sun4m_irq.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * sun4m irq support
  4. *
  5. * djhr: Hacked out of irq.c into a CPU dependent version.
  6. *
  7. * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  8. * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  9. * Copyright (C) 1995 Pete A. Zaitcev (zaitcev@yahoo.com)
  10. * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/sched/debug.h>
  14. #include <asm/timer.h>
  15. #include <asm/traps.h>
  16. #include <asm/pgalloc.h>
  17. #include <asm/pgtable.h>
  18. #include <asm/irq.h>
  19. #include <asm/io.h>
  20. #include <asm/cacheflush.h>
  21. #include "irq.h"
  22. #include "kernel.h"
  23. /* Sample sun4m IRQ layout:
  24. *
  25. * 0x22 - Power
  26. * 0x24 - ESP SCSI
  27. * 0x26 - Lance ethernet
  28. * 0x2b - Floppy
  29. * 0x2c - Zilog uart
  30. * 0x32 - SBUS level 0
  31. * 0x33 - Parallel port, SBUS level 1
  32. * 0x35 - SBUS level 2
  33. * 0x37 - SBUS level 3
  34. * 0x39 - Audio, Graphics card, SBUS level 4
  35. * 0x3b - SBUS level 5
  36. * 0x3d - SBUS level 6
  37. *
  38. * Each interrupt source has a mask bit in the interrupt registers.
  39. * When the mask bit is set, this blocks interrupt deliver. So you
  40. * clear the bit to enable the interrupt.
  41. *
  42. * Interrupts numbered less than 0x10 are software triggered interrupts
  43. * and unused by Linux.
  44. *
  45. * Interrupt level assignment on sun4m:
  46. *
  47. * level source
  48. * ------------------------------------------------------------
  49. * 1 softint-1
  50. * 2 softint-2, VME/SBUS level 1
  51. * 3 softint-3, VME/SBUS level 2
  52. * 4 softint-4, onboard SCSI
  53. * 5 softint-5, VME/SBUS level 3
  54. * 6 softint-6, onboard ETHERNET
  55. * 7 softint-7, VME/SBUS level 4
  56. * 8 softint-8, onboard VIDEO
  57. * 9 softint-9, VME/SBUS level 5, Module Interrupt
  58. * 10 softint-10, system counter/timer
  59. * 11 softint-11, VME/SBUS level 6, Floppy
  60. * 12 softint-12, Keyboard/Mouse, Serial
  61. * 13 softint-13, VME/SBUS level 7, ISDN Audio
  62. * 14 softint-14, per-processor counter/timer
  63. * 15 softint-15, Asynchronous Errors (broadcast)
  64. *
  65. * Each interrupt source is masked distinctly in the sun4m interrupt
  66. * registers. The PIL level alone is therefore ambiguous, since multiple
  67. * interrupt sources map to a single PIL.
  68. *
  69. * This ambiguity is resolved in the 'intr' property for device nodes
  70. * in the OF device tree. Each 'intr' property entry is composed of
  71. * two 32-bit words. The first word is the IRQ priority value, which
  72. * is what we're intersted in. The second word is the IRQ vector, which
  73. * is unused.
  74. *
  75. * The low 4 bits of the IRQ priority indicate the PIL, and the upper
  76. * 4 bits indicate onboard vs. SBUS leveled vs. VME leveled. 0x20
  77. * means onboard, 0x30 means SBUS leveled, and 0x40 means VME leveled.
  78. *
  79. * For example, an 'intr' IRQ priority value of 0x24 is onboard SCSI
  80. * whereas a value of 0x33 is SBUS level 2. Here are some sample
  81. * 'intr' property IRQ priority values from ss4, ss5, ss10, ss20, and
  82. * Tadpole S3 GX systems.
