fault_32.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * fault.c: Page fault handlers for the Sparc.
  4. *
  5. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  6. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  7. * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  8. */
  9. #include <asm/head.h>
  10. #include <linux/string.h>
  11. #include <linux/types.h>
  12. #include <linux/sched.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/mman.h>
  15. #include <linux/threads.h>
  16. #include <linux/kernel.h>
  17. #include <linux/signal.h>
  18. #include <linux/mm.h>
  19. #include <linux/smp.h>
  20. #include <linux/perf_event.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kdebug.h>
  23. #include <linux/uaccess.h>
  24. #include <asm/page.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/openprom.h>
  27. #include <asm/oplib.h>
  28. #include <asm/setup.h>
  29. #include <asm/smp.h>
  30. #include <asm/traps.h>
  31. #include "mm_32.h"
  32. int show_unhandled_signals = 1;
  33. static void __noreturn unhandled_fault(unsigned long address,
  34. struct task_struct *tsk,
  35. struct pt_regs *regs)
  36. {
  37. if ((unsigned long) address < PAGE_SIZE) {
  38. printk(KERN_ALERT
  39. "Unable to handle kernel NULL pointer dereference\n");
  40. } else {
  41. printk(KERN_ALERT "Unable to handle kernel paging request at virtual address %08lx\n",
  42. address);
  43. }
  44. printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
  45. (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
  46. printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
  47. (tsk->mm ? (unsigned long) tsk->mm->pgd :
  48. (unsigned long) tsk->active_mm->pgd));
  49. die_if_kernel("Oops", regs);
  50. }
  51. asmlinkage int lookup_fault(unsigned long pc, unsigned long ret_pc,
  52. unsigned long address)
  53. {
  54. struct pt_regs regs;
  55. unsigned long g2;
  56. unsigned int insn;
  57. int i;
  58. i = search_extables_range(ret_pc, &g2);
  59. switch (i) {
  60. case 3:
  61. /* load & store will be handled by fixup */
  62. return 3;
  63. case 1:
  64. /* store will be handled by fixup, load will bump out */
  65. /* for _to_ macros */
  66. insn = *((unsigned int *) pc);
  67. if ((insn >> 21) & 1)
  68. return 1;
  69. break;
  70. case 2:
  71. /* load will be handled by fixup, store will bump out */
  72. /* for _from_ macros */
  73. insn = *((unsigned int *) pc);
  74. if (!((insn >> 21) & 1) || ((insn>>19)&0x3f) == 15)
  75. return 2;
  76. break;
  77. default:
  78. break;
  79. }
  80. memset(&regs, 0, sizeof(regs));
  81. regs.pc = pc;
  82. regs.npc = pc + 4;
  83. __asm__ __volatile__(
  84. "rd %%psr, %0\n\t"
  85. "nop\n\t"
  86. "nop\n\t"
  87. "nop\n" : "=r" (regs.psr));
  88. unhandled_fault(address, current, &regs);
  89. /* Not reached */
  90. return 0;
  91. }
  92. static inline void
  93. show_signal_msg(struct pt_regs *regs, int sig, int code,
  94. unsigned long address, struct task_struct *tsk)
  95. {
  96. if (!unhandled_signal(tsk, sig))
  97. return;
  98. if (!printk_ratelimit())
  99. return;
  100. printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x",
  101. task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
  102. tsk->comm, task_pid_nr(tsk), address,
  103. (void *)regs->pc, (void *)regs->u_regs[UREG_I7],
  104. (void *)regs->u_regs[UREG_FP], code);
  105. print_vma_addr(KERN_CONT " in ", regs->pc);
  106. printk(KERN_CONT "\n");
  107. }
  108. static void __do_fault_siginfo(int code, int sig, struct pt_regs *regs,
  109. unsigned long addr)
  110. {
  111. siginfo_t info;
  112. info.si_signo = sig;
  113. info.si_code = code;
  114. info.si_errno = 0;
  115. info.si_addr = (void __user *) addr;
  116. info.si_trapno = 0;
  117. if (unlikely(show_unhandled_signals))
  118. show_signal_msg(regs, sig, info.si_code,
  119. addr, current);
  120. force_sig_info (sig, &info, current);
  121. }
  122. static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
  123. {
  124. unsigned int insn;
  125. if (text_fault)
  126. return regs->pc;
  127. if (regs->psr & PSR_PS)
  128. insn = *(unsigned int *) regs->pc;
  129. else
  130. __get_user(insn, (unsigned int *) regs->pc);
  131. return safe_compute_effective_address(regs, insn);
  132. }
  133. static noinline void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
  134. int text_fault)
  135. {
  136. unsigned long addr = compute_si_addr(regs, text_fault);
  137. __do_fault_siginfo(code, sig, regs, addr);
  138. }
  139. asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
  140. unsigned long address)
  141. {
  142. struct vm_area_struct *vma;
  143. struct task_struct *tsk = current;
  144. struct mm_struct *mm = tsk->mm;
  145. unsigned int fixup;
  146. unsigned long g2;
  147. int from_user = !(regs->psr & PSR_PS);
  148. int fault, code;
  149. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  150. if (text_fault)
  151. address = regs->pc;
  152. /*
  153. * We fault-in kernel-space virtual memory on-demand. The
  154. * 'reference' page table is init_mm.pgd.
