mcryptd.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703
  1. /*
  2. * Software multibuffer async crypto daemon.
  3. *
  4. * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
  5. *
  6. * Adapted from crypto daemon.
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. */
  14. #include <crypto/algapi.h>
  15. #include <crypto/internal/hash.h>
  16. #include <crypto/internal/aead.h>
  17. #include <crypto/mcryptd.h>
  18. #include <crypto/crypto_wq.h>
  19. #include <linux/err.h>
  20. #include <linux/init.h>
  21. #include <linux/kernel.h>
  22. #include <linux/list.h>
  23. #include <linux/module.h>
  24. #include <linux/scatterlist.h>
  25. #include <linux/sched.h>
  26. #include <linux/sched/stat.h>
  27. #include <linux/slab.h>
  28. #include <linux/hardirq.h>
  29. #define MCRYPTD_MAX_CPU_QLEN 100
  30. #define MCRYPTD_BATCH 9
  31. static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
  32. unsigned int tail);
  33. struct mcryptd_flush_list {
  34. struct list_head list;
  35. struct mutex lock;
  36. };
  37. static struct mcryptd_flush_list __percpu *mcryptd_flist;
  38. struct hashd_instance_ctx {
  39. struct crypto_ahash_spawn spawn;
  40. struct mcryptd_queue *queue;
  41. };
  42. static void mcryptd_queue_worker(struct work_struct *work);
  43. void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
  44. {
  45. struct mcryptd_flush_list *flist;
  46. if (!cstate->flusher_engaged) {
  47. /* put the flusher on the flush list */
  48. flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
  49. mutex_lock(&flist->lock);
  50. list_add_tail(&cstate->flush_list, &flist->list);
  51. cstate->flusher_engaged = true;
  52. cstate->next_flush = jiffies + delay;
  53. queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
  54. &cstate->flush, delay);
  55. mutex_unlock(&flist->lock);
  56. }
  57. }
  58. EXPORT_SYMBOL(mcryptd_arm_flusher);
  59. static int mcryptd_init_queue(struct mcryptd_queue *queue,
  60. unsigned int max_cpu_qlen)
  61. {
  62. int cpu;
  63. struct mcryptd_cpu_queue *cpu_queue;
  64. queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
  65. pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
  66. if (!queue->cpu_queue)
  67. return -ENOMEM;
  68. for_each_possible_cpu(cpu) {
  69. cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
  70. pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
  71. crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
  72. INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
  73. spin_lock_init(&cpu_queue->q_lock);
  74. }
  75. return 0;
  76. }
  77. static void mcryptd_fini_queue(struct mcryptd_queue *queue)
  78. {
  79. int cpu;
  80. struct mcryptd_cpu_queue *cpu_queue;
  81. for_each_possible_cpu(cpu) {
  82. cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
  83. BUG_ON(cpu_queue->queue.qlen);
  84. }
  85. free_percpu(queue->cpu_queue);
  86. }
  87. static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
  88. struct crypto_async_request *request,
  89. struct mcryptd_hash_request_ctx *rctx)
  90. {
  91. int cpu, err;
  92. struct mcryptd_cpu_queue *cpu_queue;
  93. cpu_queue = raw_cpu_ptr(queue->cpu_queue);
  94. spin_lock(&cpu_queue->q_lock);
  95. cpu = smp_processor_id();
  96. rctx->tag.cpu = smp_processor_id();
  97. err = crypto_enqueue_request(&cpu_queue->queue, request);
  98. pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
  99. cpu, cpu_queue, request);
  100. spin_unlock(&cpu_queue->q_lock);
  101. queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
  102. return err;
  103. }
  104. /*
  105. * Try to opportunisticlly flush the partially completed jobs if
  106. * crypto daemon is the only task running.
