interrupt.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698
  1. /*
  2. * handling kvm guest interrupts
  3. *
  4. * Copyright IBM Corp. 2008, 2015
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License (version 2 only)
  8. * as published by the Free Software Foundation.
  9. *
  10. * Author(s): Carsten Otte <cotte@de.ibm.com>
  11. */
  12. #include <linux/interrupt.h>
  13. #include <linux/kvm_host.h>
  14. #include <linux/hrtimer.h>
  15. #include <linux/mmu_context.h>
  16. #include <linux/signal.h>
  17. #include <linux/slab.h>
  18. #include <linux/bitmap.h>
  19. #include <linux/vmalloc.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/dis.h>
  22. #include <linux/uaccess.h>
  23. #include <asm/sclp.h>
  24. #include <asm/isc.h>
  25. #include <asm/gmap.h>
  26. #include <asm/switch_to.h>
  27. #include <asm/nmi.h>
  28. #include "kvm-s390.h"
  29. #include "gaccess.h"
  30. #include "trace-s390.h"
  31. #define PFAULT_INIT 0x0600
  32. #define PFAULT_DONE 0x0680
  33. #define VIRTIO_PARAM 0x0d00
  34. /* handle external calls via sigp interpretation facility */
  35. static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
  36. {
  37. int c, scn;
  38. if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
  39. return 0;
  40. BUG_ON(!kvm_s390_use_sca_entries());
  41. read_lock(&vcpu->kvm->arch.sca_lock);
  42. if (vcpu->kvm->arch.use_esca) {
  43. struct esca_block *sca = vcpu->kvm->arch.sca;
  44. union esca_sigp_ctrl sigp_ctrl =
  45. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  46. c = sigp_ctrl.c;
  47. scn = sigp_ctrl.scn;
  48. } else {
  49. struct bsca_block *sca = vcpu->kvm->arch.sca;
  50. union bsca_sigp_ctrl sigp_ctrl =
  51. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  52. c = sigp_ctrl.c;
  53. scn = sigp_ctrl.scn;
  54. }
  55. read_unlock(&vcpu->kvm->arch.sca_lock);
  56. if (src_id)
  57. *src_id = scn;
  58. return c;
  59. }
  60. static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
  61. {
  62. int expect, rc;
  63. BUG_ON(!kvm_s390_use_sca_entries());
  64. read_lock(&vcpu->kvm->arch.sca_lock);
  65. if (vcpu->kvm->arch.use_esca) {
  66. struct esca_block *sca = vcpu->kvm->arch.sca;
  67. union esca_sigp_ctrl *sigp_ctrl =
  68. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  69. union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  70. new_val.scn = src_id;
  71. new_val.c = 1;
  72. old_val.c = 0;
  73. expect = old_val.value;
  74. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  75. } else {
  76. struct bsca_block *sca = vcpu->kvm->arch.sca;
  77. union bsca_sigp_ctrl *sigp_ctrl =
  78. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  79. union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  80. new_val.scn = src_id;
  81. new_val.c = 1;
  82. old_val.c = 0;
  83. expect = old_val.value;
  84. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  85. }
  86. read_unlock(&vcpu->kvm->arch.sca_lock);
  87. if (rc != expect) {
  88. /* another external call is pending */
  89. return -EBUSY;
  90. }
  91. atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  92. return 0;
  93. }
  94. static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
  95. {
  96. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  97. int rc, expect;
  98. if (!kvm_s390_use_sca_entries())
  99. return;
  100. atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
  101. read_lock(&vcpu->kvm->arch.sca_lock);
  102. if (vcpu->kvm->arch.use_esca) {
  103. struct esca_block *sca = vcpu->kvm->arch.sca;
  104. union esca_sigp_ctrl *sigp_ctrl =
  105. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  106. union esca_sigp_ctrl old = *sigp_ctrl;
  107. expect = old.value;
  108. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  109. } else {
  110. struct bsca_block *sca = vcpu->kvm->arch.sca;
  111. union bsca_sigp_ctrl *sigp_ctrl =
  112. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  113. union bsca_sigp_ctrl old = *sigp_ctrl;
  114. expect = old.value;
  115. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  116. }
  117. read_unlock(&vcpu->kvm->arch.sca_lock);
  118. WARN_ON(rc != expect); /* cannot clear? */
  119. }
  120. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  121. {
  122. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  123. }
  124. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  125. {
  126. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  127. }
  128. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  129. {
  130. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  131. }
  132. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  133. {
  134. return psw_extint_disabled(vcpu) &&
  135. psw_ioint_disabled(vcpu) &&
  136. psw_mchk_disabled(vcpu);
  137. }
  138. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  139. {
  140. if (psw_extint_disabled(vcpu) ||
  141. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  142. return 0;
  143. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  144. /* No timer interrupts when single stepping */
  145. return 0;
  146. return 1;
  147. }
  148. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  149. {
  150. const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  151. const u64 ckc = vcpu->arch.sie_block->ckc;
  152. if (vcpu->arch.sie_block->gcr[0] & 0x0020000000000000ul) {
  153. if ((s64)ckc >= (s64)now)
  154. return 0;
  155. } else if (ckc >= now) {
  156. return 0;
  157. }
  158. return ckc_interrupts_enabled(vcpu);
  159. }
  160. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  161. {
  162. return !psw_extint_disabled(vcpu) &&
  163. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  164. }
  165. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  166. {
  167. if (!cpu_timer_interrupts_enabled(vcpu))
  168. return 0;
  169. return kvm_s390_get_cpu_timer(vcpu) >> 63;
  170. }
  171. static inline int is_ioirq(unsigned long irq_type)
  172. {
  173. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  174. (irq_type <= IRQ_PEND_IO_ISC_7));
  175. }
  176. static uint64_t isc_to_isc_bits(int isc)
  177. {
  178. return (0x80 >> isc) << 24;
  179. }
  180. static inline u8 int_word_to_isc(u32 int_word)
  181. {
  182. return (int_word & 0x38000000) >> 27;
  183. }
  184. static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
  185. {
  186. return vcpu->kvm->arch.float_int.pending_irqs |
  187. vcpu->arch.local_int.pending_irqs;
  188. }
  189. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  190. unsigned long active_mask)
  191. {
  192. int i;
  193. for (i = 0; i <= MAX_ISC; i++)
  194. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  195. active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));
  196. return active_mask;
  197. }
  198. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  199. {
  200. unsigned long active_mask;
  201. active_mask = pending_irqs(vcpu);
  202. if (!active_mask)
  203. return 0;
  204. if (psw_extint_disabled(vcpu))
  205. active_mask &= ~IRQ_PEND_EXT_MASK;
  206. if (psw_ioint_disabled(vcpu))
  207. active_mask &= ~IRQ_PEND_IO_MASK;
  208. else
  209. active_mask = disable_iscs(vcpu, active_mask);
  210. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  211. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  212. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  213. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  214. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  215. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  216. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  217. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  218. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  219. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  220. if (psw_mchk_disabled(vcpu))
  221. active_mask &= ~IRQ_PEND_MCHK_MASK;
  222. /*
  223. * Check both floating and local interrupt's cr14 because
  224. * bit IRQ_PEND_MCHK_REP could be set in both cases.
  225. */
  226. if (!(vcpu->arch.sie_block->gcr[14] &
  227. (vcpu->kvm->arch.float_int.mchk.cr14 |
  228. vcpu->arch.local_int.irq.mchk.cr14)))
  229. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  230. /*
  231. * STOP irqs will never be actively delivered. They are triggered via
  232. * intercept requests and cleared when the stop intercept is performed.