  155. *
  156. * NOTE! We MUST NOT take any locks for this case. We may
  157. * be in an interrupt or a critical region, and should
  158. * only copy the information from the master page table,
  159. * nothing more.
  160. */
  161. code = SEGV_MAPERR;
  162. if (address >= TASK_SIZE)
  163. goto vmalloc_fault;
  164. /*
  165. * If we're in an interrupt or have no user
  166. * context, we must not take the fault..
  167. */
  168. if (pagefault_disabled() || !mm)
  169. goto no_context;
  170. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  171. retry:
  172. down_read(&mm->mmap_sem);
  173. if (!from_user && address >= PAGE_OFFSET)
  174. goto bad_area;
  175. vma = find_vma(mm, address);
  176. if (!vma)
  177. goto bad_area;
  178. if (vma->vm_start <= address)
  179. goto good_area;
  180. if (!(vma->vm_flags & VM_GROWSDOWN))
  181. goto bad_area;
  182. if (expand_stack(vma, address))
  183. goto bad_area;
  184. /*
  185. * Ok, we have a good vm_area for this memory access, so
  186. * we can handle it..
  187. */
  188. good_area:
  189. code = SEGV_ACCERR;
  190. if (write) {
  191. if (!(vma->vm_flags & VM_WRITE))
  192. goto bad_area;
  193. } else {
  194. /* Allow reads even for write-only mappings */
  195. if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
  196. goto bad_area;
  197. }
  198. if (from_user)
  199. flags |= FAULT_FLAG_USER;
  200. if (write)
  201. flags |= FAULT_FLAG_WRITE;
  202. /*
  203. * If for any reason at all we couldn't handle the fault,
  204. * make sure we exit gracefully rather than endlessly redo
  205. * the fault.
  206. */
  207. fault = handle_mm_fault(vma, address, flags);
  208. if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
  209. return;
  210. if (unlikely(fault & VM_FAULT_ERROR)) {
  211. if (fault & VM_FAULT_OOM)
  212. goto out_of_memory;
  213. else if (fault & VM_FAULT_SIGSEGV)
  214. goto bad_area;
  215. else if (fault & VM_FAULT_SIGBUS)
  216. goto do_sigbus;
  217. BUG();
  218. }
  219. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  220. if (fault & VM_FAULT_MAJOR) {
  221. current->maj_flt++;
  222. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
  223. 1, regs, address);
  224. } else {
  225. current->min_flt++;
  226. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
  227. 1, regs, address);
  228. }
  229. if (fault & VM_FAULT_RETRY) {
  230. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  231. flags |= FAULT_FLAG_TRIED;
  232. /* No need to up_read(&mm->mmap_sem) as we would
  233. * have already released it in __lock_page_or_retry
  234. * in mm/filemap.c.
  235. */
  236. goto retry;
  237. }
  238. }
  239. up_read(&mm->mmap_sem);
  240. return;
  241. /*
  242. * Something tried to access memory that isn't in our memory map..
  243. * Fix it, but check if it's kernel or user first..
  244. */
  245. bad_area:
  246. up_read(&mm->mmap_sem);
  247. bad_area_nosemaphore:
  248. /* User mode accesses just cause a SIGSEGV */
  249. if (from_user) {
  250. do_fault_siginfo(code, SIGSEGV, regs, text_fault);
  251. return;
  252. }
  253. /* Is this in ex_table? */
  254. no_context:
  255. g2 = regs->u_regs[UREG_G2];
  256. if (!from_user) {
  257. fixup = search_extables_range(regs->pc, &g2);
  258. /* Values below 10 are reserved for other things */
  259. if (fixup > 10) {
  260. extern const unsigned int __memset_start[];
  261. extern const unsigned int __memset_end[];
  262. extern const unsigned int __csum_partial_copy_start[];
  263. extern const unsigned int __csum_partial_copy_end[];
  264. #ifdef DEBUG_EXCEPTIONS
  265. printk("Exception: PC<%08lx> faddr<%08lx>\n",
  266. regs->pc, address);
  267. printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
  268. regs->pc, fixup, g2);
  269. #endif
  270. if ((regs->pc >= (unsigned long)__memset_start &&
  271. regs->pc < (unsigned long)__memset_end) ||
  272. (regs->pc >= (unsigned long)__csum_partial_copy_start &&
  273. regs->pc < (unsigned long)__csum_partial_copy_end)) {
  274. regs->u_regs[UREG_I4] = address;
  275. regs->u_regs[UREG_I5] = regs->pc;
  276. }
  277. regs->u_regs[UREG_G2] = g2;
  278. regs->pc = fixup;
  279. regs->npc = regs->pc + 4;
  280. return;
  281. }
  282. }
  283. unhandled_fault(address, tsk, regs);
  284. do_exit(SIGKILL);
  285. /*
  286. * We ran out of memory, or some other thing happened to us that made
  287. * us unable to handle the page fault gracefully.