  107. */
  108. static void mcryptd_opportunistic_flush(void)
  109. {
  110. struct mcryptd_flush_list *flist;
  111. struct mcryptd_alg_cstate *cstate;
  112. flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
  113. while (single_task_running()) {
  114. mutex_lock(&flist->lock);
  115. cstate = list_first_entry_or_null(&flist->list,
  116. struct mcryptd_alg_cstate, flush_list);
  117. if (!cstate || !cstate->flusher_engaged) {
  118. mutex_unlock(&flist->lock);
  119. return;
  120. }
  121. list_del(&cstate->flush_list);
  122. cstate->flusher_engaged = false;
  123. mutex_unlock(&flist->lock);
  124. cstate->alg_state->flusher(cstate);
  125. }
  126. }
  127. /*
  128. * Called in workqueue context, do one real cryption work (via
  129. * req->complete) and reschedule itself if there are more work to
  130. * do.
  131. */
  132. static void mcryptd_queue_worker(struct work_struct *work)
  133. {
  134. struct mcryptd_cpu_queue *cpu_queue;
  135. struct crypto_async_request *req, *backlog;
  136. int i;
  137. /*
  138. * Need to loop through more than once for multi-buffer to
  139. * be effective.
  140. */
  141. cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
  142. i = 0;
  143. while (i < MCRYPTD_BATCH || single_task_running()) {
  144. spin_lock_bh(&cpu_queue->q_lock);
  145. backlog = crypto_get_backlog(&cpu_queue->queue);
  146. req = crypto_dequeue_request(&cpu_queue->queue);
  147. spin_unlock_bh(&cpu_queue->q_lock);
  148. if (!req) {
  149. mcryptd_opportunistic_flush();
  150. return;
  151. }
  152. if (backlog)
  153. backlog->complete(backlog, -EINPROGRESS);
  154. req->complete(req, 0);
  155. if (!cpu_queue->queue.qlen)
  156. return;
  157. ++i;
  158. }
  159. if (cpu_queue->queue.qlen)
  160. queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work);
  161. }
  162. void mcryptd_flusher(struct work_struct *__work)
  163. {
  164. struct mcryptd_alg_cstate *alg_cpu_state;
  165. struct mcryptd_alg_state *alg_state;
  166. struct mcryptd_flush_list *flist;
  167. int cpu;
  168. cpu = smp_processor_id();
  169. alg_cpu_state = container_of(to_delayed_work(__work),
  170. struct mcryptd_alg_cstate, flush);
  171. alg_state = alg_cpu_state->alg_state;
  172. if (alg_cpu_state->cpu != cpu)
  173. pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
  174. cpu, alg_cpu_state->cpu);
  175. if (alg_cpu_state->flusher_engaged) {
  176. flist = per_cpu_ptr(mcryptd_flist, cpu);
  177. mutex_lock(&flist->lock);
  178. list_del(&alg_cpu_state->flush_list);
  179. alg_cpu_state->flusher_engaged = false;
  180. mutex_unlock(&flist->lock);
  181. alg_state->flusher(alg_cpu_state);
  182. }
  183. }
  184. EXPORT_SYMBOL_GPL(mcryptd_flusher);
  185. static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
  186. {
  187. struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
  188. struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
  189. return ictx->queue;
  190. }
  191. static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
  192. unsigned int tail)
  193. {
  194. char *p;
  195. struct crypto_instance *inst;
  196. int err;
  197. p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
  198. if (!p)
  199. return ERR_PTR(-ENOMEM);
  200. inst = (void *)(p + head);
  201. err = -ENAMETOOLONG;
  202. if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
  203. "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
  204. goto out_free_inst;
  205. memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
  206. inst->alg.cra_priority = alg->cra_priority + 50;
  207. inst->alg.cra_blocksize = alg->cra_blocksize;
  208. inst->alg.cra_alignmask = alg->cra_alignmask;
  209. out:
  210. return p;
  211. out_free_inst:
  212. kfree(p);
  213. p = ERR_PTR(err);
  214. goto out;
  215. }
  216. static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
  217. u32 *mask)
  218. {
  219. struct crypto_attr_type *algt;
  220. algt = crypto_get_attr_type(tb);
  221. if (IS_ERR(algt))
  222. return false;
  223. *type |= algt->type & CRYPTO_ALG_INTERNAL;
  224. *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
  225. if (*type & *mask & CRYPTO_ALG_INTERNAL)
  226. return true;
  227. else
  228. return false;