  233. */
  234. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  235. return active_mask;
  236. }
  237. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  238. {
  239. atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  240. set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  241. }
  242. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  243. {
  244. atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  245. clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  246. }
  247. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  248. {
  249. atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  250. &vcpu->arch.sie_block->cpuflags);
  251. vcpu->arch.sie_block->lctl = 0x0000;
  252. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  253. if (guestdbg_enabled(vcpu)) {
  254. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  255. LCTL_CR10 | LCTL_CR11);
  256. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  257. }
  258. }
  259. static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
  260. {
  261. atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
  262. }
  263. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  264. {
  265. if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
  266. return;
  267. else if (psw_ioint_disabled(vcpu))
  268. __set_cpuflag(vcpu, CPUSTAT_IO_INT);
  269. else
  270. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  271. }
  272. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  273. {
  274. if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  275. return;
  276. if (psw_extint_disabled(vcpu))
  277. __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
  278. else
  279. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  280. }
  281. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  282. {
  283. if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  284. return;
  285. if (psw_mchk_disabled(vcpu))
  286. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  287. else
  288. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  289. }
  290. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  291. {
  292. if (kvm_s390_is_stop_irq_pending(vcpu))
  293. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  294. }
  295. /* Set interception request for non-deliverable interrupts */
  296. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  297. {
  298. set_intercept_indicators_io(vcpu);
  299. set_intercept_indicators_ext(vcpu);
  300. set_intercept_indicators_mchk(vcpu);
  301. set_intercept_indicators_stop(vcpu);
  302. }
  303. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  304. {
  305. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  306. int rc;
  307. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  308. 0, 0);
  309. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  310. (u16 *)__LC_EXT_INT_CODE);
  311. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  312. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  313. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  314. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  315. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  316. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  317. return rc ? -EFAULT : 0;
  318. }
  319. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  320. {
  321. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  322. int rc;
  323. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  324. 0, 0);
  325. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  326. (u16 __user *)__LC_EXT_INT_CODE);
  327. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  328. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  329. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  330. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  331. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  332. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  333. return rc ? -EFAULT : 0;
  334. }
  335. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  336. {
  337. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  338. struct kvm_s390_ext_info ext;
  339. int rc;
  340. spin_lock(&li->lock);
  341. ext = li->irq.ext;
  342. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  343. li->irq.ext.ext_params2 = 0;
  344. spin_unlock(&li->lock);
  345. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  346. ext.ext_params2);
  347. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  348. KVM_S390_INT_PFAULT_INIT,
  349. 0, ext.ext_params2);
  350. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  351. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  352. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  353. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  354. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  355. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  356. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  357. return rc ? -EFAULT : 0;
  358. }
  359. static int __write_machine_check(struct kvm_vcpu *vcpu,
  360. struct kvm_s390_mchk_info *mchk)
  361. {
  362. unsigned long ext_sa_addr;
  363. unsigned long lc;
  364. freg_t fprs[NUM_FPRS];
  365. union mci mci;
  366. int rc;
  367. mci.val = mchk->mcic;
  368. /* take care of lazy register loading */
  369. save_fpu_regs();
  370. save_access_regs(vcpu->run->s.regs.acrs);
  371. if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
  372. save_gs_cb(current->thread.gs_cb);
  373. /* Extended save area */
  374. rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
  375. sizeof(unsigned long));
  376. /* Only bits 0 through 63-LC are used for address formation */
  377. lc = ext_sa_addr & MCESA_LC_MASK;
  378. if (test_kvm_facility(vcpu->kvm, 133)) {
  379. switch (lc) {
  380. case 0:
  381. case 10:
  382. ext_sa_addr &= ~0x3ffUL;
  383. break;
  384. case 11:
  385. ext_sa_addr &= ~0x7ffUL;
  386. break;
  387. case 12:
  388. ext_sa_addr &= ~0xfffUL;
  389. break;
  390. default:
  391. ext_sa_addr = 0;
  392. break;
  393. }
  394. } else {
  395. ext_sa_addr &= ~0x3ffUL;
  396. }
  397. if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
  398. if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
  399. 512))
  400. mci.vr = 0;
  401. } else {
  402. mci.vr = 0;
  403. }
  404. if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
  405. && (lc == 11 || lc == 12)) {
  406. if (write_guest_abs(vcpu, ext_sa_addr + 1024,
  407. &vcpu->run->s.regs.gscb, 32))
  408. mci.gs = 0;
  409. } else {
  410. mci.gs = 0;
  411. }
  412. /* General interruption information */
  413. rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
  414. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  415. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  416. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  417. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  418. rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
  419. /* Register-save areas */
  420. if (MACHINE_HAS_VX) {
  421. convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
  422. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
  423. } else {
  424. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
  425. vcpu->run->s.regs.fprs, 128);
  426. }
  427. rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
  428. vcpu->run->s.regs.gprs, 128);
  429. rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
  430. (u32 __user *) __LC_FP_CREG_SAVE_AREA);
  431. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
  432. (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
  433. rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
  434. (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
  435. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
  436. (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
  437. rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
  438. &vcpu->run->s.regs.acrs, 64);
  439. rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
  440. &vcpu->arch.sie_block->gcr, 128);
  441. /* Extended interruption information */
  442. rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
  443. (u32 __user *) __LC_EXT_DAMAGE_CODE);
  444. rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
  445. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  446. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
  447. sizeof(mchk->fixed_logout));
  448. return rc ? -EFAULT : 0;
  449. }
  450. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  451. {
  452. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  453. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  454. struct kvm_s390_mchk_info mchk = {};
  455. int deliver = 0;
  456. int rc = 0;
  457. spin_lock(&fi->lock);
  458. spin_lock(&li->lock);
  459. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  460. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  461. /*
  462. * If there was an exigent machine check pending, then any
  463. * repressible machine checks that might have been pending
  464. * are indicated along with it, so always clear bits for
  465. * repressible and exigent interrupts
  466. */
  467. mchk = li->irq.mchk;
  468. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  469. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  470. memset(&li->irq.mchk, 0, sizeof(mchk));
  471. deliver = 1;
  472. }
  473. /*
  474. * We indicate floating repressible conditions along with
  475. * other pending conditions. Channel Report Pending and Channel
  476. * Subsystem damage are the only two and and are indicated by
  477. * bits in mcic and masked in cr14.
  478. */
  479. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  480. mchk.mcic |= fi->mchk.mcic;
  481. mchk.cr14 |= fi->mchk.cr14;
  482. memset(&fi->mchk, 0, sizeof(mchk));
  483. deliver = 1;
  484. }
  485. spin_unlock(&li->lock);
  486. spin_unlock(&fi->lock);
  487. if (deliver) {
  488. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  489. mchk.mcic);
  490. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  491. KVM_S390_MCHK,
  492. mchk.cr14, mchk.mcic);
  493. rc = __write_machine_check(vcpu, &mchk);
  494. }
  495. return rc;
  496. }
  497. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  498. {
  499. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  500. int rc;
  501. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  502. vcpu->stat.deliver_restart_signal++;
  503. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  504. rc = write_guest_lc(vcpu,
  505. offsetof(struct lowcore, restart_old_psw),
  506. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  507. rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
  508. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  509. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  510. return rc ? -EFAULT : 0;
  511. }
  512. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  513. {
  514. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  515. struct kvm_s390_prefix_info prefix;
  516. spin_lock(&li->lock);
  517. prefix = li->irq.prefix;
  518. li->irq.prefix.address = 0;
  519. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  520. spin_unlock(&li->lock);
  521. vcpu->stat.deliver_prefix_signal++;
  522. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  523. KVM_S390_SIGP_SET_PREFIX,
  524. prefix.address, 0);
  525. kvm_s390_set_prefix(vcpu, prefix.address);
  526. return 0;
  527. }
  528. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  529. {
  530. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  531. int rc;
  532. int cpu_addr;
  533. spin_lock(&li->lock);
  534. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  535. clear_bit(cpu_addr, li->sigp_emerg_pending);
  536. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  537. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  538. spin_unlock(&li->lock);
  539. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  540. vcpu->stat.deliver_emergency_signal++;
  541. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  542. cpu_addr, 0);
  543. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  544. (u16 *)__LC_EXT_INT_CODE);
  545. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  546. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  547. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  548. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  549. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  550. return rc ? -EFAULT : 0;
  551. }
  552. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  553. {
  554. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  555. struct kvm_s390_extcall_info extcall;
  556. int rc;
  557. spin_lock(&li->lock);
  558. extcall = li->irq.extcall;
  559. li->irq.extcall.code = 0;
  560. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  561. spin_unlock(&li->lock);
  562. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  563. vcpu->stat.deliver_external_call++;
  564. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  565. KVM_S390_INT_EXTERNAL_CALL,
  566. extcall.code, 0);
  567. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  568. (u16 *)__LC_EXT_INT_CODE);
  569. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  570. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  571. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  572. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  573. sizeof(psw_t));
  574. return rc ? -EFAULT : 0;
  575. }
  576. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  577. {
  578. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  579. struct kvm_s390_pgm_info pgm_info;
  580. int rc = 0, nullifying = false;
  581. u16 ilen;
  582. spin_lock(&li->lock);
  583. pgm_info = li->irq.pgm;
  584. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  585. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  586. spin_unlock(&li->lock);
  587. ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
