struct btree, list);
  624. list_del(&b->list);
  625. cancel_delayed_work_sync(&b->work);
  626. kfree(b);
  627. }
  628. mutex_unlock(&c->bucket_lock);
  629. }
  630. int bch_btree_cache_alloc(struct cache_set *c)
  631. {
  632. unsigned i;
  633. for (i = 0; i < mca_reserve(c); i++)
  634. if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
  635. return -ENOMEM;
  636. list_splice_init(&c->btree_cache,
  637. &c->btree_cache_freeable);
  638. #ifdef CONFIG_BCACHE_DEBUG
  639. mutex_init(&c->verify_lock);
  640. c->verify_ondisk = (void *)
  641. __get_free_pages(GFP_KERNEL|__GFP_COMP, ilog2(bucket_pages(c)));
  642. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  643. if (c->verify_data &&
  644. c->verify_data->keys.set->data)
  645. list_del_init(&c->verify_data->list);
  646. else
  647. c->verify_data = NULL;
  648. #endif
  649. c->shrink.count_objects = bch_mca_count;
  650. c->shrink.scan_objects = bch_mca_scan;
  651. c->shrink.seeks = 4;
  652. c->shrink.batch = c->btree_pages * 2;
  653. if (register_shrinker(&c->shrink))
  654. pr_warn("bcache: %s: could not register shrinker",
  655. __func__);
  656. return 0;
  657. }
  658. /* Btree in memory cache - hash table */
  659. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  660. {
  661. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  662. }
  663. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  664. {
  665. struct btree *b;
  666. rcu_read_lock();
  667. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  668. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  669. goto out;
  670. b = NULL;
  671. out:
  672. rcu_read_unlock();
  673. return b;
  674. }
  675. static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
  676. {
  677. spin_lock(&c->btree_cannibalize_lock);
  678. if (likely(c->btree_cache_alloc_lock == NULL)) {
  679. c->btree_cache_alloc_lock = current;
  680. } else if (c->btree_cache_alloc_lock != current) {
  681. if (op)
  682. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  683. TASK_UNINTERRUPTIBLE);
  684. spin_unlock(&c->btree_cannibalize_lock);
  685. return -EINTR;
  686. }
  687. spin_unlock(&c->btree_cannibalize_lock);
  688. return 0;
  689. }
  690. static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
  691. struct bkey *k)
  692. {
  693. struct btree *b;
  694. trace_bcache_btree_cache_cannibalize(c);
  695. if (mca_cannibalize_lock(c, op))
  696. return ERR_PTR(-EINTR);
  697. list_for_each_entry_reverse(b, &c->btree_cache, list)
  698. if (!mca_reap(b, btree_order(k), false))
  699. return b;
  700. list_for_each_entry_reverse(b, &c->btree_cache, list)
  701. if (!mca_reap(b, btree_order(k), true))
  702. return b;
  703. WARN(1, "btree cache cannibalize failed\n");
  704. return ERR_PTR(-ENOMEM);
  705. }
  706. /*
  707. * We can only have one thread cannibalizing other cached btree nodes at a time,
  708. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  709. * cannibalize_bucket() will take. This means every time we unlock the root of
  710. * the btree, we need to release this lock if we have it held.
  711. */
  712. static void bch_cannibalize_unlock(struct cache_set *c)
  713. {
  714. spin_lock(&c->btree_cannibalize_lock);
  715. if (c->btree_cache_alloc_lock == current) {
  716. c->btree_cache_alloc_lock = NULL;
  717. wake_up(&c->btree_cache_wait);
  718. }
  719. spin_unlock(&c->btree_cannibalize_lock);
  720. }
  721. static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
  722. struct bkey *k, int level)
  723. {
  724. struct btree *b;
  725. BUG_ON(current->bio_list);
  726. lockdep_assert_held(&c->bucket_lock);
  727. if (mca_find(c, k))
  728. return NULL;
  729. /* btree_free() doesn't free memory; it sticks the node on the end of
  730. * the list. Check if there's any freed nodes there:
  731. */
  732. list_for_each_entry(b, &c->btree_cache_freeable, list)
  733. if (!mca_reap(b, btree_order(k), false))
  734. goto out;
  735. /* We never free struct btree itself, just the memory that holds the on
  736. * disk node. Check the freed list before allocating a new one:
  737. */
  738. list_for_each_entry(b, &c->btree_cache_freed, list)
  739. if (!mca_reap(b, 0, false)) {
  740. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  741. if (!b->keys.set[0].data)
  742. goto err;
  743. else
  744. goto out;
  745. }
  746. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  747. if (!b)
  748. goto err;
  749. BUG_ON(!down_write_trylock(&b->lock));
  750. if (!b->keys.set->data)
  751. goto err;
  752. out:
  753. BUG_ON(b->io_mutex.count != 1);
  754. bkey_copy(&b->key, k);
  755. list_move(&b->list, &c->btree_cache);
  756. hlist_del_init_rcu(&b->hash);
  757. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  758. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  759. b->parent = (void *) ~0UL;
  760. b->flags = 0;
  761. b->written = 0;
  762. b->level = level;
  763. if (!b->level)
  764. bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
  765. &b->c->expensive_debug_checks);
  766. else
  767. bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
  768. &b->c->expensive_debug_checks);
  769. return b;
  770. err:
  771. if (b)
  772. rw_unlock(true, b);
  773. b = mca_cannibalize(c, op, k);
  774. if (!IS_ERR(b))
  775. goto out;
  776. return b;
  777. }
  778. /**
  779. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  780. * in from disk if necessary.
  781. *
  782. * If IO is necessary and running under generic_make_request, returns -EAGAIN.
  783. *
  784. * The btree node will have either a read or a write lock held, depending on
  785. * level and op->lock.
