bcache.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _BCACHE_H
  3. #define _BCACHE_H
  4. /*
  5. * SOME HIGH LEVEL CODE DOCUMENTATION:
  6. *
  7. * Bcache mostly works with cache sets, cache devices, and backing devices.
  8. *
  9. * Support for multiple cache devices hasn't quite been finished off yet, but
  10. * it's about 95% plumbed through. A cache set and its cache devices is sort of
  11. * like a md raid array and its component devices. Most of the code doesn't care
  12. * about individual cache devices, the main abstraction is the cache set.
  13. *
  14. * Multiple cache devices is intended to give us the ability to mirror dirty
  15. * cached data and metadata, without mirroring clean cached data.
  16. *
  17. * Backing devices are different, in that they have a lifetime independent of a
  18. * cache set. When you register a newly formatted backing device it'll come up
  19. * in passthrough mode, and then you can attach and detach a backing device from
  20. * a cache set at runtime - while it's mounted and in use. Detaching implicitly
  21. * invalidates any cached data for that backing device.
  22. *
  23. * A cache set can have multiple (many) backing devices attached to it.
  24. *
  25. * There's also flash only volumes - this is the reason for the distinction
  26. * between struct cached_dev and struct bcache_device. A flash only volume
  27. * works much like a bcache device that has a backing device, except the
  28. * "cached" data is always dirty. The end result is that we get thin
  29. * provisioning with very little additional code.
  30. *
  31. * Flash only volumes work but they're not production ready because the moving
  32. * garbage collector needs more work. More on that later.
  33. *
  34. * BUCKETS/ALLOCATION:
  35. *
  36. * Bcache is primarily designed for caching, which means that in normal
  37. * operation all of our available space will be allocated. Thus, we need an
  38. * efficient way of deleting things from the cache so we can write new things to
  39. * it.
  40. *
  41. * To do this, we first divide the cache device up into buckets. A bucket is the
  42. * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
  43. * works efficiently.
  44. *
  45. * Each bucket has a 16 bit priority, and an 8 bit generation associated with
  46. * it. The gens and priorities for all the buckets are stored contiguously and
  47. * packed on disk (in a linked list of buckets - aside from the superblock, all
  48. * of bcache's metadata is stored in buckets).
  49. *
  50. * The priority is used to implement an LRU. We reset a bucket's priority when
  51. * we allocate it or on cache it, and every so often we decrement the priority
  52. * of each bucket. It could be used to implement something more sophisticated,
  53. * if anyone ever gets around to it.
  54. *
  55. * The generation is used for invalidating buckets. Each pointer also has an 8
  56. * bit generation embedded in it; for a pointer to be considered valid, its gen
  57. * must match the gen of the bucket it points into. Thus, to reuse a bucket all
  58. * we have to do is increment its gen (and write its new gen to disk; we batch
  59. * this up).
  60. *
  61. * Bcache is entirely COW - we never write twice to a bucket, even buckets that
  62. * contain metadata (including btree nodes).
  63. *
  64. * THE BTREE:
  65. *
  66. * Bcache is in large part design around the btree.
  67. *
  68. * At a high level, the btree is just an index of key -> ptr tuples.
  69. *
  70. * Keys represent extents, and thus have a size field. Keys also have a variable
  71. * number of pointers attached to them (potentially zero, which is handy for
  72. * invalidating the cache).
  73. *
  74. * The key itself is an inode:offset pair. The inode number corresponds to a
  75. * backing device or a flash only volume. The offset is the ending offset of the
  76. * extent within the inode - not the starting offset; this makes lookups
  77. * slightly more convenient.
  78. *
  79. * Pointers contain the cache device id, the offset on that device, and an 8 bit
  80. * generation number. More on the gen later.
  81. *
  82. * Index lookups are not fully abstracted - cache lookups in particular are
  83. * still somewhat mixed in with the btree code, but things are headed in that
  84. * direction.
  85. *
  86. * Updates are fairly well abstracted, though. There are two different ways of
  87. * updating the btree; insert and replace.
  88. *
  89. * BTREE_INSERT will just take a list of keys and insert them into the btree -
  90. * overwriting (possibly only partially) any extents they overlap with. This is
  91. * used to update the index after a write.