  588. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
  589. pgm_info.code, ilen);
  590. vcpu->stat.deliver_program_int++;
  591. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  592. pgm_info.code, 0);
  593. switch (pgm_info.code & ~PGM_PER) {
  594. case PGM_AFX_TRANSLATION:
  595. case PGM_ASX_TRANSLATION:
  596. case PGM_EX_TRANSLATION:
  597. case PGM_LFX_TRANSLATION:
  598. case PGM_LSTE_SEQUENCE:
  599. case PGM_LSX_TRANSLATION:
  600. case PGM_LX_TRANSLATION:
  601. case PGM_PRIMARY_AUTHORITY:
  602. case PGM_SECONDARY_AUTHORITY:
  603. nullifying = true;
  604. /* fall through */
  605. case PGM_SPACE_SWITCH:
  606. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  607. (u64 *)__LC_TRANS_EXC_CODE);
  608. break;
  609. case PGM_ALEN_TRANSLATION:
  610. case PGM_ALE_SEQUENCE:
  611. case PGM_ASTE_INSTANCE:
  612. case PGM_ASTE_SEQUENCE:
  613. case PGM_ASTE_VALIDITY:
  614. case PGM_EXTENDED_AUTHORITY:
  615. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  616. (u8 *)__LC_EXC_ACCESS_ID);
  617. nullifying = true;
  618. break;
  619. case PGM_ASCE_TYPE:
  620. case PGM_PAGE_TRANSLATION:
  621. case PGM_REGION_FIRST_TRANS:
  622. case PGM_REGION_SECOND_TRANS:
  623. case PGM_REGION_THIRD_TRANS:
  624. case PGM_SEGMENT_TRANSLATION:
  625. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  626. (u64 *)__LC_TRANS_EXC_CODE);
  627. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  628. (u8 *)__LC_EXC_ACCESS_ID);
  629. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  630. (u8 *)__LC_OP_ACCESS_ID);
  631. nullifying = true;
  632. break;
  633. case PGM_MONITOR:
  634. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  635. (u16 *)__LC_MON_CLASS_NR);
  636. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  637. (u64 *)__LC_MON_CODE);
  638. break;
  639. case PGM_VECTOR_PROCESSING:
  640. case PGM_DATA:
  641. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  642. (u32 *)__LC_DATA_EXC_CODE);
  643. break;
  644. case PGM_PROTECTION:
  645. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  646. (u64 *)__LC_TRANS_EXC_CODE);
  647. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  648. (u8 *)__LC_EXC_ACCESS_ID);
  649. break;
  650. case PGM_STACK_FULL:
  651. case PGM_STACK_EMPTY:
  652. case PGM_STACK_SPECIFICATION:
  653. case PGM_STACK_TYPE:
  654. case PGM_STACK_OPERATION:
  655. case PGM_TRACE_TABEL:
  656. case PGM_CRYPTO_OPERATION:
  657. nullifying = true;
  658. break;
  659. }
  660. if (pgm_info.code & PGM_PER) {
  661. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  662. (u8 *) __LC_PER_CODE);
  663. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  664. (u8 *)__LC_PER_ATMID);
  665. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  666. (u64 *) __LC_PER_ADDRESS);
  667. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  668. (u8 *) __LC_PER_ACCESS_ID);
  669. }
  670. if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
  671. kvm_s390_rewind_psw(vcpu, ilen);
  672. /* bit 1+2 of the target are the ilc, so we can directly use ilen */
  673. rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
  674. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  675. (u64 *) __LC_LAST_BREAK);
  676. rc |= put_guest_lc(vcpu, pgm_info.code,
  677. (u16 *)__LC_PGM_INT_CODE);
  678. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  679. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  680. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  681. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  682. return rc ? -EFAULT : 0;
  683. }
  684. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  685. {
  686. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  687. struct kvm_s390_ext_info ext;
  688. int rc = 0;
  689. spin_lock(&fi->lock);
  690. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  691. spin_unlock(&fi->lock);
  692. return 0;
  693. }
  694. ext = fi->srv_signal;
  695. memset(&fi->srv_signal, 0, sizeof(ext));
  696. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  697. spin_unlock(&fi->lock);
  698. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  699. ext.ext_params);
  700. vcpu->stat.deliver_service_signal++;
  701. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  702. ext.ext_params, 0);
  703. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  704. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  705. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  706. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  707. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  708. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  709. rc |= put_guest_lc(vcpu, ext.ext_params,
  710. (u32 *)__LC_EXT_PARAMS);
  711. return rc ? -EFAULT : 0;
  712. }
  713. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  714. {
  715. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  716. struct kvm_s390_interrupt_info *inti;
  717. int rc = 0;
  718. spin_lock(&fi->lock);
  719. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  720. struct kvm_s390_interrupt_info,
  721. list);
  722. if (inti) {
  723. list_del(&inti->list);
  724. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  725. }
  726. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  727. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  728. spin_unlock(&fi->lock);
  729. if (inti) {
  730. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  731. KVM_S390_INT_PFAULT_DONE, 0,
  732. inti->ext.ext_params2);
  733. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  734. inti->ext.ext_params2);
  735. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  736. (u16 *)__LC_EXT_INT_CODE);
  737. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  738. (u16 *)__LC_EXT_CPU_ADDR);
  739. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  740. &vcpu->arch.sie_block->gpsw,
  741. sizeof(psw_t));
  742. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  743. &vcpu->arch.sie_block->gpsw,
  744. sizeof(psw_t));
  745. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  746. (u64 *)__LC_EXT_PARAMS2);
  747. kfree(inti);
  748. }
  749. return rc ? -EFAULT : 0;
  750. }
  751. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  752. {
  753. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  754. struct kvm_s390_interrupt_info *inti;
  755. int rc = 0;
  756. spin_lock(&fi->lock);
  757. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  758. struct kvm_s390_interrupt_info,
  759. list);
  760. if (inti) {
  761. VCPU_EVENT(vcpu, 4,
  762. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  763. inti->ext.ext_params, inti->ext.ext_params2);
  764. vcpu->stat.deliver_virtio_interrupt++;
  765. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  766. inti->type,
  767. inti->ext.ext_params,
  768. inti->ext.ext_params2);
  769. list_del(&inti->list);
  770. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  771. }
  772. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  773. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  774. spin_unlock(&fi->lock);
  775. if (inti) {
  776. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  777. (u16 *)__LC_EXT_INT_CODE);
  778. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  779. (u16 *)__LC_EXT_CPU_ADDR);
  780. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  781. &vcpu->arch.sie_block->gpsw,
  782. sizeof(psw_t));
  783. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  784. &vcpu->arch.sie_block->gpsw,
  785. sizeof(psw_t));
  786. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  787. (u32 *)__LC_EXT_PARAMS);
  788. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  789. (u64 *)__LC_EXT_PARAMS2);
  790. kfree(inti);
  791. }
  792. return rc ? -EFAULT : 0;
  793. }
  794. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  795. unsigned long irq_type)
  796. {
  797. struct list_head *isc_list;
  798. struct kvm_s390_float_interrupt *fi;
  799. struct kvm_s390_interrupt_info *inti = NULL;
  800. int rc = 0;
  801. fi = &vcpu->kvm->arch.float_int;
  802. spin_lock(&fi->lock);
  803. isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
  804. inti = list_first_entry_or_null(isc_list,
  805. struct kvm_s390_interrupt_info,
  806. list);
  807. if (inti) {
  808. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  809. VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
  810. else
  811. VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
  812. inti->io.subchannel_id >> 8,
  813. inti->io.subchannel_id >> 1 & 0x3,
  814. inti->io.subchannel_nr);
  815. vcpu->stat.deliver_io_int++;
  816. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  817. inti->type,
  818. ((__u32)inti->io.subchannel_id << 16) |
  819. inti->io.subchannel_nr,
  820. ((__u64)inti->io.io_int_parm << 32) |
  821. inti->io.io_int_word);
  822. list_del(&inti->list);
  823. fi->counters[FIRQ_CNTR_IO] -= 1;
  824. }
  825. if (list_empty(isc_list))
  826. clear_bit(irq_type, &fi->pending_irqs);
  827. spin_unlock(&fi->lock);
  828. if (inti) {
  829. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  830. (u16 *)__LC_SUBCHANNEL_ID);
  831. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  832. (u16 *)__LC_SUBCHANNEL_NR);
  833. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  834. (u32 *)__LC_IO_INT_PARM);
  835. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  836. (u32 *)__LC_IO_INT_WORD);
  837. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  838. &vcpu->arch.sie_block->gpsw,
  839. sizeof(psw_t));
  840. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  841. &vcpu->arch.sie_block->gpsw,
  842. sizeof(psw_t));
  843. kfree(inti);
  844. }
  845. return rc ? -EFAULT : 0;
  846. }
  847. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  848. static const deliver_irq_t deliver_irq_funcs[] = {
  849. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  850. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  851. [IRQ_PEND_PROG] = __deliver_prog,
  852. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  853. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  854. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  855. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  856. [IRQ_PEND_RESTART] = __deliver_restart,
  857. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  858. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  859. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  860. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  861. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  862. };
  863. /* Check whether an external call is pending (deliverable or not) */
  864. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  865. {
  866. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  867. if (!sclp.has_sigpif)
  868. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  869. return sca_ext_call_pending(vcpu, NULL);
  870. }
  871. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  872. {
  873. if (deliverable_irqs(vcpu))
  874. return 1;
  875. if (kvm_cpu_has_pending_timer(vcpu))
  876. return 1;
  877. /* external call pending and deliverable */
  878. if (kvm_s390_ext_call_pending(vcpu) &&
  879. !psw_extint_disabled(vcpu) &&
  880. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  881. return 1;
  882. if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  883. return 1;
  884. return 0;
  885. }
  886. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  887. {
  888. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  889. }
  890. static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
  891. {
  892. const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  893. const u64 ckc = vcpu->arch.sie_block->ckc;
  894. u64 cputm, sltime = 0;
  895. if (ckc_interrupts_enabled(vcpu)) {
  896. if (vcpu->arch.sie_block->gcr[0] & 0x0020000000000000ul) {
  897. if ((s64)now < (s64)ckc)
  898. sltime = tod_to_ns((s64)ckc - (s64)now);
  899. } else if (now < ckc) {
  900. sltime = tod_to_ns(ckc - now);
  901. }
  902. /* already expired */
  903. if (!sltime)
  904. return 0;
  905. if (cpu_timer_interrupts_enabled(vcpu)) {
  906. cputm = kvm_s390_get_cpu_timer(vcpu);
  907. /* already expired? */
  908. if (cputm >> 63)
  909. return 0;
  910. return min(sltime, tod_to_ns(cputm));
  911. }
  912. } else if (cpu_timer_interrupts_enabled(vcpu)) {
  913. sltime = kvm_s390_get_cpu_timer(vcpu);
  914. /* already expired? */
  915. if (sltime >> 63)
  916. return 0;
  917. }
  918. return sltime;
  919. }
  920. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  921. {
  922. u64 sltime;
  923. vcpu->stat.exit_wait_state++;
  924. /* fast path */
  925. if (kvm_arch_vcpu_runnable(vcpu))
  926. return 0;
  927. if (psw_interrupts_disabled(vcpu)) {
  928. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  929. return -EOPNOTSUPP; /* disabled wait */
  930. }
  931. if (!ckc_interrupts_enabled(vcpu) &&
  932. !cpu_timer_interrupts_enabled(vcpu)) {
  933. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  934. __set_cpu_idle(vcpu);
  935. goto no_timer;
  936. }
  937. sltime = __calculate_sltime(vcpu);
  938. if (!sltime)
  939. return 0;
  940. __set_cpu_idle(vcpu);
  941. hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
  942. VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
  943. no_timer:
  944. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  945. kvm_vcpu_block(vcpu);
  946. __unset_cpu_idle(vcpu);
  947. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  948. hrtimer_cancel(&vcpu->arch.ckc_timer);
  949. return 0;
  950. }
  951. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  952. {
  953. /*
  954. * We cannot move this into the if, as the CPU might be already
  955. * in kvm_vcpu_block without having the waitqueue set (polling)
  956. */
  957. vcpu->valid_wakeup = true;
  958. if (swait_active(&vcpu->wq)) {
  959. /*
  960. * The vcpu gave up the cpu voluntarily, mark it as a good
  961. * yield-candidate.