  229. }
  230. static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
  231. {
  232. struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
  233. struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
  234. struct crypto_ahash_spawn *spawn = &ictx->spawn;
  235. struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  236. struct crypto_ahash *hash;
  237. hash = crypto_spawn_ahash(spawn);
  238. if (IS_ERR(hash))
  239. return PTR_ERR(hash);
  240. ctx->child = hash;
  241. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  242. sizeof(struct mcryptd_hash_request_ctx) +
  243. crypto_ahash_reqsize(hash));
  244. return 0;
  245. }
  246. static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
  247. {
  248. struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  249. crypto_free_ahash(ctx->child);
  250. }
  251. static int mcryptd_hash_setkey(struct crypto_ahash *parent,
  252. const u8 *key, unsigned int keylen)
  253. {
  254. struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
  255. struct crypto_ahash *child = ctx->child;
  256. int err;
  257. crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
  258. crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
  259. CRYPTO_TFM_REQ_MASK);
  260. err = crypto_ahash_setkey(child, key, keylen);
  261. crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
  262. CRYPTO_TFM_RES_MASK);
  263. return err;
  264. }
  265. static int mcryptd_hash_enqueue(struct ahash_request *req,
  266. crypto_completion_t complete)
  267. {
  268. int ret;
  269. struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
  270. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  271. struct mcryptd_queue *queue =
  272. mcryptd_get_queue(crypto_ahash_tfm(tfm));
  273. rctx->complete = req->base.complete;
  274. req->base.complete = complete;
  275. ret = mcryptd_enqueue_request(queue, &req->base, rctx);
  276. return ret;
  277. }
  278. static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
  279. {
  280. struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
  281. struct crypto_ahash *child = ctx->child;
  282. struct ahash_request *req = ahash_request_cast(req_async);
  283. struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
  284. struct ahash_request *desc = &rctx->areq;
  285. if (unlikely(err == -EINPROGRESS))
  286. goto out;
  287. ahash_request_set_tfm(desc, child);
  288. ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
  289. rctx->complete, req_async);
  290. rctx->out = req->result;
  291. err = crypto_ahash_init(desc);
  292. out:
  293. local_bh_disable();
  294. rctx->complete(&req->base, err);
  295. local_bh_enable();
  296. }
  297. static int mcryptd_hash_init_enqueue(struct ahash_request *req)
  298. {
  299. return mcryptd_hash_enqueue(req, mcryptd_hash_init);
  300. }
  301. static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
  302. {
  303. struct ahash_request *req = ahash_request_cast(req_async);
  304. struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
  305. if (unlikely(err == -EINPROGRESS))
  306. goto out;
  307. rctx->out = req->result;
  308. err = ahash_mcryptd_update(&rctx->areq);
  309. if (err) {
  310. req->base.complete = rctx->complete;
  311. goto out;
  312. }
  313. return;
  314. out:
  315. local_bh_disable();
  316. rctx->complete(&req->base, err);
  317. local_bh_enable();
  318. }
  319. static int mcryptd_hash_update_enqueue(struct ahash_request *req)
  320. {
  321. return mcryptd_hash_enqueue(req, mcryptd_hash_update);
  322. }
  323. static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
  324. {
  325. struct ahash_request *req = ahash_request_cast(req_async);
  326. struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
  327. if (unlikely(err == -EINPROGRESS))
  328. goto out;
  329. rctx->out = req->result;
  330. err = ahash_mcryptd_final(&rctx->areq);
  331. if (err) {
  332. req->base.complete = rctx->complete;
  333. goto out;
  334. }
  335. return;
  336. out:
  337. local_bh_disable();
  338. rctx->complete(&req->base, err);
  339. local_bh_enable();
  340. }
  341. static int mcryptd_hash_final_enqueue(struct ahash_request *req)
  342. {
