12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- ;; Jason Hemann and Dan Friedman
- ;; microKanren, final implementation from paper
- (define (var c) (vector c))
- (define (var? x) (vector? x))
- (define (var=? x1 x2) (= (vector-ref x1 0) (vector-ref x2 0)))
- (define (walk u s)
- (let ((pr (and (var? u) (assp (lambda (v) (var=? u v)) s))))
- (if pr (walk (cdr pr) s) u)))
- (define (ext-s x v s) `((,x . ,v) . ,s))
- (define (== u v)
- (lambda (s/c)
- (let ((s (unify u v (car s/c))))
- (if s (unit `(,s . ,(cdr s/c))) mzero))))
- (define (unit s/c) (cons s/c mzero))
- (define mzero '())
- (define (unify u v s)
- (let ((u (walk u s)) (v (walk v s)))
- (cond
- ((and (var? u) (var? v) (var=? u v)) s)
- ((var? u) (ext-s u v s))
- ((var? v) (ext-s v u s))
- ((and (pair? u) (pair? v))
- (let ((s (unify (car u) (car v) s)))
- (and s (unify (cdr u) (cdr v) s))))
- (else (and (eqv? u v) s)))))
- (define (call/fresh f)
- (lambda (s/c)
- (let ((c (cdr s/c)))
- ((f (var c)) `(,(car s/c) . ,(+ c 1))))))
- (define (disj g1 g2) (lambda (s/c) (mplus (g1 s/c) (g2 s/c))))
- (define (conj g1 g2) (lambda (s/c) (bind (g1 s/c) g2)))
- (define (mplus $1 $2)
- (cond
- ((null? $1) $2)
- ((procedure? $1) (lambda () (mplus $2 ($1))))
- (else (cons (car $1) (mplus (cdr $1) $2)))))
- (define (bind $ g)
- (cond
- ((null? $) mzero)
- ((procedure? $) (lambda () (bind ($) g)))
- (else (mplus (g (car $)) (bind (cdr $) g)))))
- (define empty-state '(() . 0))
- (define (pull $)
- (if (procedure? $) (pull ($)) $))
- (define (take-all $)
- (let (($ (pull $)))
- (if (null? $) '() (cons (car $) (take-all (cdr $))))))
- (define (take n $)
- (if (zero? n) '()
- (let (($ (pull $)))
- (if (null? $) '() (cons (car $) (take (- n 1) (cdr $)))))))
- (define (reify-1st s/c)
- (let ((v (walk* (var 0) (car s/c))))
- (walk* v (reify-s v '()))))
- (define (walk* v s)
- (let ((v (walk v s)))
- (cond
- ((var? v) v)
- ((pair? v) (cons (walk* (car v) s)
- (walk* (cdr v) s)))
- (else v))))
- (define (reify-s v s)
- (let ((v (walk v s)))
- (cond
- ((var? v)
- (let ((n (reify-name (length s))))
- (cons `(,v . ,n) s)))
- ((pair? v) (reify-s (cdr v) (reify-s (car v) s)))
- (else s))))
- (define (reify-name n)
- (string->symbol
- (string-append "_" "." (number->string n))))
|