  786. */
  787. struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
  788. struct bkey *k, int level, bool write,
  789. struct btree *parent)
  790. {
  791. int i = 0;
  792. struct btree *b;
  793. BUG_ON(level < 0);
  794. retry:
  795. b = mca_find(c, k);
  796. if (!b) {
  797. if (current->bio_list)
  798. return ERR_PTR(-EAGAIN);
  799. mutex_lock(&c->bucket_lock);
  800. b = mca_alloc(c, op, k, level);
  801. mutex_unlock(&c->bucket_lock);
  802. if (!b)
  803. goto retry;
  804. if (IS_ERR(b))
  805. return b;
  806. bch_btree_node_read(b);
  807. if (!write)
  808. downgrade_write(&b->lock);
  809. } else {
  810. rw_lock(write, b, level);
  811. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  812. rw_unlock(write, b);
  813. goto retry;
  814. }
  815. BUG_ON(b->level != level);
  816. }
  817. b->parent = parent;
  818. b->accessed = 1;
  819. for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
  820. prefetch(b->keys.set[i].tree);
  821. prefetch(b->keys.set[i].data);
  822. }
  823. for (; i <= b->keys.nsets; i++)
  824. prefetch(b->keys.set[i].data);
  825. if (btree_node_io_error(b)) {
  826. rw_unlock(write, b);
  827. return ERR_PTR(-EIO);
  828. }
  829. BUG_ON(!b->written);
  830. return b;
  831. }
  832. static void btree_node_prefetch(struct btree *parent, struct bkey *k)
  833. {
  834. struct btree *b;
  835. mutex_lock(&parent->c->bucket_lock);
  836. b = mca_alloc(parent->c, NULL, k, parent->level - 1);
  837. mutex_unlock(&parent->c->bucket_lock);
  838. if (!IS_ERR_OR_NULL(b)) {
  839. b->parent = parent;
  840. bch_btree_node_read(b);
  841. rw_unlock(true, b);
  842. }
  843. }
  844. /* Btree alloc */
  845. static void btree_node_free(struct btree *b)
  846. {
  847. trace_bcache_btree_node_free(b);
  848. BUG_ON(b == b->c->root);
  849. mutex_lock(&b->write_lock);
  850. if (btree_node_dirty(b))
  851. btree_complete_write(b, btree_current_write(b));
  852. clear_bit(BTREE_NODE_dirty, &b->flags);
  853. mutex_unlock(&b->write_lock);
  854. cancel_delayed_work(&b->work);
  855. mutex_lock(&b->c->bucket_lock);
  856. bch_bucket_free(b->c, &b->key);
  857. mca_bucket_free(b);
  858. mutex_unlock(&b->c->bucket_lock);
  859. }
  860. struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
  861. int level, bool wait,
  862. struct btree *parent)
  863. {
  864. BKEY_PADDED(key) k;
  865. struct btree *b = ERR_PTR(-EAGAIN);
  866. mutex_lock(&c->bucket_lock);
  867. retry:
  868. if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
  869. goto err;
  870. bkey_put(c, &k.key);
  871. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  872. b = mca_alloc(c, op, &k.key, level);
  873. if (IS_ERR(b))
  874. goto err_free;
  875. if (!b) {
  876. cache_bug(c,
  877. "Tried to allocate bucket that was in btree cache");
  878. goto retry;
  879. }
  880. b->accessed = 1;
  881. b->parent = parent;
  882. bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
  883. mutex_unlock(&c->bucket_lock);
  884. trace_bcache_btree_node_alloc(b);
  885. return b;
  886. err_free:
  887. bch_bucket_free(c, &k.key);
  888. err:
  889. mutex_unlock(&c->bucket_lock);
  890. trace_bcache_btree_node_alloc_fail(c);
  891. return b;
  892. }
  893. static struct btree *bch_btree_node_alloc(struct cache_set *c,
  894. struct btree_op *op, int level,
  895. struct btree *parent)
  896. {
  897. return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
  898. }
  899. static struct btree *btree_node_alloc_replacement(struct btree *b,
  900. struct btree_op *op)
  901. {
  902. struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
  903. if (!IS_ERR_OR_NULL(n)) {
  904. mutex_lock(&n->write_lock);
  905. bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
  906. bkey_copy_key(&n->key, &b->key);
  907. mutex_unlock(&n->write_lock);
  908. }
  909. return n;
  910. }
  911. static void make_btree_freeing_key(struct btree *b, struct bkey *k)
  912. {
  913. unsigned i;
  914. mutex_lock(&b->c->bucket_lock);
  915. atomic_inc(&b->c->prio_blocked);
  916. bkey_copy(k, &b->key);
  917. bkey_copy_key(k, &ZERO_KEY);
  918. for (i = 0; i < KEY_PTRS(k); i++)
  919. SET_PTR_GEN(k, i,
  920. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  921. PTR_BUCKET(b->c, &b->key, i)));
  922. mutex_unlock(&b->c->bucket_lock);
  923. }
  924. static int btree_check_reserve(struct btree *b, struct btree_op *op)
  925. {
  926. struct cache_set *c = b->c;
  927. struct cache *ca;
  928. unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
  929. mutex_lock(&c->bucket_lock);
  930. for_each_cache(ca, c, i)
  931. if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
  932. if (op)
  933. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  934. TASK_UNINTERRUPTIBLE);
  935. mutex_unlock(&c->bucket_lock);
  936. return -EINTR;
  937. }
  938. mutex_unlock(&c->bucket_lock);
  939. return mca_cannibalize_lock(b->c, op);
  940. }
  941. /* Garbage collection */
  942. static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
  943. struct bkey *k)
  944. {
  945. uint8_t stale = 0;
  946. unsigned i;
  947. struct bucket *g;
  948. /*
  949. * ptr_invalid() can't return true for the keys that mark btree nodes as
  950. * freed, but since ptr_bad() returns true we'll never actually use them
  951. * for anything and thus we don't want mark their pointers here
  952. */
  953. if (!bkey_cmp(k, &ZERO_KEY))
  954. return stale;
  955. for (i = 0; i < KEY_PTRS(k); i++) {
  956. if (!ptr_available(c, k, i))
  957. continue;
  958. g = PTR_BUCKET(c, k, i);
  959. if (gen_after(g->last_gc, PTR_GEN(k, i)))
  960. g->last_gc = PTR_GEN(k, i);
  961. if (ptr_stale(c, k, i)) {
  962. stale = max(stale, ptr_stale(c, k, i));
  963. continue;
  964. }
  965. cache_bug_on(GC_MARK(g) &&