  962. */
  963. vcpu->preempted = true;
  964. swake_up(&vcpu->wq);
  965. vcpu->stat.halt_wakeup++;
  966. }
  967. /*
  968. * The VCPU might not be sleeping but is executing the VSIE. Let's
  969. * kick it, so it leaves the SIE to process the request.
  970. */
  971. kvm_s390_vsie_kick(vcpu);
  972. }
  973. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  974. {
  975. struct kvm_vcpu *vcpu;
  976. u64 sltime;
  977. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  978. sltime = __calculate_sltime(vcpu);
  979. /*
  980. * If the monotonic clock runs faster than the tod clock we might be
  981. * woken up too early and have to go back to sleep to avoid deadlocks.
  982. */
  983. if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  984. return HRTIMER_RESTART;
  985. kvm_s390_vcpu_wakeup(vcpu);
  986. return HRTIMER_NORESTART;
  987. }
  988. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  989. {
  990. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  991. spin_lock(&li->lock);
  992. li->pending_irqs = 0;
  993. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  994. memset(&li->irq, 0, sizeof(li->irq));
  995. spin_unlock(&li->lock);
  996. sca_clear_ext_call(vcpu);
  997. }
  998. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  999. {
  1000. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1001. deliver_irq_t func;
  1002. int rc = 0;
  1003. unsigned long irq_type;
  1004. unsigned long irqs;
  1005. __reset_intercept_indicators(vcpu);
  1006. /* pending ckc conditions might have been invalidated */
  1007. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1008. if (ckc_irq_pending(vcpu))
  1009. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1010. /* pending cpu timer conditions might have been invalidated */
  1011. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1012. if (cpu_timer_irq_pending(vcpu))
  1013. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1014. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  1015. /* bits are in the order of interrupt priority */
  1016. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  1017. if (is_ioirq(irq_type)) {
  1018. rc = __deliver_io(vcpu, irq_type);
  1019. } else {
  1020. func = deliver_irq_funcs[irq_type];
  1021. if (!func) {
  1022. WARN_ON_ONCE(func == NULL);
  1023. clear_bit(irq_type, &li->pending_irqs);
  1024. continue;
  1025. }
  1026. rc = func(vcpu);
  1027. }
  1028. }
  1029. set_intercept_indicators(vcpu);
  1030. return rc;
  1031. }
  1032. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1033. {
  1034. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1035. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  1036. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  1037. irq->u.pgm.code, 0);
  1038. if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
  1039. /* auto detection if no valid ILC was given */
  1040. irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
  1041. irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
  1042. irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
  1043. }
  1044. if (irq->u.pgm.code == PGM_PER) {
  1045. li->irq.pgm.code |= PGM_PER;
  1046. li->irq.pgm.flags = irq->u.pgm.flags;
  1047. /* only modify PER related information */
  1048. li->irq.pgm.per_address = irq->u.pgm.per_address;
  1049. li->irq.pgm.per_code = irq->u.pgm.per_code;
  1050. li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
  1051. li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
  1052. } else if (!(irq->u.pgm.code & PGM_PER)) {
  1053. li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
  1054. irq->u.pgm.code;
  1055. li->irq.pgm.flags = irq->u.pgm.flags;
  1056. /* only modify non-PER information */
  1057. li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
  1058. li->irq.pgm.mon_code = irq->u.pgm.mon_code;
  1059. li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
  1060. li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
  1061. li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
  1062. li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
  1063. } else {
  1064. li->irq.pgm = irq->u.pgm;
  1065. }
  1066. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  1067. return 0;
  1068. }
  1069. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1070. {
  1071. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1072. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  1073. irq->u.ext.ext_params2);
  1074. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  1075. irq->u.ext.ext_params,
  1076. irq->u.ext.ext_params2);
  1077. li->irq.ext = irq->u.ext;
  1078. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  1079. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1080. return 0;
  1081. }
  1082. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1083. {
  1084. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1085. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  1086. uint16_t src_id = irq->u.extcall.code;
  1087. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  1088. src_id);
  1089. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  1090. src_id, 0);
  1091. /* sending vcpu invalid */
  1092. if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
  1093. return -EINVAL;
  1094. if (sclp.has_sigpif)
  1095. return sca_inject_ext_call(vcpu, src_id);
  1096. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  1097. return -EBUSY;
  1098. *extcall = irq->u.extcall;
  1099. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1100. return 0;
  1101. }
  1102. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1103. {
  1104. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1105. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  1106. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  1107. irq->u.prefix.address);
  1108. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  1109. irq->u.prefix.address, 0);
  1110. if (!is_vcpu_stopped(vcpu))
  1111. return -EBUSY;
  1112. *prefix = irq->u.prefix;
  1113. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  1114. return 0;
  1115. }
  1116. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  1117. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1118. {
  1119. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1120. struct kvm_s390_stop_info *stop = &li->irq.stop;
  1121. int rc = 0;
  1122. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  1123. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  1124. return -EINVAL;
  1125. if (is_vcpu_stopped(vcpu)) {
  1126. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  1127. rc = kvm_s390_store_status_unloaded(vcpu,
  1128. KVM_S390_STORE_STATUS_NOADDR);
  1129. return rc;
  1130. }
  1131. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  1132. return -EBUSY;
  1133. stop->flags = irq->u.stop.flags;
  1134. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  1135. return 0;
  1136. }
  1137. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  1138. struct kvm_s390_irq *irq)
  1139. {
  1140. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1141. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  1142. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  1143. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  1144. return 0;
  1145. }
  1146. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  1147. struct kvm_s390_irq *irq)
  1148. {
  1149. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1150. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  1151. irq->u.emerg.code);
  1152. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  1153. irq->u.emerg.code, 0);
  1154. /* sending vcpu invalid */
  1155. if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
  1156. return -EINVAL;
  1157. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  1158. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  1159. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1160. return 0;
  1161. }
  1162. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1163. {
  1164. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1165. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  1166. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  1167. irq->u.mchk.mcic);
  1168. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  1169. irq->u.mchk.mcic);
  1170. /*
  1171. * Because repressible machine checks can be indicated along with
  1172. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1173. * we need to combine cr14, mcic and external damage code.
  1174. * Failing storage address and the logout area should not be or'ed
  1175. * together, we just indicate the last occurrence of the corresponding
  1176. * machine check
  1177. */
  1178. mchk->cr14 |= irq->u.mchk.cr14;
  1179. mchk->mcic |= irq->u.mchk.mcic;
  1180. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1181. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1182. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1183. sizeof(mchk->fixed_logout));
  1184. if (mchk->mcic & MCHK_EX_MASK)
  1185. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1186. else if (mchk->mcic & MCHK_REP_MASK)
  1187. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1188. return 0;
  1189. }
  1190. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1191. {
  1192. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1193. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1194. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1195. 0, 0);
  1196. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1197. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1198. return 0;
  1199. }
  1200. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1201. {
  1202. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1203. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1204. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1205. 0, 0);
  1206. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1207. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1208. return 0;
  1209. }
  1210. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1211. int isc, u32 schid)
  1212. {
  1213. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1214. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1215. struct kvm_s390_interrupt_info *iter;
  1216. u16 id = (schid & 0xffff0000U) >> 16;
  1217. u16 nr = schid & 0x0000ffffU;
  1218. spin_lock(&fi->lock);
  1219. list_for_each_entry(iter, isc_list, list) {
  1220. if (schid && (id != iter->io.subchannel_id ||
  1221. nr != iter->io.subchannel_nr))
  1222. continue;
  1223. /* found an appropriate entry */
  1224. list_del_init(&iter->list);
  1225. fi->counters[FIRQ_CNTR_IO] -= 1;
  1226. if (list_empty(isc_list))
  1227. clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1228. spin_unlock(&fi->lock);
  1229. return iter;
  1230. }
  1231. spin_unlock(&fi->lock);
  1232. return NULL;
  1233. }
  1234. /*
  1235. * Dequeue and return an I/O interrupt matching any of the interruption
  1236. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1237. */
  1238. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1239. u64 isc_mask, u32 schid)
  1240. {
  1241. struct kvm_s390_interrupt_info *inti = NULL;
  1242. int isc;
  1243. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1244. if (isc_mask & isc_to_isc_bits(isc))
  1245. inti = get_io_int(kvm, isc, schid);
  1246. }
  1247. return inti;
  1248. }
  1249. #define SCCB_MASK 0xFFFFFFF8
  1250. #define SCCB_EVENT_PENDING 0x3
  1251. static int __inject_service(struct kvm *kvm,
  1252. struct kvm_s390_interrupt_info *inti)
  1253. {
  1254. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1255. spin_lock(&fi->lock);
  1256. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1257. /*
  1258. * Early versions of the QEMU s390 bios will inject several
  1259. * service interrupts after another without handling a
  1260. * condition code indicating busy.