  288. */
  289. out_of_memory:
  290. up_read(&mm->mmap_sem);
  291. if (from_user) {
  292. pagefault_out_of_memory();
  293. return;
  294. }
  295. goto no_context;
  296. do_sigbus:
  297. up_read(&mm->mmap_sem);
  298. do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, text_fault);
  299. if (!from_user)
  300. goto no_context;
  301. vmalloc_fault:
  302. {
  303. /*
  304. * Synchronize this task's top level page-table
  305. * with the 'reference' page table.
  306. */
  307. int offset = pgd_index(address);
  308. pgd_t *pgd, *pgd_k;
  309. pmd_t *pmd, *pmd_k;
  310. pgd = tsk->active_mm->pgd + offset;
  311. pgd_k = init_mm.pgd + offset;
  312. if (!pgd_present(*pgd)) {
  313. if (!pgd_present(*pgd_k))
  314. goto bad_area_nosemaphore;
  315. pgd_val(*pgd) = pgd_val(*pgd_k);
  316. return;
  317. }
  318. pmd = pmd_offset(pgd, address);
  319. pmd_k = pmd_offset(pgd_k, address);
  320. if (pmd_present(*pmd) || !pmd_present(*pmd_k))
  321. goto bad_area_nosemaphore;
  322. *pmd = *pmd_k;
  323. return;
  324. }
  325. }
  326. /* This always deals with user addresses. */
  327. static void force_user_fault(unsigned long address, int write)
  328. {
  329. struct vm_area_struct *vma;
  330. struct task_struct *tsk = current;
  331. struct mm_struct *mm = tsk->mm;
  332. unsigned int flags = FAULT_FLAG_USER;
  333. int code;
  334. code = SEGV_MAPERR;
  335. down_read(&mm->mmap_sem);
  336. vma = find_vma(mm, address);
  337. if (!vma)
  338. goto bad_area;
  339. if (vma->vm_start <= address)
  340. goto good_area;
  341. if (!(vma->vm_flags & VM_GROWSDOWN))
  342. goto bad_area;
  343. if (expand_stack(vma, address))
  344. goto bad_area;
  345. good_area:
  346. code = SEGV_ACCERR;
  347. if (write) {
  348. if (!(vma->vm_flags & VM_WRITE))
  349. goto bad_area;
  350. flags |= FAULT_FLAG_WRITE;
  351. } else {
  352. if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
  353. goto bad_area;
  354. }
  355. switch (handle_mm_fault(vma, address, flags)) {
  356. case VM_FAULT_SIGBUS:
  357. case VM_FAULT_OOM:
  358. goto do_sigbus;
  359. }
  360. up_read(&mm->mmap_sem);
  361. return;
  362. bad_area:
  363. up_read(&mm->mmap_sem);
  364. __do_fault_siginfo(code, SIGSEGV, tsk->thread.kregs, address);
  365. return;
  366. do_sigbus:
  367. up_read(&mm->mmap_sem);
  368. __do_fault_siginfo(BUS_ADRERR, SIGBUS, tsk->thread.kregs, address);
  369. }
  370. static void check_stack_aligned(unsigned long sp)
  371. {
  372. if (sp & 0x7UL)
  373. force_sig(SIGILL, current);
  374. }
  375. void window_overflow_fault(void)
  376. {
  377. unsigned long sp;
  378. sp = current_thread_info()->rwbuf_stkptrs[0];
  379. if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  380. force_user_fault(sp + 0x38, 1);
  381. force_user_fault(sp, 1);
  382. check_stack_aligned(sp);
  383. }
  384. void window_underflow_fault(unsigned long sp)
  385. {
  386. if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  387. force_user_fault(sp + 0x38, 0);
  388. force_user_fault(sp, 0);
  389. check_stack_aligned(sp);
  390. }
  391. void window_ret_fault(struct pt_regs *regs)
  392. {
  393. unsigned long sp;
  394. sp = regs->u_regs[UREG_FP];
  395. if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
  396. force_user_fault(sp + 0x38, 0);
  397. force_user_fault(sp, 0);
  398. check_stack_aligned(sp);
  399. }