  966. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  967. c, "inconsistent ptrs: mark = %llu, level = %i",
  968. GC_MARK(g), level);
  969. if (level)
  970. SET_GC_MARK(g, GC_MARK_METADATA);
  971. else if (KEY_DIRTY(k))
  972. SET_GC_MARK(g, GC_MARK_DIRTY);
  973. else if (!GC_MARK(g))
  974. SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
  975. /* guard against overflow */
  976. SET_GC_SECTORS_USED(g, min_t(unsigned,
  977. GC_SECTORS_USED(g) + KEY_SIZE(k),
  978. MAX_GC_SECTORS_USED));
  979. BUG_ON(!GC_SECTORS_USED(g));
  980. }
  981. return stale;
  982. }
  983. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  984. void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
  985. {
  986. unsigned i;
  987. for (i = 0; i < KEY_PTRS(k); i++)
  988. if (ptr_available(c, k, i) &&
  989. !ptr_stale(c, k, i)) {
  990. struct bucket *b = PTR_BUCKET(c, k, i);
  991. b->gen = PTR_GEN(k, i);
  992. if (level && bkey_cmp(k, &ZERO_KEY))
  993. b->prio = BTREE_PRIO;
  994. else if (!level && b->prio == BTREE_PRIO)
  995. b->prio = INITIAL_PRIO;
  996. }
  997. __bch_btree_mark_key(c, level, k);
  998. }
  999. static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
  1000. {
  1001. uint8_t stale = 0;
  1002. unsigned keys = 0, good_keys = 0;
  1003. struct bkey *k;
  1004. struct btree_iter iter;
  1005. struct bset_tree *t;
  1006. gc->nodes++;
  1007. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
  1008. stale = max(stale, btree_mark_key(b, k));
  1009. keys++;
  1010. if (bch_ptr_bad(&b->keys, k))
  1011. continue;
  1012. gc->key_bytes += bkey_u64s(k);
  1013. gc->nkeys++;
  1014. good_keys++;
  1015. gc->data += KEY_SIZE(k);
  1016. }
  1017. for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
  1018. btree_bug_on(t->size &&
  1019. bset_written(&b->keys, t) &&
  1020. bkey_cmp(&b->key, &t->end) < 0,
  1021. b, "found short btree key in gc");
  1022. if (b->c->gc_always_rewrite)
  1023. return true;
  1024. if (stale > 10)
  1025. return true;
  1026. if ((keys - good_keys) * 2 > keys)
  1027. return true;
  1028. return false;
  1029. }
  1030. #define GC_MERGE_NODES 4U
  1031. struct gc_merge_info {
  1032. struct btree *b;
  1033. unsigned keys;
  1034. };
  1035. static int bch_btree_insert_node(struct btree *, struct btree_op *,
  1036. struct keylist *, atomic_t *, struct bkey *);
  1037. static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
  1038. struct gc_stat *gc, struct gc_merge_info *r)
  1039. {
  1040. unsigned i, nodes = 0, keys = 0, blocks;
  1041. struct btree *new_nodes[GC_MERGE_NODES];
  1042. struct keylist keylist;
  1043. struct closure cl;
  1044. struct bkey *k;
  1045. bch_keylist_init(&keylist);
  1046. if (btree_check_reserve(b, NULL))
  1047. return 0;
  1048. memset(new_nodes, 0, sizeof(new_nodes));
  1049. closure_init_stack(&cl);
  1050. while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
  1051. keys += r[nodes++].keys;
  1052. blocks = btree_default_blocks(b->c) * 2 / 3;
  1053. if (nodes < 2 ||
  1054. __set_blocks(b->keys.set[0].data, keys,
  1055. block_bytes(b->c)) > blocks * (nodes - 1))
  1056. return 0;
  1057. for (i = 0; i < nodes; i++) {
  1058. new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
  1059. if (IS_ERR_OR_NULL(new_nodes[i]))
  1060. goto out_nocoalesce;
  1061. }
  1062. /*
  1063. * We have to check the reserve here, after we've allocated our new
  1064. * nodes, to make sure the insert below will succeed - we also check
  1065. * before as an optimization to potentially avoid a bunch of expensive
  1066. * allocs/sorts
  1067. */
  1068. if (btree_check_reserve(b, NULL))
  1069. goto out_nocoalesce;
  1070. for (i = 0; i < nodes; i++)
  1071. mutex_lock(&new_nodes[i]->write_lock);
  1072. for (i = nodes - 1; i > 0; --i) {
  1073. struct bset *n1 = btree_bset_first(new_nodes[i]);
  1074. struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
  1075. struct bkey *k, *last = NULL;
  1076. keys = 0;
  1077. if (i > 1) {
  1078. for (k = n2->start;
  1079. k < bset_bkey_last(n2);
  1080. k = bkey_next(k)) {
  1081. if (__set_blocks(n1, n1->keys + keys +
  1082. bkey_u64s(k),
  1083. block_bytes(b->c)) > blocks)
  1084. break;
  1085. last = k;
  1086. keys += bkey_u64s(k);
  1087. }
  1088. } else {
  1089. /*
  1090. * Last node we're not getting rid of - we're getting
  1091. * rid of the node at r[0]. Have to try and fit all of
  1092. * the remaining keys into this node; we can't ensure
  1093. * they will always fit due to rounding and variable
  1094. * length keys (shouldn't be possible in practice,
  1095. * though)
  1096. */
  1097. if (__set_blocks(n1, n1->keys + n2->keys,
  1098. block_bytes(b->c)) >
  1099. btree_blocks(new_nodes[i]))
  1100. goto out_unlock_nocoalesce;
  1101. keys = n2->keys;
  1102. /* Take the key of the node we're getting rid of */
  1103. last = &r->b->key;
  1104. }
  1105. BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
  1106. btree_blocks(new_nodes[i]));
  1107. if (last)
  1108. bkey_copy_key(&new_nodes[i]->key, last);
  1109. memcpy(bset_bkey_last(n1),
  1110. n2->start,
  1111. (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
  1112. n1->keys += keys;
  1113. r[i].keys = n1->keys;
  1114. memmove(n2->start,
  1115. bset_bkey_idx(n2, keys),
  1116. (void *) bset_bkey_last(n2) -
  1117. (void *) bset_bkey_idx(n2, keys));
  1118. n2->keys -= keys;
  1119. if (__bch_keylist_realloc(&keylist,
  1120. bkey_u64s(&new_nodes[i]->key)))
  1121. goto out_unlock_nocoalesce;
  1122. bch_btree_node_write(new_nodes[i], &cl);
  1123. bch_keylist_add(&keylist, &new_nodes[i]->key);
  1124. }
  1125. for (i = 0; i < nodes; i++)
  1126. mutex_unlock(&new_nodes[i]->write_lock);
  1127. closure_sync(&cl);