  1261. * We will silently ignore those superfluous sccb values.
  1262. * A future version of QEMU will take care of serialization
  1263. * of servc requests
  1264. */
  1265. if (fi->srv_signal.ext_params & SCCB_MASK)
  1266. goto out;
  1267. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1268. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1269. out:
  1270. spin_unlock(&fi->lock);
  1271. kfree(inti);
  1272. return 0;
  1273. }
  1274. static int __inject_virtio(struct kvm *kvm,
  1275. struct kvm_s390_interrupt_info *inti)
  1276. {
  1277. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1278. spin_lock(&fi->lock);
  1279. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1280. spin_unlock(&fi->lock);
  1281. return -EBUSY;
  1282. }
  1283. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1284. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1285. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1286. spin_unlock(&fi->lock);
  1287. return 0;
  1288. }
  1289. static int __inject_pfault_done(struct kvm *kvm,
  1290. struct kvm_s390_interrupt_info *inti)
  1291. {
  1292. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1293. spin_lock(&fi->lock);
  1294. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1295. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1296. spin_unlock(&fi->lock);
  1297. return -EBUSY;
  1298. }
  1299. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1300. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1301. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1302. spin_unlock(&fi->lock);
  1303. return 0;
  1304. }
  1305. #define CR_PENDING_SUBCLASS 28
  1306. static int __inject_float_mchk(struct kvm *kvm,
  1307. struct kvm_s390_interrupt_info *inti)
  1308. {
  1309. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1310. spin_lock(&fi->lock);
  1311. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1312. fi->mchk.mcic |= inti->mchk.mcic;
  1313. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1314. spin_unlock(&fi->lock);
  1315. kfree(inti);
  1316. return 0;
  1317. }
  1318. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1319. {
  1320. struct kvm_s390_float_interrupt *fi;
  1321. struct list_head *list;
  1322. int isc;
  1323. fi = &kvm->arch.float_int;
  1324. spin_lock(&fi->lock);
  1325. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1326. spin_unlock(&fi->lock);
  1327. return -EBUSY;
  1328. }
  1329. fi->counters[FIRQ_CNTR_IO] += 1;
  1330. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1331. VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
  1332. else
  1333. VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
  1334. inti->io.subchannel_id >> 8,
  1335. inti->io.subchannel_id >> 1 & 0x3,
  1336. inti->io.subchannel_nr);
  1337. isc = int_word_to_isc(inti->io.io_int_word);
  1338. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1339. list_add_tail(&inti->list, list);
  1340. set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1341. spin_unlock(&fi->lock);
  1342. return 0;
  1343. }
  1344. /*
  1345. * Find a destination VCPU for a floating irq and kick it.
  1346. */
  1347. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1348. {
  1349. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1350. struct kvm_s390_local_interrupt *li;
  1351. struct kvm_vcpu *dst_vcpu;
  1352. int sigcpu, online_vcpus, nr_tries = 0;
  1353. online_vcpus = atomic_read(&kvm->online_vcpus);
  1354. if (!online_vcpus)
  1355. return;
  1356. /* find idle VCPUs first, then round robin */
  1357. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1358. if (sigcpu == online_vcpus) {
  1359. do {
  1360. sigcpu = fi->next_rr_cpu;
  1361. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1362. /* avoid endless loops if all vcpus are stopped */
  1363. if (nr_tries++ >= online_vcpus)
  1364. return;
  1365. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1366. }
  1367. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1368. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1369. li = &dst_vcpu->arch.local_int;
  1370. spin_lock(&li->lock);
  1371. switch (type) {
  1372. case KVM_S390_MCHK:
  1373. atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
  1374. break;
  1375. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1376. atomic_or(CPUSTAT_IO_INT, li->cpuflags);
  1377. break;
  1378. default:
  1379. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1380. break;
  1381. }
  1382. spin_unlock(&li->lock);
  1383. kvm_s390_vcpu_wakeup(dst_vcpu);
  1384. }
  1385. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1386. {
  1387. u64 type = READ_ONCE(inti->type);
  1388. int rc;
  1389. switch (type) {
  1390. case KVM_S390_MCHK:
  1391. rc = __inject_float_mchk(kvm, inti);
  1392. break;
  1393. case KVM_S390_INT_VIRTIO:
  1394. rc = __inject_virtio(kvm, inti);
  1395. break;
  1396. case KVM_S390_INT_SERVICE:
  1397. rc = __inject_service(kvm, inti);
  1398. break;
  1399. case KVM_S390_INT_PFAULT_DONE:
  1400. rc = __inject_pfault_done(kvm, inti);
  1401. break;
  1402. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1403. rc = __inject_io(kvm, inti);
  1404. break;
  1405. default:
  1406. rc = -EINVAL;
  1407. }
  1408. if (rc)
  1409. return rc;
  1410. __floating_irq_kick(kvm, type);
  1411. return 0;
  1412. }
  1413. int kvm_s390_inject_vm(struct kvm *kvm,
  1414. struct kvm_s390_interrupt *s390int)
  1415. {
  1416. struct kvm_s390_interrupt_info *inti;
  1417. int rc;
  1418. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1419. if (!inti)
  1420. return -ENOMEM;
  1421. inti->type = s390int->type;
  1422. switch (inti->type) {
  1423. case KVM_S390_INT_VIRTIO:
  1424. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1425. s390int->parm, s390int->parm64);
  1426. inti->ext.ext_params = s390int->parm;
  1427. inti->ext.ext_params2 = s390int->parm64;
  1428. break;
  1429. case KVM_S390_INT_SERVICE:
  1430. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1431. inti->ext.ext_params = s390int->parm;
  1432. break;
  1433. case KVM_S390_INT_PFAULT_DONE:
  1434. inti->ext.ext_params2 = s390int->parm64;
  1435. break;
  1436. case KVM_S390_MCHK:
  1437. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1438. s390int->parm64);
  1439. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1440. inti->mchk.mcic = s390int->parm64;
  1441. break;
  1442. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1443. inti->io.subchannel_id = s390int->parm >> 16;
  1444. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1445. inti->io.io_int_parm = s390int->parm64 >> 32;
  1446. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1447. break;
  1448. default:
  1449. kfree(inti);
  1450. return -EINVAL;
  1451. }
  1452. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1453. 2);
  1454. rc = __inject_vm(kvm, inti);
  1455. if (rc)
  1456. kfree(inti);
  1457. return rc;
  1458. }
  1459. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1460. struct kvm_s390_interrupt_info *inti)
  1461. {
  1462. return __inject_vm(kvm, inti);
  1463. }
  1464. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1465. struct kvm_s390_irq *irq)
  1466. {
  1467. irq->type = s390int->type;
  1468. switch (irq->type) {
  1469. case KVM_S390_PROGRAM_INT:
  1470. if (s390int->parm & 0xffff0000)
  1471. return -EINVAL;
  1472. irq->u.pgm.code = s390int->parm;
  1473. break;
  1474. case KVM_S390_SIGP_SET_PREFIX:
  1475. irq->u.prefix.address = s390int->parm;
  1476. break;
  1477. case KVM_S390_SIGP_STOP:
  1478. irq->u.stop.flags = s390int->parm;
  1479. break;
  1480. case KVM_S390_INT_EXTERNAL_CALL:
  1481. if (s390int->parm & 0xffff0000)
  1482. return -EINVAL;
  1483. irq->u.extcall.code = s390int->parm;
  1484. break;
  1485. case KVM_S390_INT_EMERGENCY:
  1486. if (s390int->parm & 0xffff0000)
  1487. return -EINVAL;
  1488. irq->u.emerg.code = s390int->parm;
  1489. break;
  1490. case KVM_S390_MCHK:
  1491. irq->u.mchk.mcic = s390int->parm64;
  1492. break;
  1493. case KVM_S390_INT_PFAULT_INIT:
  1494. irq->u.ext.ext_params = s390int->parm;
  1495. irq->u.ext.ext_params2 = s390int->parm64;
  1496. break;
  1497. case KVM_S390_RESTART:
  1498. case KVM_S390_INT_CLOCK_COMP:
  1499. case KVM_S390_INT_CPU_TIMER:
  1500. break;
  1501. default:
  1502. return -EINVAL;
  1503. }
  1504. return 0;
  1505. }
  1506. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1507. {