  92. *
  93. * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
  94. * overwriting a key that matches another given key. This is used for inserting
  95. * data into the cache after a cache miss, and for background writeback, and for
  96. * the moving garbage collector.
  97. *
  98. * There is no "delete" operation; deleting things from the index is
  99. * accomplished by either by invalidating pointers (by incrementing a bucket's
  100. * gen) or by inserting a key with 0 pointers - which will overwrite anything
  101. * previously present at that location in the index.
  102. *
  103. * This means that there are always stale/invalid keys in the btree. They're
  104. * filtered out by the code that iterates through a btree node, and removed when
  105. * a btree node is rewritten.
  106. *
  107. * BTREE NODES:
  108. *
  109. * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
  110. * free smaller than a bucket - so, that's how big our btree nodes are.
  111. *
  112. * (If buckets are really big we'll only use part of the bucket for a btree node
  113. * - no less than 1/4th - but a bucket still contains no more than a single
  114. * btree node. I'd actually like to change this, but for now we rely on the
  115. * bucket's gen for deleting btree nodes when we rewrite/split a node.)
  116. *
  117. * Anyways, btree nodes are big - big enough to be inefficient with a textbook
  118. * btree implementation.
  119. *
  120. * The way this is solved is that btree nodes are internally log structured; we
  121. * can append new keys to an existing btree node without rewriting it. This
  122. * means each set of keys we write is sorted, but the node is not.
  123. *
  124. * We maintain this log structure in memory - keeping 1Mb of keys sorted would
  125. * be expensive, and we have to distinguish between the keys we have written and
  126. * the keys we haven't. So to do a lookup in a btree node, we have to search
  127. * each sorted set. But we do merge written sets together lazily, so the cost of
  128. * these extra searches is quite low (normally most of the keys in a btree node
  129. * will be in one big set, and then there'll be one or two sets that are much
  130. * smaller).
  131. *
  132. * This log structure makes bcache's btree more of a hybrid between a
  133. * conventional btree and a compacting data structure, with some of the
  134. * advantages of both.
  135. *
  136. * GARBAGE COLLECTION:
  137. *
  138. * We can't just invalidate any bucket - it might contain dirty data or
  139. * metadata. If it once contained dirty data, other writes might overwrite it
  140. * later, leaving no valid pointers into that bucket in the index.
  141. *
  142. * Thus, the primary purpose of garbage collection is to find buckets to reuse.
  143. * It also counts how much valid data it each bucket currently contains, so that
  144. * allocation can reuse buckets sooner when they've been mostly overwritten.
  145. *
  146. * It also does some things that are really internal to the btree
  147. * implementation. If a btree node contains pointers that are stale by more than
  148. * some threshold, it rewrites the btree node to avoid the bucket's generation
  149. * wrapping around. It also merges adjacent btree nodes if they're empty enough.
  150. *
  151. * THE JOURNAL:
  152. *
  153. * Bcache's journal is not necessary for consistency; we always strictly
  154. * order metadata writes so that the btree and everything else is consistent on
  155. * disk in the event of an unclean shutdown, and in fact bcache had writeback
  156. * caching (with recovery from unclean shutdown) before journalling was
  157. * implemented.
  158. *
  159. * Rather, the journal is purely a performance optimization; we can't complete a
  160. * write until we've updated the index on disk, otherwise the cache would be
  161. * inconsistent in the event of an unclean shutdown. This means that without the
  162. * journal, on random write workloads we constantly have to update all the leaf
  163. * nodes in the btree, and those writes will be mostly empty (appending at most
  164. * a few keys each) - highly inefficient in terms of amount of metadata writes,
  165. * and it puts more strain on the various btree resorting/compacting code.
  166. *
  167. * The journal is just a log of keys we've inserted; on startup we just reinsert
  168. * all the keys in the open journal entries. That means that when we're updating
  169. * a node in the btree, we can wait until a 4k block of keys fills up before
  170. * writing them out.