  1128. /* We emptied out this node */
  1129. BUG_ON(btree_bset_first(new_nodes[0])->keys);
  1130. btree_node_free(new_nodes[0]);
  1131. rw_unlock(true, new_nodes[0]);
  1132. new_nodes[0] = NULL;
  1133. for (i = 0; i < nodes; i++) {
  1134. if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
  1135. goto out_nocoalesce;
  1136. make_btree_freeing_key(r[i].b, keylist.top);
  1137. bch_keylist_push(&keylist);
  1138. }
  1139. bch_btree_insert_node(b, op, &keylist, NULL, NULL);
  1140. BUG_ON(!bch_keylist_empty(&keylist));
  1141. for (i = 0; i < nodes; i++) {
  1142. btree_node_free(r[i].b);
  1143. rw_unlock(true, r[i].b);
  1144. r[i].b = new_nodes[i];
  1145. }
  1146. memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
  1147. r[nodes - 1].b = ERR_PTR(-EINTR);
  1148. trace_bcache_btree_gc_coalesce(nodes);
  1149. gc->nodes--;
  1150. bch_keylist_free(&keylist);
  1151. /* Invalidated our iterator */
  1152. return -EINTR;
  1153. out_unlock_nocoalesce:
  1154. for (i = 0; i < nodes; i++)
  1155. mutex_unlock(&new_nodes[i]->write_lock);
  1156. out_nocoalesce:
  1157. closure_sync(&cl);
  1158. bch_keylist_free(&keylist);
  1159. while ((k = bch_keylist_pop(&keylist)))
  1160. if (!bkey_cmp(k, &ZERO_KEY))
  1161. atomic_dec(&b->c->prio_blocked);
  1162. for (i = 0; i < nodes; i++)
  1163. if (!IS_ERR_OR_NULL(new_nodes[i])) {
  1164. btree_node_free(new_nodes[i]);
  1165. rw_unlock(true, new_nodes[i]);
  1166. }
  1167. return 0;
  1168. }
  1169. static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
  1170. struct btree *replace)
  1171. {
  1172. struct keylist keys;
  1173. struct btree *n;
  1174. if (btree_check_reserve(b, NULL))
  1175. return 0;
  1176. n = btree_node_alloc_replacement(replace, NULL);
  1177. /* recheck reserve after allocating replacement node */
  1178. if (btree_check_reserve(b, NULL)) {
  1179. btree_node_free(n);
  1180. rw_unlock(true, n);
  1181. return 0;
  1182. }
  1183. bch_btree_node_write_sync(n);
  1184. bch_keylist_init(&keys);
  1185. bch_keylist_add(&keys, &n->key);
  1186. make_btree_freeing_key(replace, keys.top);
  1187. bch_keylist_push(&keys);
  1188. bch_btree_insert_node(b, op, &keys, NULL, NULL);
  1189. BUG_ON(!bch_keylist_empty(&keys));
  1190. btree_node_free(replace);
  1191. rw_unlock(true, n);
  1192. /* Invalidated our iterator */
  1193. return -EINTR;
  1194. }
  1195. static unsigned btree_gc_count_keys(struct btree *b)
  1196. {
  1197. struct bkey *k;
  1198. struct btree_iter iter;
  1199. unsigned ret = 0;
  1200. for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
  1201. ret += bkey_u64s(k);
  1202. return ret;
  1203. }
  1204. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1205. struct closure *writes, struct gc_stat *gc)
  1206. {
  1207. int ret = 0;
  1208. bool should_rewrite;
  1209. struct bkey *k;
  1210. struct btree_iter iter;
  1211. struct gc_merge_info r[GC_MERGE_NODES];
  1212. struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
  1213. bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
  1214. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1215. i->b = ERR_PTR(-EINTR);
  1216. while (1) {
  1217. k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
  1218. if (k) {
  1219. r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
  1220. true, b);
  1221. if (IS_ERR(r->b)) {
  1222. ret = PTR_ERR(r->b);
  1223. break;
  1224. }
  1225. r->keys = btree_gc_count_keys(r->b);
  1226. ret = btree_gc_coalesce(b, op, gc, r);
  1227. if (ret)
  1228. break;
  1229. }
  1230. if (!last->b)
  1231. break;
  1232. if (!IS_ERR(last->b)) {
  1233. should_rewrite = btree_gc_mark_node(last->b, gc);
  1234. if (should_rewrite) {
  1235. ret = btree_gc_rewrite_node(b, op, last->b);
  1236. if (ret)
  1237. break;
  1238. }
  1239. if (last->b->level) {
  1240. ret = btree_gc_recurse(last->b, op, writes, gc);
  1241. if (ret)
  1242. break;
  1243. }
  1244. bkey_copy_key(&b->c->gc_done, &last->b->key);
  1245. /*
  1246. * Must flush leaf nodes before gc ends, since replace
  1247. * operations aren't journalled
  1248. */
  1249. mutex_lock(&last->b->write_lock);
  1250. if (btree_node_dirty(last->b))
  1251. bch_btree_node_write(last->b, writes);
  1252. mutex_unlock(&last->b->write_lock);
  1253. rw_unlock(true, last->b);
  1254. }
  1255. memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
  1256. r->b = NULL;
  1257. if (need_resched()) {
  1258. ret = -EAGAIN;
  1259. break;
  1260. }
  1261. }
  1262. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1263. if (!IS_ERR_OR_NULL(i->b)) {
  1264. mutex_lock(&i->b->write_lock);
  1265. if (btree_node_dirty(i->b))
  1266. bch_btree_node_write(i->b, writes);
  1267. mutex_unlock(&i->b->write_lock);
  1268. rw_unlock(true, i->b);
  1269. }
  1270. return ret;
  1271. }
  1272. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1273. struct closure *writes, struct gc_stat *gc)
  1274. {
  1275. struct btree *n = NULL;
  1276. int ret = 0;
  1277. bool should_rewrite;
  1278. should_rewrite = btree_gc_mark_node(b, gc);
  1279. if (should_rewrite) {
  1280. n = btree_node_alloc_replacement(b, NULL);
  1281. if (!IS_ERR_OR_NULL(n)) {
  1282. bch_btree_node_write_sync(n);
  1283. bch_btree_set_root(n);
  1284. btree_node_free(b);
  1285. rw_unlock(true, n);
  1286. return -EINTR;
  1287. }
  1288. }
  1289. __bch_btree_mark_key(b->c, b->level + 1, &b->key);
  1290. if (b->level) {
  1291. ret = btree_gc_recurse(b, op, writes, gc);
  1292. if (ret)
  1293. return ret;
  1294. }
  1295. bkey_copy_key(&b->c->gc_done, &b->key);
  1296. return ret;
  1297. }
  1298. static void btree_gc_start(struct cache_set *c)
  1299. {
  1300. struct cache *ca;
  1301. struct bucket *b;
  1302. unsigned i;
  1303. if (!c->gc_mark_valid)