  83. *
  84. * esp: 0x24 onboard ESP SCSI
  85. * le: 0x26 onboard Lance ETHERNET
  86. * p9100: 0x32 SBUS level 1 P9100 video
  87. * bpp: 0x33 SBUS level 2 BPP parallel port device
  88. * DBRI: 0x39 SBUS level 5 DBRI ISDN audio
  89. * SUNW,leo: 0x39 SBUS level 5 LEO video
  90. * pcmcia: 0x3b SBUS level 6 PCMCIA controller
  91. * uctrl: 0x3b SBUS level 6 UCTRL device
  92. * modem: 0x3d SBUS level 7 MODEM
  93. * zs: 0x2c onboard keyboard/mouse/serial
  94. * floppy: 0x2b onboard Floppy
  95. * power: 0x22 onboard power device (XXX unknown mask bit XXX)
  96. */
  97. /* Code in entry.S needs to get at these register mappings. */
  98. struct sun4m_irq_percpu __iomem *sun4m_irq_percpu[SUN4M_NCPUS];
  99. struct sun4m_irq_global __iomem *sun4m_irq_global;
  100. struct sun4m_handler_data {
  101. bool percpu;
  102. long mask;
  103. };
  104. /* Dave Redman (djhr@tadpole.co.uk)
  105. * The sun4m interrupt registers.
  106. */
  107. #define SUN4M_INT_ENABLE 0x80000000
  108. #define SUN4M_INT_E14 0x00000080
  109. #define SUN4M_INT_E10 0x00080000
  110. #define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */
  111. #define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */
  112. #define SUN4M_INT_M2S_WRITE_ERR 0x20000000 /* write buffer error */
  113. #define SUN4M_INT_ECC_ERR 0x10000000 /* ecc memory error */
  114. #define SUN4M_INT_VME_ERR 0x08000000 /* vme async error */
  115. #define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */
  116. #define SUN4M_INT_MODULE 0x00200000 /* module interrupt */
  117. #define SUN4M_INT_VIDEO 0x00100000 /* onboard video */
  118. #define SUN4M_INT_REALTIME 0x00080000 /* system timer */
  119. #define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */
  120. #define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */
  121. #define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */
  122. #define SUN4M_INT_SERIAL 0x00008000 /* serial ports */
  123. #define SUN4M_INT_KBDMS 0x00004000 /* keyboard/mouse */
  124. #define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */
  125. #define SUN4M_INT_VMEBITS 0x0000007F /* vme int bits */
  126. #define SUN4M_INT_ERROR (SUN4M_INT_MODULE_ERR | \
  127. SUN4M_INT_M2S_WRITE_ERR | \
  128. SUN4M_INT_ECC_ERR | \
  129. SUN4M_INT_VME_ERR)
  130. #define SUN4M_INT_SBUS(x) (1 << (x+7))
  131. #define SUN4M_INT_VME(x) (1 << (x))
  132. /* Interrupt levels used by OBP */
  133. #define OBP_INT_LEVEL_SOFT 0x10
  134. #define OBP_INT_LEVEL_ONBOARD 0x20
  135. #define OBP_INT_LEVEL_SBUS 0x30
  136. #define OBP_INT_LEVEL_VME 0x40
  137. #define SUN4M_TIMER_IRQ (OBP_INT_LEVEL_ONBOARD | 10)
  138. #define SUN4M_PROFILE_IRQ (OBP_INT_LEVEL_ONBOARD | 14)
  139. static unsigned long sun4m_imask[0x50] = {
  140. /* 0x00 - SMP */
  141. 0, SUN4M_SOFT_INT(1),
  142. SUN4M_SOFT_INT(2), SUN4M_SOFT_INT(3),
  143. SUN4M_SOFT_INT(4), SUN4M_SOFT_INT(5),
  144. SUN4M_SOFT_INT(6), SUN4M_SOFT_INT(7),
  145. SUN4M_SOFT_INT(8), SUN4M_SOFT_INT(9),
  146. SUN4M_SOFT_INT(10), SUN4M_SOFT_INT(11),
  147. SUN4M_SOFT_INT(12), SUN4M_SOFT_INT(13),
  148. SUN4M_SOFT_INT(14), SUN4M_SOFT_INT(15),
  149. /* 0x10 - soft */
  150. 0, SUN4M_SOFT_INT(1),
  151. SUN4M_SOFT_INT(2), SUN4M_SOFT_INT(3),