  171. *
  172. * For simplicity, we only journal updates to leaf nodes; updates to parent
  173. * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
  174. * the complexity to deal with journalling them (in particular, journal replay)
  175. * - updates to non leaf nodes just happen synchronously (see btree_split()).
  176. */
  177. #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
  178. #include <linux/bcache.h>
  179. #include <linux/bio.h>
  180. #include <linux/kobject.h>
  181. #include <linux/list.h>
  182. #include <linux/mutex.h>
  183. #include <linux/rbtree.h>
  184. #include <linux/rwsem.h>
  185. #include <linux/types.h>
  186. #include <linux/workqueue.h>
  187. #include "bset.h"
  188. #include "util.h"
  189. #include "closure.h"
  190. struct bucket {
  191. atomic_t pin;
  192. uint16_t prio;
  193. uint8_t gen;
  194. uint8_t last_gc; /* Most out of date gen in the btree */
  195. uint16_t gc_mark; /* Bitfield used by GC. See below for field */
  196. };
  197. /*
  198. * I'd use bitfields for these, but I don't trust the compiler not to screw me
  199. * as multiple threads touch struct bucket without locking
  200. */
  201. BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
  202. #define GC_MARK_RECLAIMABLE 1
  203. #define GC_MARK_DIRTY 2
  204. #define GC_MARK_METADATA 3
  205. #define GC_SECTORS_USED_SIZE 13
  206. #define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE))
  207. BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
  208. BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
  209. #include "journal.h"
  210. #include "stats.h"
  211. struct search;
  212. struct btree;
  213. struct keybuf;
  214. struct keybuf_key {
  215. struct rb_node node;
  216. BKEY_PADDED(key);
  217. void *private;
  218. };
  219. struct keybuf {
  220. struct bkey last_scanned;
  221. spinlock_t lock;
  222. /*
  223. * Beginning and end of range in rb tree - so that we can skip taking
  224. * lock and checking the rb tree when we need to check for overlapping
  225. * keys.
  226. */
  227. struct bkey start;
  228. struct bkey end;
  229. struct rb_root keys;
  230. #define KEYBUF_NR 500
  231. DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
  232. };
  233. struct bcache_device {
  234. struct closure cl;
  235. struct kobject kobj;
  236. struct cache_set *c;
  237. unsigned id;
  238. #define BCACHEDEVNAME_SIZE 12
  239. char name[BCACHEDEVNAME_SIZE];
  240. struct gendisk *disk;
  241. unsigned long flags;
  242. #define BCACHE_DEV_CLOSING 0
  243. #define BCACHE_DEV_DETACHING 1
  244. #define BCACHE_DEV_UNLINK_DONE 2
  245. unsigned nr_stripes;
  246. unsigned stripe_size;
  247. atomic_t *stripe_sectors_dirty;
  248. unsigned long *full_dirty_stripes;
  249. unsigned long sectors_dirty_last;
  250. long sectors_dirty_derivative;
  251. struct bio_set *bio_split;
  252. unsigned data_csum:1;
  253. int (*cache_miss)(struct btree *, struct search *,
  254. struct bio *, unsigned);
  255. int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
  256. };
  257. struct io {
  258. /* Used to track sequential IO so it can be skipped */
  259. struct hlist_node hash;
  260. struct list_head lru;
  261. unsigned long jiffies;
  262. unsigned sequential;
  263. sector_t last;
  264. };
  265. struct cached_dev {
  266. struct list_head list;
  267. struct bcache_device disk;
  268. struct block_device *bdev;
  269. struct cache_sb sb;
  270. struct bio sb_bio;
  271. struct bio_vec sb_bv[1];
  272. struct closure sb_write;
  273. struct semaphore sb_write_mutex;
  274. /* Refcount on the cache set. Always nonzero when we're caching. */
  275. atomic_t count;
  276. struct work_struct detach;
  277. /*
  278. * Device might not be running if it's dirty and the cache set hasn't
  279. * showed up yet.
  280. */
  281. atomic_t running;
  282. /*
  283. * Writes take a shared lock from start to finish; scanning for dirty
  284. * data to refill the rb tree requires an exclusive lock.