  1304. return;
  1305. mutex_lock(&c->bucket_lock);
  1306. c->gc_mark_valid = 0;
  1307. c->gc_done = ZERO_KEY;
  1308. for_each_cache(ca, c, i)
  1309. for_each_bucket(b, ca) {
  1310. b->last_gc = b->gen;
  1311. if (!atomic_read(&b->pin)) {
  1312. SET_GC_MARK(b, 0);
  1313. SET_GC_SECTORS_USED(b, 0);
  1314. }
  1315. }
  1316. mutex_unlock(&c->bucket_lock);
  1317. }
  1318. static size_t bch_btree_gc_finish(struct cache_set *c)
  1319. {
  1320. size_t available = 0;
  1321. struct bucket *b;
  1322. struct cache *ca;
  1323. unsigned i;
  1324. mutex_lock(&c->bucket_lock);
  1325. set_gc_sectors(c);
  1326. c->gc_mark_valid = 1;
  1327. c->need_gc = 0;
  1328. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1329. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1330. GC_MARK_METADATA);
  1331. /* don't reclaim buckets to which writeback keys point */
  1332. rcu_read_lock();
  1333. for (i = 0; i < c->nr_uuids; i++) {
  1334. struct bcache_device *d = c->devices[i];
  1335. struct cached_dev *dc;
  1336. struct keybuf_key *w, *n;
  1337. unsigned j;
  1338. if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
  1339. continue;
  1340. dc = container_of(d, struct cached_dev, disk);
  1341. spin_lock(&dc->writeback_keys.lock);
  1342. rbtree_postorder_for_each_entry_safe(w, n,
  1343. &dc->writeback_keys.keys, node)
  1344. for (j = 0; j < KEY_PTRS(&w->key); j++)
  1345. SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
  1346. GC_MARK_DIRTY);
  1347. spin_unlock(&dc->writeback_keys.lock);
  1348. }
  1349. rcu_read_unlock();
  1350. for_each_cache(ca, c, i) {
  1351. uint64_t *i;
  1352. ca->invalidate_needs_gc = 0;
  1353. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1354. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1355. for (i = ca->prio_buckets;
  1356. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1357. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1358. for_each_bucket(b, ca) {
  1359. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1360. if (atomic_read(&b->pin))
  1361. continue;
  1362. BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
  1363. if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
  1364. available++;
  1365. }
  1366. }
  1367. mutex_unlock(&c->bucket_lock);
  1368. return available;
  1369. }
  1370. static void bch_btree_gc(struct cache_set *c)
  1371. {
  1372. int ret;
  1373. unsigned long available;
  1374. struct gc_stat stats;
  1375. struct closure writes;
  1376. struct btree_op op;
  1377. uint64_t start_time = local_clock();
  1378. trace_bcache_gc_start(c);
  1379. memset(&stats, 0, sizeof(struct gc_stat));
  1380. closure_init_stack(&writes);
  1381. bch_btree_op_init(&op, SHRT_MAX);
  1382. btree_gc_start(c);
  1383. do {
  1384. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1385. closure_sync(&writes);
  1386. cond_resched();
  1387. if (ret && ret != -EAGAIN)
  1388. pr_warn("gc failed!");
  1389. } while (ret);
  1390. available = bch_btree_gc_finish(c);
  1391. wake_up_allocators(c);
  1392. bch_time_stats_update(&c->btree_gc_time, start_time);
  1393. stats.key_bytes *= sizeof(uint64_t);
  1394. stats.data <<= 9;
  1395. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1396. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1397. trace_bcache_gc_end(c);
  1398. bch_moving_gc(c);
  1399. }
  1400. static bool gc_should_run(struct cache_set *c)
  1401. {
  1402. struct cache *ca;
  1403. unsigned i;
  1404. for_each_cache(ca, c, i)
  1405. if (ca->invalidate_needs_gc)
  1406. return true;
  1407. if (atomic_read(&c->sectors_to_gc) < 0)
  1408. return true;
  1409. return false;
  1410. }
  1411. static int bch_gc_thread(void *arg)
  1412. {
  1413. struct cache_set *c = arg;
  1414. while (1) {
  1415. wait_event_interruptible(c->gc_wait,
  1416. kthread_should_stop() || gc_should_run(c));
  1417. if (kthread_should_stop())
  1418. break;
  1419. set_gc_sectors(c);
  1420. bch_btree_gc(c);
  1421. }
  1422. return 0;
  1423. }
  1424. int bch_gc_thread_start(struct cache_set *c)
  1425. {
  1426. c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
  1427. if (IS_ERR(c->gc_thread))
  1428. return PTR_ERR(c->gc_thread);
  1429. return 0;
  1430. }
  1431. /* Initial partial gc */
  1432. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
  1433. {
  1434. int ret = 0;
  1435. struct bkey *k, *p = NULL;
  1436. struct btree_iter iter;
  1437. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
  1438. bch_initial_mark_key(b->c, b->level, k);
  1439. bch_initial_mark_key(b->c, b->level + 1, &b->key);
  1440. if (b->level) {
  1441. bch_btree_iter_init(&b->keys, &iter, NULL);
  1442. do {
  1443. k = bch_btree_iter_next_filter(&iter, &b->keys,
  1444. bch_ptr_bad);
  1445. if (k)
  1446. btree_node_prefetch(b, k);
  1447. if (p)
  1448. ret = btree(check_recurse, p, b, op);
  1449. p = k;
  1450. } while (p && !ret);
  1451. }
  1452. return ret;
  1453. }
  1454. int bch_btree_check(struct cache_set *c)
  1455. {
  1456. struct btree_op op;
  1457. bch_btree_op_init(&op, SHRT_MAX);
  1458. return btree_root(check_recurse, c, &op);
  1459. }
  1460. void bch_initial_gc_finish(struct cache_set *c)
  1461. {
  1462. struct cache *ca;
  1463. struct bucket *b;
  1464. unsigned i;
  1465. bch_btree_gc_finish(c);
  1466. mutex_lock(&c->bucket_lock);
  1467. /*
  1468. * We need to put some unused buckets directly on the prio freelist in
  1469. * order to get the allocator thread started - it needs freed buckets in
  1470. * order to rewrite the prios and gens, and it needs to rewrite prios
  1471. * and gens in order to free buckets.
  1472. *
  1473. * This is only safe for buckets that have no live data in them, which
  1474. * there should always be some of.