  1508. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1509. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1510. }
  1511. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1512. {
  1513. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1514. spin_lock(&li->lock);
  1515. li->irq.stop.flags = 0;
  1516. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1517. spin_unlock(&li->lock);
  1518. }
  1519. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1520. {
  1521. int rc;
  1522. switch (irq->type) {
  1523. case KVM_S390_PROGRAM_INT:
  1524. rc = __inject_prog(vcpu, irq);
  1525. break;
  1526. case KVM_S390_SIGP_SET_PREFIX:
  1527. rc = __inject_set_prefix(vcpu, irq);
  1528. break;
  1529. case KVM_S390_SIGP_STOP:
  1530. rc = __inject_sigp_stop(vcpu, irq);
  1531. break;
  1532. case KVM_S390_RESTART:
  1533. rc = __inject_sigp_restart(vcpu, irq);
  1534. break;
  1535. case KVM_S390_INT_CLOCK_COMP:
  1536. rc = __inject_ckc(vcpu);
  1537. break;
  1538. case KVM_S390_INT_CPU_TIMER:
  1539. rc = __inject_cpu_timer(vcpu);
  1540. break;
  1541. case KVM_S390_INT_EXTERNAL_CALL:
  1542. rc = __inject_extcall(vcpu, irq);
  1543. break;
  1544. case KVM_S390_INT_EMERGENCY:
  1545. rc = __inject_sigp_emergency(vcpu, irq);
  1546. break;
  1547. case KVM_S390_MCHK:
  1548. rc = __inject_mchk(vcpu, irq);
  1549. break;
  1550. case KVM_S390_INT_PFAULT_INIT:
  1551. rc = __inject_pfault_init(vcpu, irq);
  1552. break;
  1553. case KVM_S390_INT_VIRTIO:
  1554. case KVM_S390_INT_SERVICE:
  1555. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1556. default:
  1557. rc = -EINVAL;
  1558. }
  1559. return rc;
  1560. }
  1561. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1562. {
  1563. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1564. int rc;
  1565. spin_lock(&li->lock);
  1566. rc = do_inject_vcpu(vcpu, irq);
  1567. spin_unlock(&li->lock);
  1568. if (!rc)
  1569. kvm_s390_vcpu_wakeup(vcpu);
  1570. return rc;
  1571. }
  1572. static inline void clear_irq_list(struct list_head *_list)
  1573. {
  1574. struct kvm_s390_interrupt_info *inti, *n;
  1575. list_for_each_entry_safe(inti, n, _list, list) {
  1576. list_del(&inti->list);
  1577. kfree(inti);
  1578. }
  1579. }
  1580. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1581. struct kvm_s390_irq *irq)
  1582. {
  1583. irq->type = inti->type;
  1584. switch (inti->type) {
  1585. case KVM_S390_INT_PFAULT_INIT:
  1586. case KVM_S390_INT_PFAULT_DONE:
  1587. case KVM_S390_INT_VIRTIO:
  1588. irq->u.ext = inti->ext;
  1589. break;
  1590. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1591. irq->u.io = inti->io;
  1592. break;
  1593. }
  1594. }
  1595. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1596. {
  1597. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1598. int i;
  1599. spin_lock(&fi->lock);
  1600. fi->pending_irqs = 0;
  1601. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1602. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1603. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1604. clear_irq_list(&fi->lists[i]);
  1605. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1606. fi->counters[i] = 0;
  1607. spin_unlock(&fi->lock);
  1608. };
  1609. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1610. {
  1611. struct kvm_s390_interrupt_info *inti;
  1612. struct kvm_s390_float_interrupt *fi;
  1613. struct kvm_s390_irq *buf;
  1614. struct kvm_s390_irq *irq;
  1615. int max_irqs;
  1616. int ret = 0;
  1617. int n = 0;
  1618. int i;
  1619. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1620. return -EINVAL;
  1621. /*
  1622. * We are already using -ENOMEM to signal
  1623. * userspace it may retry with a bigger buffer,
  1624. * so we need to use something else for this case
  1625. */
  1626. buf = vzalloc(len);
  1627. if (!buf)
  1628. return -ENOBUFS;
  1629. max_irqs = len / sizeof(struct kvm_s390_irq);
  1630. fi = &kvm->arch.float_int;
  1631. spin_lock(&fi->lock);
  1632. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1633. list_for_each_entry(inti, &fi->lists[i], list) {
  1634. if (n == max_irqs) {
  1635. /* signal userspace to try again */
  1636. ret = -ENOMEM;
  1637. goto out;
  1638. }
  1639. inti_to_irq(inti, &buf[n]);
  1640. n++;
  1641. }
  1642. }
  1643. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1644. if (n == max_irqs) {
  1645. /* signal userspace to try again */
  1646. ret = -ENOMEM;
  1647. goto out;
  1648. }
  1649. irq = (struct kvm_s390_irq *) &buf[n];
  1650. irq->type = KVM_S390_INT_SERVICE;
  1651. irq->u.ext = fi->srv_signal;
  1652. n++;
  1653. }
  1654. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1655. if (n == max_irqs) {
  1656. /* signal userspace to try again */
  1657. ret = -ENOMEM;
  1658. goto out;
  1659. }
  1660. irq = (struct kvm_s390_irq *) &buf[n];
  1661. irq->type = KVM_S390_MCHK;
  1662. irq->u.mchk = fi->mchk;
  1663. n++;
  1664. }
  1665. out:
  1666. spin_unlock(&fi->lock);
  1667. if (!ret && n > 0) {
  1668. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1669. ret = -EFAULT;
  1670. }
  1671. vfree(buf);
  1672. return ret < 0 ? ret : n;
  1673. }
  1674. static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
  1675. {
  1676. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1677. struct kvm_s390_ais_all ais;
  1678. if (attr->attr < sizeof(ais))
  1679. return -EINVAL;
  1680. if (!test_kvm_facility(kvm, 72))
  1681. return -EOPNOTSUPP;
  1682. mutex_lock(&fi->ais_lock);
  1683. ais.simm = fi->simm;
  1684. ais.nimm = fi->nimm;
  1685. mutex_unlock(&fi->ais_lock);
  1686. if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
  1687. return -EFAULT;
  1688. return 0;
  1689. }
  1690. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1691. {
  1692. int r;
  1693. switch (attr->group) {
  1694. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1695. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1696. attr->attr);
  1697. break;
  1698. case KVM_DEV_FLIC_AISM_ALL:
  1699. r = flic_ais_mode_get_all(dev->kvm, attr);
  1700. break;
  1701. default:
  1702. r = -EINVAL;
  1703. }
  1704. return r;
  1705. }
  1706. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1707. u64 addr)
  1708. {
  1709. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1710. void *target = NULL;
  1711. void __user *source;
  1712. u64 size;
  1713. if (get_user(inti->type, (u64 __user *)addr))
  1714. return -EFAULT;
  1715. switch (inti->type) {
  1716. case KVM_S390_INT_PFAULT_INIT:
  1717. case KVM_S390_INT_PFAULT_DONE:
  1718. case KVM_S390_INT_VIRTIO:
  1719. case KVM_S390_INT_SERVICE:
  1720. target = (void *) &inti->ext;
  1721. source = &uptr->u.ext;
  1722. size = sizeof(inti->ext);
  1723. break;
  1724. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1725. target = (void *) &inti->io;
  1726. source = &uptr->u.io;
  1727. size = sizeof(inti->io);
  1728. break;
  1729. case KVM_S390_MCHK:
  1730. target = (void *) &inti->mchk;
  1731. source = &uptr->u.mchk;
  1732. size = sizeof(inti->mchk);
  1733. break;
  1734. default:
  1735. return -EINVAL;
  1736. }
  1737. if (copy_from_user(target, source, size))
  1738. return -EFAULT;
  1739. return 0;
  1740. }
  1741. static int enqueue_floating_irq(struct kvm_device *dev,
  1742. struct kvm_device_attr *attr)
  1743. {
  1744. struct kvm_s390_interrupt_info *inti = NULL;
  1745. int r = 0;
  1746. int len = attr->attr;
  1747. if (len % sizeof(struct kvm_s390_irq) != 0)
  1748. return -EINVAL;
  1749. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1750. return -EINVAL;
  1751. while (len >= sizeof(struct kvm_s390_irq)) {
  1752. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1753. if (!inti)
  1754. return -ENOMEM;
  1755. r = copy_irq_from_user(inti, attr->addr);
  1756. if (r) {
  1757. kfree(inti);
  1758. return r;
  1759. }
  1760. r = __inject_vm(dev->kvm, inti);
  1761. if (r) {
  1762. kfree(inti);
  1763. return r;
  1764. }
  1765. len -= sizeof(struct kvm_s390_irq);
  1766. attr->addr += sizeof(struct kvm_s390_irq);
  1767. }
  1768. return r;
  1769. }
  1770. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1771. {
  1772. if (id >= MAX_S390_IO_ADAPTERS)
  1773. return NULL;
  1774. return kvm->arch.adapters[id];
  1775. }
  1776. static int register_io_adapter(struct kvm_device *dev,
  1777. struct kvm_device_attr *attr)
  1778. {
  1779. struct s390_io_adapter *adapter;
  1780. struct kvm_s390_io_adapter adapter_info;
  1781. if (copy_from_user(&adapter_info,