  285. */
  286. struct rw_semaphore writeback_lock;
  287. /*
  288. * Nonzero, and writeback has a refcount (d->count), iff there is dirty
  289. * data in the cache. Protected by writeback_lock; must have an
  290. * shared lock to set and exclusive lock to clear.
  291. */
  292. atomic_t has_dirty;
  293. struct bch_ratelimit writeback_rate;
  294. struct delayed_work writeback_rate_update;
  295. /*
  296. * Internal to the writeback code, so read_dirty() can keep track of
  297. * where it's at.
  298. */
  299. sector_t last_read;
  300. /* Limit number of writeback bios in flight */
  301. struct semaphore in_flight;
  302. struct task_struct *writeback_thread;
  303. struct workqueue_struct *writeback_write_wq;
  304. struct keybuf writeback_keys;
  305. /* For tracking sequential IO */
  306. #define RECENT_IO_BITS 7
  307. #define RECENT_IO (1 << RECENT_IO_BITS)
  308. struct io io[RECENT_IO];
  309. struct hlist_head io_hash[RECENT_IO + 1];
  310. struct list_head io_lru;
  311. spinlock_t io_lock;
  312. struct cache_accounting accounting;
  313. /* The rest of this all shows up in sysfs */
  314. unsigned sequential_cutoff;
  315. unsigned readahead;
  316. unsigned verify:1;
  317. unsigned bypass_torture_test:1;
  318. unsigned partial_stripes_expensive:1;
  319. unsigned writeback_metadata:1;
  320. unsigned writeback_running:1;
  321. unsigned char writeback_percent;
  322. unsigned writeback_delay;
  323. uint64_t writeback_rate_target;
  324. int64_t writeback_rate_proportional;
  325. int64_t writeback_rate_derivative;
  326. int64_t writeback_rate_change;
  327. unsigned writeback_rate_update_seconds;
  328. unsigned writeback_rate_d_term;
  329. unsigned writeback_rate_p_term_inverse;
  330. };
  331. enum alloc_reserve {
  332. RESERVE_BTREE,
  333. RESERVE_PRIO,
  334. RESERVE_MOVINGGC,
  335. RESERVE_NONE,
  336. RESERVE_NR,
  337. };
  338. struct cache {
  339. struct cache_set *set;
  340. struct cache_sb sb;
  341. struct bio sb_bio;
  342. struct bio_vec sb_bv[1];
  343. struct kobject kobj;
  344. struct block_device *bdev;
  345. struct task_struct *alloc_thread;
  346. struct closure prio;
  347. struct prio_set *disk_buckets;
  348. /*
  349. * When allocating new buckets, prio_write() gets first dibs - since we
  350. * may not be allocate at all without writing priorities and gens.
  351. * prio_buckets[] contains the last buckets we wrote priorities to (so
  352. * gc can mark them as metadata), prio_next[] contains the buckets
  353. * allocated for the next prio write.
  354. */
  355. uint64_t *prio_buckets;
  356. uint64_t *prio_last_buckets;
  357. /*
  358. * free: Buckets that are ready to be used
  359. *
  360. * free_inc: Incoming buckets - these are buckets that currently have
  361. * cached data in them, and we can't reuse them until after we write
  362. * their new gen to disk. After prio_write() finishes writing the new
  363. * gens/prios, they'll be moved to the free list (and possibly discarded
  364. * in the process)
  365. */
  366. DECLARE_FIFO(long, free)[RESERVE_NR];
  367. DECLARE_FIFO(long, free_inc);
  368. size_t fifo_last_bucket;
  369. /* Allocation stuff: */
  370. struct bucket *buckets;
  371. DECLARE_HEAP(struct bucket *, heap);
  372. /*
  373. * If nonzero, we know we aren't going to find any buckets to invalidate
  374. * until a gc finishes - otherwise we could pointlessly burn a ton of
  375. * cpu
  376. */
  377. unsigned invalidate_needs_gc;
  378. bool discard; /* Get rid of? */
  379. struct journal_device journal;
  380. /* The rest of this all shows up in sysfs */
  381. #define IO_ERROR_SHIFT 20
  382. atomic_t io_errors;
  383. atomic_t io_count;
  384. atomic_long_t meta_sectors_written;
  385. atomic_long_t btree_sectors_written;
  386. atomic_long_t sectors_written;
  387. };
  388. struct gc_stat {
  389. size_t nodes;
  390. size_t key_bytes;
  391. size_t nkeys;
  392. uint64_t data; /* sectors */
  393. unsigned in_use; /* percent */
  394. };
  395. /*
  396. * Flag bits, for how the cache set is shutting down, and what phase it's at:
  397. *
  398. * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
  399. * all the backing devices first (their cached data gets invalidated, and they
  400. * won't automatically reattach).