  1475. */
  1476. for_each_cache(ca, c, i) {
  1477. for_each_bucket(b, ca) {
  1478. if (fifo_full(&ca->free[RESERVE_PRIO]) &&
  1479. fifo_full(&ca->free[RESERVE_BTREE]))
  1480. break;
  1481. if (bch_can_invalidate_bucket(ca, b) &&
  1482. !GC_MARK(b)) {
  1483. __bch_invalidate_one_bucket(ca, b);
  1484. if (!fifo_push(&ca->free[RESERVE_PRIO],
  1485. b - ca->buckets))
  1486. fifo_push(&ca->free[RESERVE_BTREE],
  1487. b - ca->buckets);
  1488. }
  1489. }
  1490. }
  1491. mutex_unlock(&c->bucket_lock);
  1492. }
  1493. /* Btree insertion */
  1494. static bool btree_insert_key(struct btree *b, struct bkey *k,
  1495. struct bkey *replace_key)
  1496. {
  1497. unsigned status;
  1498. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1499. status = bch_btree_insert_key(&b->keys, k, replace_key);
  1500. if (status != BTREE_INSERT_STATUS_NO_INSERT) {
  1501. bch_check_keys(&b->keys, "%u for %s", status,
  1502. replace_key ? "replace" : "insert");
  1503. trace_bcache_btree_insert_key(b, k, replace_key != NULL,
  1504. status);
  1505. return true;
  1506. } else
  1507. return false;
  1508. }
  1509. static size_t insert_u64s_remaining(struct btree *b)
  1510. {
  1511. long ret = bch_btree_keys_u64s_remaining(&b->keys);
  1512. /*
  1513. * Might land in the middle of an existing extent and have to split it
  1514. */
  1515. if (b->keys.ops->is_extents)
  1516. ret -= KEY_MAX_U64S;
  1517. return max(ret, 0L);
  1518. }
  1519. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1520. struct keylist *insert_keys,
  1521. struct bkey *replace_key)
  1522. {
  1523. bool ret = false;
  1524. int oldsize = bch_count_data(&b->keys);
  1525. while (!bch_keylist_empty(insert_keys)) {
  1526. struct bkey *k = insert_keys->keys;
  1527. if (bkey_u64s(k) > insert_u64s_remaining(b))
  1528. break;
  1529. if (bkey_cmp(k, &b->key) <= 0) {
  1530. if (!b->level)
  1531. bkey_put(b->c, k);
  1532. ret |= btree_insert_key(b, k, replace_key);
  1533. bch_keylist_pop_front(insert_keys);
  1534. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1535. BKEY_PADDED(key) temp;
  1536. bkey_copy(&temp.key, insert_keys->keys);
  1537. bch_cut_back(&b->key, &temp.key);
  1538. bch_cut_front(&b->key, insert_keys->keys);
  1539. ret |= btree_insert_key(b, &temp.key, replace_key);
  1540. break;
  1541. } else {
  1542. break;
  1543. }
  1544. }
  1545. if (!ret)
  1546. op->insert_collision = true;
  1547. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1548. BUG_ON(bch_count_data(&b->keys) < oldsize);
  1549. return ret;
  1550. }
  1551. static int btree_split(struct btree *b, struct btree_op *op,
  1552. struct keylist *insert_keys,
  1553. struct bkey *replace_key)
  1554. {
  1555. bool split;
  1556. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1557. uint64_t start_time = local_clock();
  1558. struct closure cl;
  1559. struct keylist parent_keys;
  1560. closure_init_stack(&cl);
  1561. bch_keylist_init(&parent_keys);
  1562. if (btree_check_reserve(b, op)) {
  1563. if (!b->level)
  1564. return -EINTR;
  1565. else
  1566. WARN(1, "insufficient reserve for split\n");
  1567. }
  1568. n1 = btree_node_alloc_replacement(b, op);
  1569. if (IS_ERR(n1))
  1570. goto err;
  1571. split = set_blocks(btree_bset_first(n1),
  1572. block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
  1573. if (split) {
  1574. unsigned keys = 0;
  1575. trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
  1576. n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
  1577. if (IS_ERR(n2))
  1578. goto err_free1;
  1579. if (!b->parent) {
  1580. n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
  1581. if (IS_ERR(n3))
  1582. goto err_free2;
  1583. }
  1584. mutex_lock(&n1->write_lock);
  1585. mutex_lock(&n2->write_lock);
  1586. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1587. /*
  1588. * Has to be a linear search because we don't have an auxiliary
  1589. * search tree yet
  1590. */
  1591. while (keys < (btree_bset_first(n1)->keys * 3) / 5)
  1592. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
  1593. keys));
  1594. bkey_copy_key(&n1->key,
  1595. bset_bkey_idx(btree_bset_first(n1), keys));
  1596. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
  1597. btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
  1598. btree_bset_first(n1)->keys = keys;
  1599. memcpy(btree_bset_first(n2)->start,
  1600. bset_bkey_last(btree_bset_first(n1)),
  1601. btree_bset_first(n2)->keys * sizeof(uint64_t));
  1602. bkey_copy_key(&n2->key, &b->key);
  1603. bch_keylist_add(&parent_keys, &n2->key);
  1604. bch_btree_node_write(n2, &cl);
  1605. mutex_unlock(&n2->write_lock);
  1606. rw_unlock(true, n2);
  1607. } else {
  1608. trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
  1609. mutex_lock(&n1->write_lock);
  1610. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1611. }
  1612. bch_keylist_add(&parent_keys, &n1->key);
  1613. bch_btree_node_write(n1, &cl);
  1614. mutex_unlock(&n1->write_lock);
  1615. if (n3) {
  1616. /* Depth increases, make a new root */
  1617. mutex_lock(&n3->write_lock);
  1618. bkey_copy_key(&n3->key, &MAX_KEY);
  1619. bch_btree_insert_keys(n3, op, &parent_keys, NULL);
  1620. bch_btree_node_write(n3, &cl);
  1621. mutex_unlock(&n3->write_lock);
  1622. closure_sync(&cl);
  1623. bch_btree_set_root(n3);
  1624. rw_unlock(true, n3);
  1625. } else if (!b->parent) {
  1626. /* Root filled up but didn't need to be split */
  1627. closure_sync(&cl);
  1628. bch_btree_set_root(n1);
  1629. } else {
  1630. /* Split a non root node */
  1631. closure_sync(&cl);
  1632. make_btree_freeing_key(b, parent_keys.top);
  1633. bch_keylist_push(&parent_keys);
  1634. bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
  1635. BUG_ON(!bch_keylist_empty(&parent_keys));