  1782. (void __user *)attr->addr, sizeof(adapter_info)))
  1783. return -EFAULT;
  1784. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1785. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1786. return -EINVAL;
  1787. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1788. if (!adapter)
  1789. return -ENOMEM;
  1790. INIT_LIST_HEAD(&adapter->maps);
  1791. init_rwsem(&adapter->maps_lock);
  1792. atomic_set(&adapter->nr_maps, 0);
  1793. adapter->id = adapter_info.id;
  1794. adapter->isc = adapter_info.isc;
  1795. adapter->maskable = adapter_info.maskable;
  1796. adapter->masked = false;
  1797. adapter->swap = adapter_info.swap;
  1798. adapter->suppressible = (adapter_info.flags) &
  1799. KVM_S390_ADAPTER_SUPPRESSIBLE;
  1800. dev->kvm->arch.adapters[adapter->id] = adapter;
  1801. return 0;
  1802. }
  1803. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1804. {
  1805. int ret;
  1806. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1807. if (!adapter || !adapter->maskable)
  1808. return -EINVAL;
  1809. ret = adapter->masked;
  1810. adapter->masked = masked;
  1811. return ret;
  1812. }
  1813. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1814. {
  1815. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1816. struct s390_map_info *map;
  1817. int ret;
  1818. if (!adapter || !addr)
  1819. return -EINVAL;
  1820. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1821. if (!map) {
  1822. ret = -ENOMEM;
  1823. goto out;
  1824. }
  1825. INIT_LIST_HEAD(&map->list);
  1826. map->guest_addr = addr;
  1827. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1828. if (map->addr == -EFAULT) {
  1829. ret = -EFAULT;
  1830. goto out;
  1831. }
  1832. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1833. if (ret < 0)
  1834. goto out;
  1835. BUG_ON(ret != 1);
  1836. down_write(&adapter->maps_lock);
  1837. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1838. list_add_tail(&map->list, &adapter->maps);
  1839. ret = 0;
  1840. } else {
  1841. put_page(map->page);
  1842. ret = -EINVAL;
  1843. }
  1844. up_write(&adapter->maps_lock);
  1845. out:
  1846. if (ret)
  1847. kfree(map);
  1848. return ret;
  1849. }
  1850. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1851. {
  1852. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1853. struct s390_map_info *map, *tmp;
  1854. int found = 0;
  1855. if (!adapter || !addr)
  1856. return -EINVAL;
  1857. down_write(&adapter->maps_lock);
  1858. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1859. if (map->guest_addr == addr) {
  1860. found = 1;
  1861. atomic_dec(&adapter->nr_maps);
  1862. list_del(&map->list);
  1863. put_page(map->page);
  1864. kfree(map);
  1865. break;
  1866. }
  1867. }
  1868. up_write(&adapter->maps_lock);
  1869. return found ? 0 : -EINVAL;
  1870. }
  1871. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1872. {
  1873. int i;
  1874. struct s390_map_info *map, *tmp;
  1875. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1876. if (!kvm->arch.adapters[i])
  1877. continue;
  1878. list_for_each_entry_safe(map, tmp,
  1879. &kvm->arch.adapters[i]->maps, list) {
  1880. list_del(&map->list);
  1881. put_page(map->page);
  1882. kfree(map);
  1883. }
  1884. kfree(kvm->arch.adapters[i]);
  1885. }
  1886. }
  1887. static int modify_io_adapter(struct kvm_device *dev,
  1888. struct kvm_device_attr *attr)
  1889. {
  1890. struct kvm_s390_io_adapter_req req;
  1891. struct s390_io_adapter *adapter;
  1892. int ret;
  1893. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1894. return -EFAULT;
  1895. adapter = get_io_adapter(dev->kvm, req.id);
  1896. if (!adapter)
  1897. return -EINVAL;
  1898. switch (req.type) {
  1899. case KVM_S390_IO_ADAPTER_MASK:
  1900. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1901. if (ret > 0)
  1902. ret = 0;
  1903. break;
  1904. case KVM_S390_IO_ADAPTER_MAP:
  1905. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1906. break;
  1907. case KVM_S390_IO_ADAPTER_UNMAP:
  1908. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1909. break;
  1910. default:
  1911. ret = -EINVAL;
  1912. }
  1913. return ret;
  1914. }
  1915. static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
  1916. {
  1917. const u64 isc_mask = 0xffUL << 24; /* all iscs set */
  1918. u32 schid;
  1919. if (attr->flags)
  1920. return -EINVAL;
  1921. if (attr->attr != sizeof(schid))
  1922. return -EINVAL;
  1923. if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
  1924. return -EFAULT;
  1925. kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
  1926. /*
  1927. * If userspace is conforming to the architecture, we can have at most
  1928. * one pending I/O interrupt per subchannel, so this is effectively a
  1929. * clear all.
  1930. */
  1931. return 0;
  1932. }
  1933. static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
  1934. {
  1935. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1936. struct kvm_s390_ais_req req;
  1937. int ret = 0;
  1938. if (!test_kvm_facility(kvm, 72))
  1939. return -EOPNOTSUPP;
  1940. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1941. return -EFAULT;
  1942. if (req.isc > MAX_ISC)
  1943. return -EINVAL;
  1944. trace_kvm_s390_modify_ais_mode(req.isc,
  1945. (fi->simm & AIS_MODE_MASK(req.isc)) ?
  1946. (fi->nimm & AIS_MODE_MASK(req.isc)) ?
  1947. 2 : KVM_S390_AIS_MODE_SINGLE :
  1948. KVM_S390_AIS_MODE_ALL, req.mode);
  1949. mutex_lock(&fi->ais_lock);
  1950. switch (req.mode) {
  1951. case KVM_S390_AIS_MODE_ALL:
  1952. fi->simm &= ~AIS_MODE_MASK(req.isc);
  1953. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1954. break;
  1955. case KVM_S390_AIS_MODE_SINGLE:
  1956. fi->simm |= AIS_MODE_MASK(req.isc);
  1957. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1958. break;
  1959. default:
  1960. ret = -EINVAL;
  1961. }
  1962. mutex_unlock(&fi->ais_lock);
  1963. return ret;
  1964. }
  1965. static int kvm_s390_inject_airq(struct kvm *kvm,
  1966. struct s390_io_adapter *adapter)
  1967. {
  1968. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1969. struct kvm_s390_interrupt s390int = {
  1970. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1971. .parm = 0,
  1972. .parm64 = (adapter->isc << 27) | 0x80000000,
  1973. };
  1974. int ret = 0;
  1975. if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
  1976. return kvm_s390_inject_vm(kvm, &s390int);
  1977. mutex_lock(&fi->ais_lock);
  1978. if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
  1979. trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
  1980. goto out;
  1981. }
  1982. ret = kvm_s390_inject_vm(kvm, &s390int);
  1983. if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
  1984. fi->nimm |= AIS_MODE_MASK(adapter->isc);
  1985. trace_kvm_s390_modify_ais_mode(adapter->isc,
  1986. KVM_S390_AIS_MODE_SINGLE, 2);
  1987. }
  1988. out:
  1989. mutex_unlock(&fi->ais_lock);
  1990. return ret;
  1991. }
  1992. static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
  1993. {
  1994. unsigned int id = attr->attr;
  1995. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1996. if (!adapter)
  1997. return -EINVAL;
  1998. return kvm_s390_inject_airq(kvm, adapter);
  1999. }
  2000. static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
  2001. {
  2002. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  2003. struct kvm_s390_ais_all ais;
  2004. if (!test_kvm_facility(kvm, 72))
  2005. return -EOPNOTSUPP;
  2006. if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
  2007. return -EFAULT;
  2008. mutex_lock(&fi->ais_lock);
  2009. fi->simm = ais.simm;
  2010. fi->nimm = ais.nimm;
  2011. mutex_unlock(&fi->ais_lock);
  2012. return 0;
  2013. }
  2014. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  2015. {
  2016. int r = 0;
  2017. unsigned int i;
  2018. struct kvm_vcpu *vcpu;
  2019. switch (attr->group) {
  2020. case KVM_DEV_FLIC_ENQUEUE:
  2021. r = enqueue_floating_irq(dev, attr);
  2022. break;
  2023. case KVM_DEV_FLIC_CLEAR_IRQS:
  2024. kvm_s390_clear_float_irqs(dev->kvm);
  2025. break;
  2026. case KVM_DEV_FLIC_APF_ENABLE:
  2027. dev->kvm->arch.gmap->pfault_enabled = 1;
  2028. break;
  2029. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2030. dev->kvm->arch.gmap->pfault_enabled = 0;
  2031. /*
  2032. * Make sure no async faults are in transition when
  2033. * clearing the queues. So we don't need to worry
  2034. * about late coming workers.