  401. *
  402. * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
  403. * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
  404. * flushing dirty data).
  405. *
  406. * CACHE_SET_RUNNING means all cache devices have been registered and journal
  407. * replay is complete.
  408. */
  409. #define CACHE_SET_UNREGISTERING 0
  410. #define CACHE_SET_STOPPING 1
  411. #define CACHE_SET_RUNNING 2
  412. struct cache_set {
  413. struct closure cl;
  414. struct list_head list;
  415. struct kobject kobj;
  416. struct kobject internal;
  417. struct dentry *debug;
  418. struct cache_accounting accounting;
  419. unsigned long flags;
  420. struct cache_sb sb;
  421. struct cache *cache[MAX_CACHES_PER_SET];
  422. struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
  423. int caches_loaded;
  424. struct bcache_device **devices;
  425. struct list_head cached_devs;
  426. uint64_t cached_dev_sectors;
  427. struct closure caching;
  428. struct closure sb_write;
  429. struct semaphore sb_write_mutex;
  430. mempool_t *search;
  431. mempool_t *bio_meta;
  432. struct bio_set *bio_split;
  433. /* For the btree cache */
  434. struct shrinker shrink;
  435. /* For the btree cache and anything allocation related */
  436. struct mutex bucket_lock;
  437. /* log2(bucket_size), in sectors */
  438. unsigned short bucket_bits;
  439. /* log2(block_size), in sectors */
  440. unsigned short block_bits;
  441. /*
  442. * Default number of pages for a new btree node - may be less than a
  443. * full bucket
  444. */
  445. unsigned btree_pages;
  446. /*
  447. * Lists of struct btrees; lru is the list for structs that have memory
  448. * allocated for actual btree node, freed is for structs that do not.
  449. *
  450. * We never free a struct btree, except on shutdown - we just put it on
  451. * the btree_cache_freed list and reuse it later. This simplifies the
  452. * code, and it doesn't cost us much memory as the memory usage is
  453. * dominated by buffers that hold the actual btree node data and those
  454. * can be freed - and the number of struct btrees allocated is
  455. * effectively bounded.
  456. *
  457. * btree_cache_freeable effectively is a small cache - we use it because
  458. * high order page allocations can be rather expensive, and it's quite
  459. * common to delete and allocate btree nodes in quick succession. It
  460. * should never grow past ~2-3 nodes in practice.
  461. */
  462. struct list_head btree_cache;
  463. struct list_head btree_cache_freeable;
  464. struct list_head btree_cache_freed;
  465. /* Number of elements in btree_cache + btree_cache_freeable lists */
  466. unsigned btree_cache_used;
  467. /*
  468. * If we need to allocate memory for a new btree node and that
  469. * allocation fails, we can cannibalize another node in the btree cache
  470. * to satisfy the allocation - lock to guarantee only one thread does
  471. * this at a time:
  472. */
  473. wait_queue_head_t btree_cache_wait;
  474. struct task_struct *btree_cache_alloc_lock;
  475. spinlock_t btree_cannibalize_lock;
  476. /*
  477. * When we free a btree node, we increment the gen of the bucket the
  478. * node is in - but we can't rewrite the prios and gens until we
  479. * finished whatever it is we were doing, otherwise after a crash the
  480. * btree node would be freed but for say a split, we might not have the
  481. * pointers to the new nodes inserted into the btree yet.
  482. *
  483. * This is a refcount that blocks prio_write() until the new keys are
  484. * written.