  1636. }
  1637. btree_node_free(b);
  1638. rw_unlock(true, n1);
  1639. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1640. return 0;
  1641. err_free2:
  1642. bkey_put(b->c, &n2->key);
  1643. btree_node_free(n2);
  1644. rw_unlock(true, n2);
  1645. err_free1:
  1646. bkey_put(b->c, &n1->key);
  1647. btree_node_free(n1);
  1648. rw_unlock(true, n1);
  1649. err:
  1650. WARN(1, "bcache: btree split failed (level %u)", b->level);
  1651. if (n3 == ERR_PTR(-EAGAIN) ||
  1652. n2 == ERR_PTR(-EAGAIN) ||
  1653. n1 == ERR_PTR(-EAGAIN))
  1654. return -EAGAIN;
  1655. return -ENOMEM;
  1656. }
  1657. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1658. struct keylist *insert_keys,
  1659. atomic_t *journal_ref,
  1660. struct bkey *replace_key)
  1661. {
  1662. struct closure cl;
  1663. BUG_ON(b->level && replace_key);
  1664. closure_init_stack(&cl);
  1665. mutex_lock(&b->write_lock);
  1666. if (write_block(b) != btree_bset_last(b) &&
  1667. b->keys.last_set_unwritten)
  1668. bch_btree_init_next(b); /* just wrote a set */
  1669. if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
  1670. mutex_unlock(&b->write_lock);
  1671. goto split;
  1672. }
  1673. BUG_ON(write_block(b) != btree_bset_last(b));
  1674. if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
  1675. if (!b->level)
  1676. bch_btree_leaf_dirty(b, journal_ref);
  1677. else
  1678. bch_btree_node_write(b, &cl);
  1679. }
  1680. mutex_unlock(&b->write_lock);
  1681. /* wait for btree node write if necessary, after unlock */
  1682. closure_sync(&cl);
  1683. return 0;
  1684. split:
  1685. if (current->bio_list) {
  1686. op->lock = b->c->root->level + 1;
  1687. return -EAGAIN;
  1688. } else if (op->lock <= b->c->root->level) {
  1689. op->lock = b->c->root->level + 1;
  1690. return -EINTR;
  1691. } else {
  1692. /* Invalidated all iterators */
  1693. int ret = btree_split(b, op, insert_keys, replace_key);
  1694. if (bch_keylist_empty(insert_keys))
  1695. return 0;
  1696. else if (!ret)
  1697. return -EINTR;
  1698. return ret;
  1699. }
  1700. }
  1701. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1702. struct bkey *check_key)
  1703. {
  1704. int ret = -EINTR;
  1705. uint64_t btree_ptr = b->key.ptr[0];
  1706. unsigned long seq = b->seq;
  1707. struct keylist insert;
  1708. bool upgrade = op->lock == -1;
  1709. bch_keylist_init(&insert);
  1710. if (upgrade) {
  1711. rw_unlock(false, b);
  1712. rw_lock(true, b, b->level);
  1713. if (b->key.ptr[0] != btree_ptr ||
  1714. b->seq != seq + 1) {
  1715. op->lock = b->level;
  1716. goto out;
  1717. }
  1718. }
  1719. SET_KEY_PTRS(check_key, 1);
  1720. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1721. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1722. bch_keylist_add(&insert, check_key);
  1723. ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
  1724. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1725. out:
  1726. if (upgrade)
  1727. downgrade_write(&b->lock);
  1728. return ret;
  1729. }
  1730. struct btree_insert_op {
  1731. struct btree_op op;
  1732. struct keylist *keys;
  1733. atomic_t *journal_ref;
  1734. struct bkey *replace_key;
  1735. };
  1736. static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
  1737. {
  1738. struct btree_insert_op *op = container_of(b_op,
  1739. struct btree_insert_op, op);
  1740. int ret = bch_btree_insert_node(b, &op->op, op->keys,
  1741. op->journal_ref, op->replace_key);
  1742. if (ret && !bch_keylist_empty(op->keys))
  1743. return ret;
  1744. else
  1745. return MAP_DONE;
  1746. }
  1747. int bch_btree_insert(struct cache_set *c, struct keylist *keys,
  1748. atomic_t *journal_ref, struct bkey *replace_key)
  1749. {
  1750. struct btree_insert_op op;
  1751. int ret = 0;
  1752. BUG_ON(current->bio_list);
  1753. BUG_ON(bch_keylist_empty(keys));
  1754. bch_btree_op_init(&op.op, 0);
  1755. op.keys = keys;
  1756. op.journal_ref = journal_ref;
  1757. op.replace_key = replace_key;
  1758. while (!ret && !bch_keylist_empty(keys)) {
  1759. op.op.lock = 0;
  1760. ret = bch_btree_map_leaf_nodes(&op.op, c,
  1761. &START_KEY(keys->keys),
  1762. btree_insert_fn);
  1763. }
  1764. if (ret) {
  1765. struct bkey *k;
  1766. pr_err("error %i", ret);
  1767. while ((k = bch_keylist_pop(keys)))
  1768. bkey_put(c, k);
  1769. } else if (op.op.insert_collision)
  1770. ret = -ESRCH;
  1771. return ret;
  1772. }
  1773. void bch_btree_set_root(struct btree *b)
  1774. {
  1775. unsigned i;
  1776. struct closure cl;
  1777. closure_init_stack(&cl);
  1778. trace_bcache_btree_set_root(b);
  1779. BUG_ON(!b->written);
  1780. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1781. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1782. mutex_lock(&b->c->bucket_lock);
  1783. list_del_init(&b->list);
  1784. mutex_unlock(&b->c->bucket_lock);
  1785. b->c->root = b;
  1786. bch_journal_meta(b->c, &cl);
  1787. closure_sync(&cl);
  1788. }
  1789. /* Map across nodes or keys */
  1790. static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
  1791. struct bkey *from,
  1792. btree_map_nodes_fn *fn, int flags)
  1793. {
  1794. int ret = MAP_CONTINUE;
  1795. if (b->level) {
  1796. struct bkey *k;
  1797. struct btree_iter iter;
  1798. bch_btree_iter_init(&b->keys, &iter, from);
  1799. while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
  1800. bch_ptr_bad))) {
  1801. ret = btree(map_nodes_recurse, k, b,
  1802. op, from, fn, flags);
  1803. from = NULL;
  1804. if (ret != MAP_CONTINUE)
  1805. return ret;
  1806. }
  1807. }
  1808. if (!b->level || flags == MAP_ALL_NODES)
  1809. ret = fn(op, b);
  1810. return ret;
  1811. }
  1812. int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
  1813. struct bkey *from, btree_map_nodes_fn *fn, int flags)