  152. SUN4M_SOFT_INT(4), SUN4M_SOFT_INT(5),
  153. SUN4M_SOFT_INT(6), SUN4M_SOFT_INT(7),
  154. SUN4M_SOFT_INT(8), SUN4M_SOFT_INT(9),
  155. SUN4M_SOFT_INT(10), SUN4M_SOFT_INT(11),
  156. SUN4M_SOFT_INT(12), SUN4M_SOFT_INT(13),
  157. SUN4M_SOFT_INT(14), SUN4M_SOFT_INT(15),
  158. /* 0x20 - onboard */
  159. 0, 0, 0, 0,
  160. SUN4M_INT_SCSI, 0, SUN4M_INT_ETHERNET, 0,
  161. SUN4M_INT_VIDEO, SUN4M_INT_MODULE,
  162. SUN4M_INT_REALTIME, SUN4M_INT_FLOPPY,
  163. (SUN4M_INT_SERIAL | SUN4M_INT_KBDMS),
  164. SUN4M_INT_AUDIO, SUN4M_INT_E14, SUN4M_INT_MODULE_ERR,
  165. /* 0x30 - sbus */
  166. 0, 0, SUN4M_INT_SBUS(0), SUN4M_INT_SBUS(1),
  167. 0, SUN4M_INT_SBUS(2), 0, SUN4M_INT_SBUS(3),
  168. 0, SUN4M_INT_SBUS(4), 0, SUN4M_INT_SBUS(5),
  169. 0, SUN4M_INT_SBUS(6), 0, 0,
  170. /* 0x40 - vme */
  171. 0, 0, SUN4M_INT_VME(0), SUN4M_INT_VME(1),
  172. 0, SUN4M_INT_VME(2), 0, SUN4M_INT_VME(3),
  173. 0, SUN4M_INT_VME(4), 0, SUN4M_INT_VME(5),
  174. 0, SUN4M_INT_VME(6), 0, 0
  175. };
  176. static void sun4m_mask_irq(struct irq_data *data)
  177. {
  178. struct sun4m_handler_data *handler_data;
  179. int cpu = smp_processor_id();
  180. handler_data = irq_data_get_irq_handler_data(data);
  181. if (handler_data->mask) {
  182. unsigned long flags;
  183. local_irq_save(flags);
  184. if (handler_data->percpu) {
  185. sbus_writel(handler_data->mask, &sun4m_irq_percpu[cpu]->set);
  186. } else {
  187. sbus_writel(handler_data->mask, &sun4m_irq_global->mask_set);
  188. }
  189. local_irq_restore(flags);
  190. }
  191. }
  192. static void sun4m_unmask_irq(struct irq_data *data)
  193. {
  194. struct sun4m_handler_data *handler_data;
  195. int cpu = smp_processor_id();
  196. handler_data = irq_data_get_irq_handler_data(data);
  197. if (handler_data->mask) {
  198. unsigned long flags;
  199. local_irq_save(flags);
  200. if (handler_data->percpu) {
  201. sbus_writel(handler_data->mask, &sun4m_irq_percpu[cpu]->clear);
  202. } else {
  203. sbus_writel(handler_data->mask, &sun4m_irq_global->mask_clear);
  204. }
  205. local_irq_restore(flags);
  206. }
  207. }
  208. static unsigned int sun4m_startup_irq(struct irq_data *data)
  209. {
  210. irq_link(data->irq);
  211. sun4m_unmask_irq(data);
  212. return 0;
  213. }
  214. static void sun4m_shutdown_irq(struct irq_data *data)
  215. {
  216. sun4m_mask_irq(data);
  217. irq_unlink(data->irq);
  218. }
  219. static struct irq_chip sun4m_irq = {
  220. .name = "sun4m",
  221. .irq_startup = sun4m_startup_irq,
  222. .irq_shutdown = sun4m_shutdown_irq,
  223. .irq_mask = sun4m_mask_irq,
  224. .irq_unmask = sun4m_unmask_irq,
  225. };
  226. static unsigned int sun4m_build_device_irq(struct platform_device *op,
  227. unsigned int real_irq)
  228. {
  229. struct sun4m_handler_data *handler_data;
  230. unsigned int irq;
  231. unsigned int pil;
  232. if (real_irq >= OBP_INT_LEVEL_VME) {
  233. prom_printf("Bogus sun4m IRQ %u\n", real_irq);
  234. prom_halt();
  235. }
  236. pil = (real_irq & 0xf);
  237. irq = irq_alloc(real_irq, pil);
  238. if (irq == 0)
  239. goto out;
  240. handler_data = irq_get_handler_data(irq);
  241. if (unlikely(handler_data))
  242. goto out;
  243. handler_data = kzalloc(sizeof(struct sun4m_handler_data), GFP_ATOMIC);