  485. */
  486. atomic_t prio_blocked;
  487. wait_queue_head_t bucket_wait;
  488. /*
  489. * For any bio we don't skip we subtract the number of sectors from
  490. * rescale; when it hits 0 we rescale all the bucket priorities.
  491. */
  492. atomic_t rescale;
  493. /*
  494. * When we invalidate buckets, we use both the priority and the amount
  495. * of good data to determine which buckets to reuse first - to weight
  496. * those together consistently we keep track of the smallest nonzero
  497. * priority of any bucket.
  498. */
  499. uint16_t min_prio;
  500. /*
  501. * max(gen - last_gc) for all buckets. When it gets too big we have to gc
  502. * to keep gens from wrapping around.
  503. */
  504. uint8_t need_gc;
  505. struct gc_stat gc_stats;
  506. size_t nbuckets;
  507. struct task_struct *gc_thread;
  508. /* Where in the btree gc currently is */
  509. struct bkey gc_done;
  510. /*
  511. * The allocation code needs gc_mark in struct bucket to be correct, but
  512. * it's not while a gc is in progress. Protected by bucket_lock.
  513. */
  514. int gc_mark_valid;
  515. /* Counts how many sectors bio_insert has added to the cache */
  516. atomic_t sectors_to_gc;
  517. wait_queue_head_t gc_wait;
  518. struct keybuf moving_gc_keys;
  519. /* Number of moving GC bios in flight */
  520. struct semaphore moving_in_flight;
  521. struct workqueue_struct *moving_gc_wq;
  522. struct btree *root;
  523. #ifdef CONFIG_BCACHE_DEBUG
  524. struct btree *verify_data;
  525. struct bset *verify_ondisk;
  526. struct mutex verify_lock;
  527. #endif
  528. unsigned nr_uuids;
  529. struct uuid_entry *uuids;
  530. BKEY_PADDED(uuid_bucket);
  531. struct closure uuid_write;
  532. struct semaphore uuid_write_mutex;
  533. /*
  534. * A btree node on disk could have too many bsets for an iterator to fit
  535. * on the stack - have to dynamically allocate them
  536. */
  537. mempool_t *fill_iter;
  538. struct bset_sort_state sort;
  539. /* List of buckets we're currently writing data to */
  540. struct list_head data_buckets;
  541. spinlock_t data_bucket_lock;
  542. struct journal journal;
  543. #define CONGESTED_MAX 1024
  544. unsigned congested_last_us;
  545. atomic_t congested;
  546. /* The rest of this all shows up in sysfs */
  547. unsigned congested_read_threshold_us;
  548. unsigned congested_write_threshold_us;
  549. struct time_stats btree_gc_time;
  550. struct time_stats btree_split_time;
  551. struct time_stats btree_read_time;
  552. atomic_long_t cache_read_races;
  553. atomic_long_t writeback_keys_done;
  554. atomic_long_t writeback_keys_failed;
  555. enum {
  556. ON_ERROR_UNREGISTER,
  557. ON_ERROR_PANIC,
  558. } on_error;
  559. unsigned error_limit;
  560. unsigned error_decay;
  561. unsigned short journal_delay_ms;
  562. bool expensive_debug_checks;
  563. unsigned verify:1;
  564. unsigned key_merging_disabled:1;
  565. unsigned gc_always_rewrite:1;
  566. unsigned shrinker_disabled:1;
  567. unsigned copy_gc_enabled:1;
  568. #define BUCKET_HASH_BITS 12
  569. struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
  570. };
  571. struct bbio {
  572. unsigned submit_time_us;
  573. union {
  574. struct bkey key;
  575. uint64_t _pad[3];
  576. /*
  577. * We only need pad = 3 here because we only ever carry around a
  578. * single pointer - i.e. the pointer we're doing io to/from.