  1814. {
  1815. return btree_root(map_nodes_recurse, c, op, from, fn, flags);
  1816. }
  1817. static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
  1818. struct bkey *from, btree_map_keys_fn *fn,
  1819. int flags)
  1820. {
  1821. int ret = MAP_CONTINUE;
  1822. struct bkey *k;
  1823. struct btree_iter iter;
  1824. bch_btree_iter_init(&b->keys, &iter, from);
  1825. while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
  1826. ret = !b->level
  1827. ? fn(op, b, k)
  1828. : btree(map_keys_recurse, k, b, op, from, fn, flags);
  1829. from = NULL;
  1830. if (ret != MAP_CONTINUE)
  1831. return ret;
  1832. }
  1833. if (!b->level && (flags & MAP_END_KEY))
  1834. ret = fn(op, b, &KEY(KEY_INODE(&b->key),
  1835. KEY_OFFSET(&b->key), 0));
  1836. return ret;
  1837. }
  1838. int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
  1839. struct bkey *from, btree_map_keys_fn *fn, int flags)
  1840. {
  1841. return btree_root(map_keys_recurse, c, op, from, fn, flags);
  1842. }
  1843. /* Keybuf code */
  1844. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1845. {
  1846. /* Overlapping keys compare equal */
  1847. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1848. return -1;
  1849. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1850. return 1;
  1851. return 0;
  1852. }
  1853. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1854. struct keybuf_key *r)
  1855. {
  1856. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1857. }
  1858. struct refill {
  1859. struct btree_op op;
  1860. unsigned nr_found;
  1861. struct keybuf *buf;
  1862. struct bkey *end;
  1863. keybuf_pred_fn *pred;
  1864. };
  1865. static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
  1866. struct bkey *k)
  1867. {
  1868. struct refill *refill = container_of(op, struct refill, op);
  1869. struct keybuf *buf = refill->buf;
  1870. int ret = MAP_CONTINUE;
  1871. if (bkey_cmp(k, refill->end) > 0) {
  1872. ret = MAP_DONE;
  1873. goto out;
  1874. }
  1875. if (!KEY_SIZE(k)) /* end key */
  1876. goto out;
  1877. if (refill->pred(buf, k)) {
  1878. struct keybuf_key *w;
  1879. spin_lock(&buf->lock);
  1880. w = array_alloc(&buf->freelist);
  1881. if (!w) {
  1882. spin_unlock(&buf->lock);
  1883. return MAP_DONE;
  1884. }
  1885. w->private = NULL;
  1886. bkey_copy(&w->key, k);
  1887. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1888. array_free(&buf->freelist, w);
  1889. else
  1890. refill->nr_found++;
  1891. if (array_freelist_empty(&buf->freelist))
  1892. ret = MAP_DONE;
  1893. spin_unlock(&buf->lock);
  1894. }
  1895. out:
  1896. buf->last_scanned = *k;
  1897. return ret;
  1898. }
  1899. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1900. struct bkey *end, keybuf_pred_fn *pred)
  1901. {
  1902. struct bkey start = buf->last_scanned;
  1903. struct refill refill;
  1904. cond_resched();
  1905. bch_btree_op_init(&refill.op, -1);
  1906. refill.nr_found = 0;
  1907. refill.buf = buf;
  1908. refill.end = end;
  1909. refill.pred = pred;
  1910. bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
  1911. refill_keybuf_fn, MAP_END_KEY);
  1912. trace_bcache_keyscan(refill.nr_found,
  1913. KEY_INODE(&start), KEY_OFFSET(&start),
  1914. KEY_INODE(&buf->last_scanned),
  1915. KEY_OFFSET(&buf->last_scanned));
  1916. spin_lock(&buf->lock);
  1917. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1918. struct keybuf_key *w;
  1919. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1920. buf->start = START_KEY(&w->key);
  1921. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1922. buf->end = w->key;
  1923. } else {
  1924. buf->start = MAX_KEY;
  1925. buf->end = MAX_KEY;
  1926. }
  1927. spin_unlock(&buf->lock);
  1928. }
  1929. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1930. {
  1931. rb_erase(&w->node, &buf->keys);
  1932. array_free(&buf->freelist, w);
  1933. }
  1934. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1935. {
  1936. spin_lock(&buf->lock);
  1937. __bch_keybuf_del(buf, w);
  1938. spin_unlock(&buf->lock);
  1939. }
  1940. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1941. struct bkey *end)
  1942. {
  1943. bool ret = false;
  1944. struct keybuf_key *p, *w, s;
  1945. s.key = *start;
  1946. if (bkey_cmp(end, &buf->start) <= 0 ||
  1947. bkey_cmp(start, &buf->end) >= 0)
  1948. return false;
  1949. spin_lock(&buf->lock);
  1950. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1951. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1952. p = w;
  1953. w = RB_NEXT(w, node);
  1954. if (p->private)
  1955. ret = true;
  1956. else
  1957. __bch_keybuf_del(buf, p);
  1958. }
  1959. spin_unlock(&buf->lock);
  1960. return ret;
  1961. }
  1962. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1963. {
  1964. struct keybuf_key *w;
  1965. spin_lock(&buf->lock);
  1966. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1967. while (w && w->private)
  1968. w = RB_NEXT(w, node);
  1969. if (w)
  1970. w->private = ERR_PTR(-EINTR);
  1971. spin_unlock(&buf->lock);
  1972. return w;
  1973. }
  1974. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1975. struct keybuf *buf,
  1976. struct bkey *end,
  1977. keybuf_pred_fn *pred)
  1978. {
  1979. struct keybuf_key *ret;
  1980. while (1) {
  1981. ret = bch_keybuf_next(buf);
  1982. if (ret)
  1983. break;
  1984. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1985. pr_debug("scan finished");
  1986. break;
  1987. }
  1988. bch_refill_keybuf(c, buf, end, pred);
  1989. }
  1990. return ret;
  1991. }
  1992. void bch_keybuf_init(struct keybuf *buf)
  1993. {
  1994. buf->last_scanned = MAX_KEY;
  1995. buf->keys = RB_ROOT;
  1996. spin_lock_init(&buf->lock);
  1997. array_allocator_init(&buf->freelist);
  1998. }