  244. if (unlikely(!handler_data)) {
  245. prom_printf("IRQ: kzalloc(sun4m_handler_data) failed.\n");
  246. prom_halt();
  247. }
  248. handler_data->mask = sun4m_imask[real_irq];
  249. handler_data->percpu = real_irq < OBP_INT_LEVEL_ONBOARD;
  250. irq_set_chip_and_handler_name(irq, &sun4m_irq,
  251. handle_level_irq, "level");
  252. irq_set_handler_data(irq, handler_data);
  253. out:
  254. return irq;
  255. }
  256. struct sun4m_timer_percpu {
  257. u32 l14_limit;
  258. u32 l14_count;
  259. u32 l14_limit_noclear;
  260. u32 user_timer_start_stop;
  261. };
  262. static struct sun4m_timer_percpu __iomem *timers_percpu[SUN4M_NCPUS];
  263. struct sun4m_timer_global {
  264. u32 l10_limit;
  265. u32 l10_count;
  266. u32 l10_limit_noclear;
  267. u32 reserved;
  268. u32 timer_config;
  269. };
  270. static struct sun4m_timer_global __iomem *timers_global;
  271. static void sun4m_clear_clock_irq(void)
  272. {
  273. sbus_readl(&timers_global->l10_limit);
  274. }
  275. void sun4m_nmi(struct pt_regs *regs)
  276. {
  277. unsigned long afsr, afar, si;
  278. printk(KERN_ERR "Aieee: sun4m NMI received!\n");
  279. /* XXX HyperSparc hack XXX */
  280. __asm__ __volatile__("mov 0x500, %%g1\n\t"
  281. "lda [%%g1] 0x4, %0\n\t"
  282. "mov 0x600, %%g1\n\t"
  283. "lda [%%g1] 0x4, %1\n\t" :
  284. "=r" (afsr), "=r" (afar));
  285. printk(KERN_ERR "afsr=%08lx afar=%08lx\n", afsr, afar);
  286. si = sbus_readl(&sun4m_irq_global->pending);
  287. printk(KERN_ERR "si=%08lx\n", si);
  288. if (si & SUN4M_INT_MODULE_ERR)
  289. printk(KERN_ERR "Module async error\n");
  290. if (si & SUN4M_INT_M2S_WRITE_ERR)
  291. printk(KERN_ERR "MBus/SBus async error\n");
  292. if (si & SUN4M_INT_ECC_ERR)
  293. printk(KERN_ERR "ECC memory error\n");
  294. if (si & SUN4M_INT_VME_ERR)
  295. printk(KERN_ERR "VME async error\n");
  296. printk(KERN_ERR "you lose buddy boy...\n");
  297. show_regs(regs);
  298. prom_halt();
  299. }
  300. void sun4m_unmask_profile_irq(void)
  301. {
  302. unsigned long flags;
  303. local_irq_save(flags);
  304. sbus_writel(sun4m_imask[SUN4M_PROFILE_IRQ], &sun4m_irq_global->mask_clear);
  305. local_irq_restore(flags);
  306. }
  307. void sun4m_clear_profile_irq(int cpu)
  308. {
  309. sbus_readl(&timers_percpu[cpu]->l14_limit);
  310. }
  311. static void sun4m_load_profile_irq(int cpu, unsigned int limit)
  312. {
  313. unsigned int value = limit ? timer_value(limit) : 0;
  314. sbus_writel(value, &timers_percpu[cpu]->l14_limit);
  315. }
  316. static void __init sun4m_init_timers(void)
  317. {
  318. struct device_node *dp = of_find_node_by_name(NULL, "counter");
  319. int i, err, len, num_cpu_timers;
  320. unsigned int irq;
  321. const u32 *addr;
  322. if (!dp) {
  323. printk(KERN_ERR "sun4m_init_timers: No 'counter' node.\n");
  324. return;
  325. }
  326. addr = of_get_property(dp, "address", &len);
  327. of_node_put(dp);
  328. if (!addr) {
  329. printk(KERN_ERR "sun4m_init_timers: No 'address' prop.\n");
  330. return;
  331. }
  332. num_cpu_timers = (len / sizeof(u32)) - 1;
  333. for (i = 0; i < num_cpu_timers; i++) {
  334. timers_percpu[i] = (void __iomem *)
  335. (unsigned long) addr[i];