  579. */
  580. };
  581. struct bio bio;
  582. };
  583. #define BTREE_PRIO USHRT_MAX
  584. #define INITIAL_PRIO 32768U
  585. #define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
  586. #define btree_blocks(b) \
  587. ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
  588. #define btree_default_blocks(c) \
  589. ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
  590. #define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
  591. #define bucket_bytes(c) ((c)->sb.bucket_size << 9)
  592. #define block_bytes(c) ((c)->sb.block_size << 9)
  593. #define prios_per_bucket(c) \
  594. ((bucket_bytes(c) - sizeof(struct prio_set)) / \
  595. sizeof(struct bucket_disk))
  596. #define prio_buckets(c) \
  597. DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
  598. static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
  599. {
  600. return s >> c->bucket_bits;
  601. }
  602. static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
  603. {
  604. return ((sector_t) b) << c->bucket_bits;
  605. }
  606. static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
  607. {
  608. return s & (c->sb.bucket_size - 1);
  609. }
  610. static inline struct cache *PTR_CACHE(struct cache_set *c,
  611. const struct bkey *k,
  612. unsigned ptr)
  613. {
  614. return c->cache[PTR_DEV(k, ptr)];
  615. }
  616. static inline size_t PTR_BUCKET_NR(struct cache_set *c,
  617. const struct bkey *k,
  618. unsigned ptr)
  619. {
  620. return sector_to_bucket(c, PTR_OFFSET(k, ptr));
  621. }
  622. static inline struct bucket *PTR_BUCKET(struct cache_set *c,
  623. const struct bkey *k,
  624. unsigned ptr)
  625. {
  626. return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
  627. }
  628. static inline uint8_t gen_after(uint8_t a, uint8_t b)
  629. {
  630. uint8_t r = a - b;
  631. return r > 128U ? 0 : r;
  632. }
  633. static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
  634. unsigned i)
  635. {
  636. return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
  637. }
  638. static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
  639. unsigned i)
  640. {
  641. return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
  642. }
  643. /* Btree key macros */
  644. /*
  645. * This is used for various on disk data structures - cache_sb, prio_set, bset,
  646. * jset: The checksum is _always_ the first 8 bytes of these structs
  647. */
  648. #define csum_set(i) \
  649. bch_crc64(((void *) (i)) + sizeof(uint64_t), \
  650. ((void *) bset_bkey_last(i)) - \
  651. (((void *) (i)) + sizeof(uint64_t)))
  652. /* Error handling macros */
  653. #define btree_bug(b, ...) \
  654. do { \
  655. if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
  656. dump_stack(); \
  657. } while (0)
  658. #define cache_bug(c, ...) \
  659. do { \
  660. if (bch_cache_set_error(c, __VA_ARGS__)) \
  661. dump_stack(); \
  662. } while (0)
  663. #define btree_bug_on(cond, b, ...) \
  664. do { \
  665. if (cond) \
  666. btree_bug(b, __VA_ARGS__); \
  667. } while (0)
  668. #define cache_bug_on(cond, c, ...) \
  669. do { \
  670. if (cond) \
  671. cache_bug(c, __VA_ARGS__); \
  672. } while (0)
  673. #define cache_set_err_on(cond, c, ...) \
  674. do { \
  675. if (cond) \
  676. bch_cache_set_error(c, __VA_ARGS__); \
  677. } while (0)
  678. /* Looping macros */
  679. #define for_each_cache(ca, cs, iter) \
  680. for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
  681. #define for_each_bucket(b, ca) \
  682. for (b = (ca)->buckets + (ca)->sb.first_bucket; \
  683. b < (ca)->buckets + (ca)->sb.nbuckets; b++)
  684. static inline void cached_dev_put(struct cached_dev *dc)
  685. {
  686. if (atomic_dec_and_test(&dc->count))
  687. schedule_work(&dc->detach);
  688. }
  689. static inline bool cached_dev_get(struct cached_dev *dc)
  690. {
  691. if (!atomic_inc_not_zero(&dc->count))
  692. return false;
  693. /* Paired with the mb in cached_dev_attach */
  694. smp_mb__after_atomic();
  695. return true;
  696. }
  697. /*
  698. * bucket_gc_gen() returns the difference between the bucket's current gen and
  699. * the oldest gen of any pointer into that bucket in the btree (last_gc).