  2035. */
  2036. synchronize_srcu(&dev->kvm->srcu);
  2037. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  2038. kvm_clear_async_pf_completion_queue(vcpu);
  2039. break;
  2040. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2041. r = register_io_adapter(dev, attr);
  2042. break;
  2043. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2044. r = modify_io_adapter(dev, attr);
  2045. break;
  2046. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2047. r = clear_io_irq(dev->kvm, attr);
  2048. break;
  2049. case KVM_DEV_FLIC_AISM:
  2050. r = modify_ais_mode(dev->kvm, attr);
  2051. break;
  2052. case KVM_DEV_FLIC_AIRQ_INJECT:
  2053. r = flic_inject_airq(dev->kvm, attr);
  2054. break;
  2055. case KVM_DEV_FLIC_AISM_ALL:
  2056. r = flic_ais_mode_set_all(dev->kvm, attr);
  2057. break;
  2058. default:
  2059. r = -EINVAL;
  2060. }
  2061. return r;
  2062. }
  2063. static int flic_has_attr(struct kvm_device *dev,
  2064. struct kvm_device_attr *attr)
  2065. {
  2066. switch (attr->group) {
  2067. case KVM_DEV_FLIC_GET_ALL_IRQS:
  2068. case KVM_DEV_FLIC_ENQUEUE:
  2069. case KVM_DEV_FLIC_CLEAR_IRQS:
  2070. case KVM_DEV_FLIC_APF_ENABLE:
  2071. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2072. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2073. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2074. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2075. case KVM_DEV_FLIC_AISM:
  2076. case KVM_DEV_FLIC_AIRQ_INJECT:
  2077. case KVM_DEV_FLIC_AISM_ALL:
  2078. return 0;
  2079. }
  2080. return -ENXIO;
  2081. }
  2082. static int flic_create(struct kvm_device *dev, u32 type)
  2083. {
  2084. if (!dev)
  2085. return -EINVAL;
  2086. if (dev->kvm->arch.flic)
  2087. return -EINVAL;
  2088. dev->kvm->arch.flic = dev;
  2089. return 0;
  2090. }
  2091. static void flic_destroy(struct kvm_device *dev)
  2092. {
  2093. dev->kvm->arch.flic = NULL;
  2094. kfree(dev);
  2095. }
  2096. /* s390 floating irq controller (flic) */
  2097. struct kvm_device_ops kvm_flic_ops = {
  2098. .name = "kvm-flic",
  2099. .get_attr = flic_get_attr,
  2100. .set_attr = flic_set_attr,
  2101. .has_attr = flic_has_attr,
  2102. .create = flic_create,
  2103. .destroy = flic_destroy,
  2104. };
  2105. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  2106. {
  2107. unsigned long bit;
  2108. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  2109. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  2110. }
  2111. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  2112. u64 addr)
  2113. {
  2114. struct s390_map_info *map;
  2115. if (!adapter)
  2116. return NULL;
  2117. list_for_each_entry(map, &adapter->maps, list) {
  2118. if (map->guest_addr == addr)
  2119. return map;
  2120. }
  2121. return NULL;
  2122. }
  2123. static int adapter_indicators_set(struct kvm *kvm,
  2124. struct s390_io_adapter *adapter,
  2125. struct kvm_s390_adapter_int *adapter_int)
  2126. {
  2127. unsigned long bit;
  2128. int summary_set, idx;
  2129. struct s390_map_info *info;
  2130. void *map;
  2131. info = get_map_info(adapter, adapter_int->ind_addr);
  2132. if (!info)
  2133. return -1;
  2134. map = page_address(info->page);
  2135. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  2136. set_bit(bit, map);
  2137. idx = srcu_read_lock(&kvm->srcu);
  2138. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2139. set_page_dirty_lock(info->page);
  2140. info = get_map_info(adapter, adapter_int->summary_addr);
  2141. if (!info) {
  2142. srcu_read_unlock(&kvm->srcu, idx);
  2143. return -1;
  2144. }
  2145. map = page_address(info->page);
  2146. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  2147. adapter->swap);
  2148. summary_set = test_and_set_bit(bit, map);
  2149. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2150. set_page_dirty_lock(info->page);
  2151. srcu_read_unlock(&kvm->srcu, idx);
  2152. return summary_set ? 0 : 1;
  2153. }
  2154. /*
  2155. * < 0 - not injected due to error
  2156. * = 0 - coalesced, summary indicator already active
  2157. * > 0 - injected interrupt
  2158. */
  2159. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  2160. struct kvm *kvm, int irq_source_id, int level,
  2161. bool line_status)
  2162. {
  2163. int ret;
  2164. struct s390_io_adapter *adapter;
  2165. /* We're only interested in the 0->1 transition. */
  2166. if (!level)
  2167. return 0;
  2168. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  2169. if (!adapter)
  2170. return -1;
  2171. down_read(&adapter->maps_lock);
  2172. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  2173. up_read(&adapter->maps_lock);
  2174. if ((ret > 0) && !adapter->masked) {
  2175. ret = kvm_s390_inject_airq(kvm, adapter);
  2176. if (ret == 0)
  2177. ret = 1;
  2178. }
  2179. return ret;
  2180. }
  2181. /*
  2182. * Inject the machine check to the guest.
  2183. */
  2184. void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
  2185. struct mcck_volatile_info *mcck_info)
  2186. {
  2187. struct kvm_s390_interrupt_info inti;
  2188. struct kvm_s390_irq irq;
  2189. struct kvm_s390_mchk_info *mchk;
  2190. union mci mci;
  2191. __u64 cr14 = 0; /* upper bits are not used */
  2192. int rc;
  2193. mci.val = mcck_info->mcic;
  2194. if (mci.sr)
  2195. cr14 |= MCCK_CR14_RECOVERY_SUB_MASK;
  2196. if (mci.dg)
  2197. cr14 |= MCCK_CR14_DEGRAD_SUB_MASK;
  2198. if (mci.w)
  2199. cr14 |= MCCK_CR14_WARN_SUB_MASK;
  2200. mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
  2201. mchk->cr14 = cr14;
  2202. mchk->mcic = mcck_info->mcic;
  2203. mchk->ext_damage_code = mcck_info->ext_damage_code;
  2204. mchk->failing_storage_address = mcck_info->failing_storage_address;
  2205. if (mci.ck) {
  2206. /* Inject the floating machine check */
  2207. inti.type = KVM_S390_MCHK;
  2208. rc = __inject_vm(vcpu->kvm, &inti);
  2209. } else {
  2210. /* Inject the machine check to specified vcpu */
  2211. irq.type = KVM_S390_MCHK;
  2212. rc = kvm_s390_inject_vcpu(vcpu, &irq);
  2213. }
  2214. WARN_ON_ONCE(rc);
  2215. }
  2216. int kvm_set_routing_entry(struct kvm *kvm,
  2217. struct kvm_kernel_irq_routing_entry *e,
  2218. const struct kvm_irq_routing_entry *ue)
  2219. {
  2220. int ret;
  2221. switch (ue->type) {
  2222. case KVM_IRQ_ROUTING_S390_ADAPTER:
  2223. e->set = set_adapter_int;
  2224. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  2225. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  2226. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  2227. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  2228. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  2229. ret = 0;
  2230. break;
  2231. default:
  2232. ret = -EINVAL;
  2233. }
  2234. return ret;
  2235. }
  2236. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  2237. int irq_source_id, int level, bool line_status)
  2238. {
  2239. return -EINVAL;
  2240. }
  2241. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  2242. {
  2243. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2244. struct kvm_s390_irq *buf;
  2245. int r = 0;
  2246. int n;
  2247. buf = vmalloc(len);
  2248. if (!buf)
  2249. return -ENOMEM;
  2250. if (copy_from_user((void *) buf, irqstate, len)) {
  2251. r = -EFAULT;
  2252. goto out_free;
  2253. }
  2254. /*
  2255. * Don't allow setting the interrupt state
  2256. * when there are already interrupts pending
  2257. */
  2258. spin_lock(&li->lock);
  2259. if (li->pending_irqs) {
  2260. r = -EBUSY;
  2261. goto out_unlock;
  2262. }
  2263. for (n = 0; n < len / sizeof(*buf); n++) {
  2264. r = do_inject_vcpu(vcpu, &buf[n]);
  2265. if (r)
  2266. break;
  2267. }
  2268. out_unlock:
  2269. spin_unlock(&li->lock);
  2270. out_free:
  2271. vfree(buf);
  2272. return r;
  2273. }
  2274. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  2275. struct kvm_s390_irq *irq,
  2276. unsigned long irq_type)
  2277. {
  2278. switch (irq_type) {
  2279. case IRQ_PEND_MCHK_EX:
  2280. case IRQ_PEND_MCHK_REP:
  2281. irq->type = KVM_S390_MCHK;
  2282. irq->u.mchk = li->irq.mchk;
  2283. break;
  2284. case IRQ_PEND_PROG:
  2285. irq->type = KVM_S390_PROGRAM_INT;
  2286. irq->u.pgm = li->irq.pgm;
  2287. break;
  2288. case IRQ_PEND_PFAULT_INIT:
  2289. irq->type = KVM_S390_INT_PFAULT_INIT;
  2290. irq->u.ext = li->irq.ext;
  2291. break;
  2292. case IRQ_PEND_EXT_EXTERNAL:
  2293. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  2294. irq->u.extcall = li->irq.extcall;
  2295. break;
  2296. case IRQ_PEND_EXT_CLOCK_COMP:
  2297. irq->type = KVM_S390_INT_CLOCK_COMP;
  2298. break;
  2299. case IRQ_PEND_EXT_CPU_TIMER:
  2300. irq->type = KVM_S390_INT_CPU_TIMER;
  2301. break;
  2302. case IRQ_PEND_SIGP_STOP:
  2303. irq->type = KVM_S390_SIGP_STOP;
  2304. irq->u.stop = li->irq.stop;
  2305. break;
  2306. case IRQ_PEND_RESTART:
  2307. irq->type = KVM_S390_RESTART;
  2308. break;
  2309. case IRQ_PEND_SET_PREFIX:
  2310. irq->type = KVM_S390_SIGP_SET_PREFIX;
  2311. irq->u.prefix = li->irq.prefix;
  2312. break;
  2313. }
  2314. }
  2315. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  2316. {
  2317. int scn;
  2318. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  2319. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2320. unsigned long pending_irqs;
  2321. struct kvm_s390_irq irq;
  2322. unsigned long irq_type;
  2323. int cpuaddr;
  2324. int n = 0;
  2325. spin_lock(&li->lock);
  2326. pending_irqs = li->pending_irqs;
  2327. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  2328. sizeof(sigp_emerg_pending));
  2329. spin_unlock(&li->lock);
  2330. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  2331. memset(&irq, 0, sizeof(irq));
  2332. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  2333. continue;
  2334. if (n + sizeof(irq) > len)
  2335. return -ENOBUFS;
  2336. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  2337. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2338. return -EFAULT;
  2339. n += sizeof(irq);
  2340. }
  2341. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  2342. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  2343. memset(&irq, 0, sizeof(irq));
  2344. if (n + sizeof(irq) > len)
  2345. return -ENOBUFS;
  2346. irq.type = KVM_S390_INT_EMERGENCY;
  2347. irq.u.emerg.code = cpuaddr;
  2348. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2349. return -EFAULT;
  2350. n += sizeof(irq);
  2351. }
  2352. }
  2353. if (sca_ext_call_pending(vcpu, &scn)) {
  2354. if (n + sizeof(irq) > len)
  2355. return -ENOBUFS;
  2356. memset(&irq, 0, sizeof(irq));
  2357. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  2358. irq.u.extcall.code = scn;
  2359. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2360. return -EFAULT;
  2361. n += sizeof(irq);
  2362. }
  2363. return n;
  2364. }