  336. }
  337. timers_global = (void __iomem *)
  338. (unsigned long) addr[num_cpu_timers];
  339. /* Every per-cpu timer works in timer mode */
  340. sbus_writel(0x00000000, &timers_global->timer_config);
  341. #ifdef CONFIG_SMP
  342. sparc_config.cs_period = SBUS_CLOCK_RATE * 2; /* 2 seconds */
  343. sparc_config.features |= FEAT_L14_ONESHOT;
  344. #else
  345. sparc_config.cs_period = SBUS_CLOCK_RATE / HZ; /* 1/HZ sec */
  346. sparc_config.features |= FEAT_L10_CLOCKEVENT;
  347. #endif
  348. sparc_config.features |= FEAT_L10_CLOCKSOURCE;
  349. sbus_writel(timer_value(sparc_config.cs_period),
  350. &timers_global->l10_limit);
  351. master_l10_counter = &timers_global->l10_count;
  352. irq = sun4m_build_device_irq(NULL, SUN4M_TIMER_IRQ);
  353. err = request_irq(irq, timer_interrupt, IRQF_TIMER, "timer", NULL);
  354. if (err) {
  355. printk(KERN_ERR "sun4m_init_timers: Register IRQ error %d.\n",
  356. err);
  357. return;
  358. }
  359. for (i = 0; i < num_cpu_timers; i++)
  360. sbus_writel(0, &timers_percpu[i]->l14_limit);
  361. if (num_cpu_timers == 4)
  362. sbus_writel(SUN4M_INT_E14, &sun4m_irq_global->mask_set);
  363. #ifdef CONFIG_SMP
  364. {
  365. unsigned long flags;
  366. struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)];
  367. /* For SMP we use the level 14 ticker, however the bootup code
  368. * has copied the firmware's level 14 vector into the boot cpu's
  369. * trap table, we must fix this now or we get squashed.
  370. */
  371. local_irq_save(flags);
  372. trap_table->inst_one = lvl14_save[0];
  373. trap_table->inst_two = lvl14_save[1];
  374. trap_table->inst_three = lvl14_save[2];
  375. trap_table->inst_four = lvl14_save[3];
  376. local_ops->cache_all();
  377. local_irq_restore(flags);
  378. }
  379. #endif
  380. }
  381. void __init sun4m_init_IRQ(void)
  382. {
  383. struct device_node *dp = of_find_node_by_name(NULL, "interrupt");
  384. int len, i, mid, num_cpu_iregs;
  385. const u32 *addr;
  386. if (!dp) {
  387. printk(KERN_ERR "sun4m_init_IRQ: No 'interrupt' node.\n");
  388. return;
  389. }
  390. addr = of_get_property(dp, "address", &len);
  391. of_node_put(dp);
  392. if (!addr) {
  393. printk(KERN_ERR "sun4m_init_IRQ: No 'address' prop.\n");
  394. return;
  395. }
  396. num_cpu_iregs = (len / sizeof(u32)) - 1;
  397. for (i = 0; i < num_cpu_iregs; i++) {
  398. sun4m_irq_percpu[i] = (void __iomem *)
  399. (unsigned long) addr[i];
  400. }
  401. sun4m_irq_global = (void __iomem *)
  402. (unsigned long) addr[num_cpu_iregs];
  403. local_irq_disable();
  404. sbus_writel(~SUN4M_INT_MASKALL, &sun4m_irq_global->mask_set);
  405. for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++)
  406. sbus_writel(~0x17fff, &sun4m_irq_percpu[mid]->clear);
  407. if (num_cpu_iregs == 4)
  408. sbus_writel(0, &sun4m_irq_global->interrupt_target);
  409. sparc_config.init_timers = sun4m_init_timers;
  410. sparc_config.build_device_irq = sun4m_build_device_irq;
  411. sparc_config.clock_rate = SBUS_CLOCK_RATE;
  412. sparc_config.clear_clock_irq = sun4m_clear_clock_irq;
  413. sparc_config.load_profile_irq = sun4m_load_profile_irq;
  414. /* Cannot enable interrupts until OBP ticker is disabled. */
  415. }