  343. return mcryptd_hash_enqueue(req, mcryptd_hash_final);
  344. }
  345. static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
  346. {
  347. struct ahash_request *req = ahash_request_cast(req_async);
  348. struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
  349. if (unlikely(err == -EINPROGRESS))
  350. goto out;
  351. rctx->out = req->result;
  352. err = ahash_mcryptd_finup(&rctx->areq);
  353. if (err) {
  354. req->base.complete = rctx->complete;
  355. goto out;
  356. }
  357. return;
  358. out:
  359. local_bh_disable();
  360. rctx->complete(&req->base, err);
  361. local_bh_enable();
  362. }
  363. static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
  364. {
  365. return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
  366. }
  367. static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
  368. {
  369. struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
  370. struct crypto_ahash *child = ctx->child;
  371. struct ahash_request *req = ahash_request_cast(req_async);
  372. struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
  373. struct ahash_request *desc = &rctx->areq;
  374. if (unlikely(err == -EINPROGRESS))
  375. goto out;
  376. ahash_request_set_tfm(desc, child);
  377. ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
  378. rctx->complete, req_async);
  379. rctx->out = req->result;
  380. err = ahash_mcryptd_digest(desc);
  381. out:
  382. local_bh_disable();
  383. rctx->complete(&req->base, err);
  384. local_bh_enable();
  385. }
  386. static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
  387. {
  388. return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
  389. }
  390. static int mcryptd_hash_export(struct ahash_request *req, void *out)
  391. {
  392. struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
  393. return crypto_ahash_export(&rctx->areq, out);
  394. }
  395. static int mcryptd_hash_import(struct ahash_request *req, const void *in)
  396. {
  397. struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
  398. return crypto_ahash_import(&rctx->areq, in);
  399. }
  400. static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
  401. struct mcryptd_queue *queue)
  402. {
  403. struct hashd_instance_ctx *ctx;
  404. struct ahash_instance *inst;
  405. struct hash_alg_common *halg;
  406. struct crypto_alg *alg;
  407. u32 type = 0;
  408. u32 mask = 0;
  409. int err;
  410. if (!mcryptd_check_internal(tb, &type, &mask))
  411. return -EINVAL;
  412. halg = ahash_attr_alg(tb[1], type, mask);
  413. if (IS_ERR(halg))
  414. return PTR_ERR(halg);
  415. alg = &halg->base;
  416. pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
  417. inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
  418. sizeof(*ctx));
  419. err = PTR_ERR(inst);
  420. if (IS_ERR(inst))
  421. goto out_put_alg;
  422. ctx = ahash_instance_ctx(inst);
  423. ctx->queue = queue;
  424. err = crypto_init_ahash_spawn(&ctx->spawn, halg,
  425. ahash_crypto_instance(inst));
  426. if (err)
  427. goto out_free_inst;
  428. inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
  429. (alg->cra_flags & (CRYPTO_ALG_INTERNAL |
  430. CRYPTO_ALG_OPTIONAL_KEY));
  431. inst->alg.halg.digestsize = halg->digestsize;
  432. inst->alg.halg.statesize = halg->statesize;
  433. inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
  434. inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
  435. inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
  436. inst->alg.init = mcryptd_hash_init_enqueue;
  437. inst->alg.update = mcryptd_hash_update_enqueue;
  438. inst->alg.final = mcryptd_hash_final_enqueue;
  439. inst->alg.finup = mcryptd_hash_finup_enqueue;
  440. inst->alg.export = mcryptd_hash_export;
  441. inst->alg.import = mcryptd_hash_import;
  442. if (crypto_hash_alg_has_setkey(halg))
  443. inst->alg.setkey = mcryptd_hash_setkey;
  444. inst->alg.digest = mcryptd_hash_digest_enqueue;
  445. err = ahash_register_instance(tmpl, inst);
  446. if (err) {
  447. crypto_drop_ahash(&ctx->spawn);
  448. out_free_inst:
  449. kfree(inst);
  450. }
  451. out_put_alg:
  452. crypto_mod_put(alg);
  453. return err;
  454. }
  455. static struct mcryptd_queue mqueue;