  700. */
  701. static inline uint8_t bucket_gc_gen(struct bucket *b)
  702. {
  703. return b->gen - b->last_gc;
  704. }
  705. #define BUCKET_GC_GEN_MAX 96U
  706. #define kobj_attribute_write(n, fn) \
  707. static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
  708. #define kobj_attribute_rw(n, show, store) \
  709. static struct kobj_attribute ksysfs_##n = \
  710. __ATTR(n, S_IWUSR|S_IRUSR, show, store)
  711. static inline void wake_up_allocators(struct cache_set *c)
  712. {
  713. struct cache *ca;
  714. unsigned i;
  715. for_each_cache(ca, c, i)
  716. wake_up_process(ca->alloc_thread);
  717. }
  718. /* Forward declarations */
  719. void bch_count_io_errors(struct cache *, blk_status_t, const char *);
  720. void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
  721. blk_status_t, const char *);
  722. void bch_bbio_endio(struct cache_set *, struct bio *, blk_status_t,
  723. const char *);
  724. void bch_bbio_free(struct bio *, struct cache_set *);
  725. struct bio *bch_bbio_alloc(struct cache_set *);
  726. void __bch_submit_bbio(struct bio *, struct cache_set *);
  727. void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
  728. uint8_t bch_inc_gen(struct cache *, struct bucket *);
  729. void bch_rescale_priorities(struct cache_set *, int);
  730. bool bch_can_invalidate_bucket(struct cache *, struct bucket *);
  731. void __bch_invalidate_one_bucket(struct cache *, struct bucket *);
  732. void __bch_bucket_free(struct cache *, struct bucket *);
  733. void bch_bucket_free(struct cache_set *, struct bkey *);
  734. long bch_bucket_alloc(struct cache *, unsigned, bool);
  735. int __bch_bucket_alloc_set(struct cache_set *, unsigned,
  736. struct bkey *, int, bool);
  737. int bch_bucket_alloc_set(struct cache_set *, unsigned,
  738. struct bkey *, int, bool);
  739. bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned,
  740. unsigned, unsigned, bool);
  741. __printf(2, 3)
  742. bool bch_cache_set_error(struct cache_set *, const char *, ...);
  743. void bch_prio_write(struct cache *);
  744. void bch_write_bdev_super(struct cached_dev *, struct closure *);
  745. extern struct workqueue_struct *bcache_wq;
  746. extern const char * const bch_cache_modes[];
  747. extern struct mutex bch_register_lock;
  748. extern struct list_head bch_cache_sets;
  749. extern struct kobj_type bch_cached_dev_ktype;
  750. extern struct kobj_type bch_flash_dev_ktype;
  751. extern struct kobj_type bch_cache_set_ktype;
  752. extern struct kobj_type bch_cache_set_internal_ktype;
  753. extern struct kobj_type bch_cache_ktype;
  754. void bch_cached_dev_release(struct kobject *);
  755. void bch_flash_dev_release(struct kobject *);
  756. void bch_cache_set_release(struct kobject *);
  757. void bch_cache_release(struct kobject *);
  758. int bch_uuid_write(struct cache_set *);
  759. void bcache_write_super(struct cache_set *);
  760. int bch_flash_dev_create(struct cache_set *c, uint64_t size);
  761. int bch_cached_dev_attach(struct cached_dev *, struct cache_set *, uint8_t *);
  762. void bch_cached_dev_detach(struct cached_dev *);
  763. void bch_cached_dev_run(struct cached_dev *);
  764. void bcache_device_stop(struct bcache_device *);
  765. void bch_cache_set_unregister(struct cache_set *);
  766. void bch_cache_set_stop(struct cache_set *);
  767. struct cache_set *bch_cache_set_alloc(struct cache_sb *);
  768. void bch_btree_cache_free(struct cache_set *);
  769. int bch_btree_cache_alloc(struct cache_set *);
  770. void bch_moving_init_cache_set(struct cache_set *);
  771. int bch_open_buckets_alloc(struct cache_set *);
  772. void bch_open_buckets_free(struct cache_set *);
  773. int bch_cache_allocator_start(struct cache *ca);
  774. void bch_debug_exit(void);
  775. int bch_debug_init(struct kobject *);
  776. void bch_request_exit(void);
  777. int bch_request_init(void);
  778. #endif /* _BCACHE_H */