  456. static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
  457. {
  458. struct crypto_attr_type *algt;
  459. algt = crypto_get_attr_type(tb);
  460. if (IS_ERR(algt))
  461. return PTR_ERR(algt);
  462. switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
  463. case CRYPTO_ALG_TYPE_DIGEST:
  464. return mcryptd_create_hash(tmpl, tb, &mqueue);
  465. break;
  466. }
  467. return -EINVAL;
  468. }
  469. static void mcryptd_free(struct crypto_instance *inst)
  470. {
  471. struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
  472. struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
  473. switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
  474. case CRYPTO_ALG_TYPE_AHASH:
  475. crypto_drop_ahash(&hctx->spawn);
  476. kfree(ahash_instance(inst));
  477. return;
  478. default:
  479. crypto_drop_spawn(&ctx->spawn);
  480. kfree(inst);
  481. }
  482. }
  483. static struct crypto_template mcryptd_tmpl = {
  484. .name = "mcryptd",
  485. .create = mcryptd_create,
  486. .free = mcryptd_free,
  487. .module = THIS_MODULE,
  488. };
  489. struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
  490. u32 type, u32 mask)
  491. {
  492. char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
  493. struct crypto_ahash *tfm;
  494. if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
  495. "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
  496. return ERR_PTR(-EINVAL);
  497. tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
  498. if (IS_ERR(tfm))
  499. return ERR_CAST(tfm);
  500. if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
  501. crypto_free_ahash(tfm);
  502. return ERR_PTR(-EINVAL);
  503. }
  504. return __mcryptd_ahash_cast(tfm);
  505. }
  506. EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
  507. int ahash_mcryptd_digest(struct ahash_request *desc)
  508. {
  509. return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc);
  510. }
  511. int ahash_mcryptd_update(struct ahash_request *desc)
  512. {
  513. /* alignment is to be done by multi-buffer crypto algorithm if needed */
  514. return crypto_ahash_update(desc);
  515. }
  516. int ahash_mcryptd_finup(struct ahash_request *desc)
  517. {
  518. /* alignment is to be done by multi-buffer crypto algorithm if needed */
  519. return crypto_ahash_finup(desc);
  520. }
  521. int ahash_mcryptd_final(struct ahash_request *desc)
  522. {
  523. /* alignment is to be done by multi-buffer crypto algorithm if needed */
  524. return crypto_ahash_final(desc);
  525. }
  526. struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
  527. {
  528. struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
  529. return ctx->child;
  530. }
  531. EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
  532. struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
  533. {
  534. struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
  535. return &rctx->areq;
  536. }
  537. EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
  538. void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
  539. {
  540. crypto_free_ahash(&tfm->base);
  541. }
  542. EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
  543. static int __init mcryptd_init(void)
  544. {
  545. int err, cpu;
  546. struct mcryptd_flush_list *flist;
  547. mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
  548. for_each_possible_cpu(cpu) {
  549. flist = per_cpu_ptr(mcryptd_flist, cpu);
  550. INIT_LIST_HEAD(&flist->list);
  551. mutex_init(&flist->lock);
  552. }
  553. err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
  554. if (err) {
  555. free_percpu(mcryptd_flist);
  556. return err;
  557. }
  558. err = crypto_register_template(&mcryptd_tmpl);
  559. if (err) {
  560. mcryptd_fini_queue(&mqueue);
  561. free_percpu(mcryptd_flist);
  562. }
  563. return err;
  564. }
  565. static void __exit mcryptd_exit(void)
  566. {
  567. mcryptd_fini_queue(&mqueue);
  568. crypto_unregister_template(&mcryptd_tmpl);
  569. free_percpu(mcryptd_flist);
  570. }
  571. subsys_initcall(mcryptd_init);
  572. module_exit(mcryptd_exit);
  573. MODULE_LICENSE("GPL");
  574. MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
  575. MODULE_ALIAS_CRYPTO("mcryptd");