auth.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956
  1. /* SCTP kernel implementation
  2. * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
  3. *
  4. * This file is part of the SCTP kernel implementation
  5. *
  6. * This SCTP implementation is free software;
  7. * you can redistribute it and/or modify it under the terms of
  8. * the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2, or (at your option)
  10. * any later version.
  11. *
  12. * This SCTP implementation is distributed in the hope that it
  13. * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  14. * ************************
  15. * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16. * See the GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with GNU CC; see the file COPYING. If not, see
  20. * <http://www.gnu.org/licenses/>.
  21. *
  22. * Please send any bug reports or fixes you make to the
  23. * email address(es):
  24. * lksctp developers <linux-sctp@vger.kernel.org>
  25. *
  26. * Written or modified by:
  27. * Vlad Yasevich <vladislav.yasevich@hp.com>
  28. */
  29. #include <crypto/hash.h>
  30. #include <linux/slab.h>
  31. #include <linux/types.h>
  32. #include <linux/scatterlist.h>
  33. #include <net/sctp/sctp.h>
  34. #include <net/sctp/auth.h>
  35. static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  36. {
  37. /* id 0 is reserved. as all 0 */
  38. .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  39. },
  40. {
  41. .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  42. .hmac_name = "hmac(sha1)",
  43. .hmac_len = SCTP_SHA1_SIG_SIZE,
  44. },
  45. {
  46. /* id 2 is reserved as well */
  47. .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  48. },
  49. #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
  50. {
  51. .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  52. .hmac_name = "hmac(sha256)",
  53. .hmac_len = SCTP_SHA256_SIG_SIZE,
  54. }
  55. #endif
  56. };
  57. void sctp_auth_key_put(struct sctp_auth_bytes *key)
  58. {
  59. if (!key)
  60. return;
  61. if (atomic_dec_and_test(&key->refcnt)) {
  62. kzfree(key);
  63. SCTP_DBG_OBJCNT_DEC(keys);
  64. }
  65. }
  66. /* Create a new key structure of a given length */
  67. static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  68. {
  69. struct sctp_auth_bytes *key;
  70. /* Verify that we are not going to overflow INT_MAX */
  71. if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
  72. return NULL;
  73. /* Allocate the shared key */
  74. key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  75. if (!key)
  76. return NULL;
  77. key->len = key_len;
  78. atomic_set(&key->refcnt, 1);
  79. SCTP_DBG_OBJCNT_INC(keys);
  80. return key;
  81. }
  82. /* Create a new shared key container with a give key id */
  83. struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
  84. {
  85. struct sctp_shared_key *new;
  86. /* Allocate the shared key container */
  87. new = kzalloc(sizeof(struct sctp_shared_key), gfp);
  88. if (!new)
  89. return NULL;
  90. INIT_LIST_HEAD(&new->key_list);
  91. new->key_id = key_id;
  92. return new;
  93. }
  94. /* Free the shared key structure */
  95. static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
  96. {
  97. BUG_ON(!list_empty(&sh_key->key_list));
  98. sctp_auth_key_put(sh_key->key);
  99. sh_key->key = NULL;
  100. kfree(sh_key);
  101. }
  102. /* Destroy the entire key list. This is done during the
  103. * associon and endpoint free process.
  104. */
  105. void sctp_auth_destroy_keys(struct list_head *keys)
  106. {
  107. struct sctp_shared_key *ep_key;
  108. struct sctp_shared_key *tmp;
  109. if (list_empty(keys))
  110. return;
  111. key_for_each_safe(ep_key, tmp, keys) {
  112. list_del_init(&ep_key->key_list);
  113. sctp_auth_shkey_free(ep_key);
  114. }
  115. }
  116. /* Compare two byte vectors as numbers. Return values
  117. * are:
  118. * 0 - vectors are equal
  119. * < 0 - vector 1 is smaller than vector2
  120. * > 0 - vector 1 is greater than vector2
  121. *
  122. * Algorithm is:
  123. * This is performed by selecting the numerically smaller key vector...
  124. * If the key vectors are equal as numbers but differ in length ...
  125. * the shorter vector is considered smaller
  126. *
  127. * Examples (with small values):
  128. * 000123456789 > 123456789 (first number is longer)
  129. * 000123456789 < 234567891 (second number is larger numerically)
  130. * 123456789 > 2345678 (first number is both larger & longer)
  131. */
  132. static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
  133. struct sctp_auth_bytes *vector2)
  134. {
  135. int diff;
  136. int i;
  137. const __u8 *longer;
  138. diff = vector1->len - vector2->len;
  139. if (diff) {
  140. longer = (diff > 0) ? vector1->data : vector2->data;
  141. /* Check to see if the longer number is
  142. * lead-zero padded. If it is not, it
  143. * is automatically larger numerically.
  144. */
  145. for (i = 0; i < abs(diff); i++) {
  146. if (longer[i] != 0)
  147. return diff;
  148. }
  149. }
  150. /* lengths are the same, compare numbers */
  151. return memcmp(vector1->data, vector2->data, vector1->len);
  152. }
  153. /*
  154. * Create a key vector as described in SCTP-AUTH, Section 6.1
  155. * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
  156. * parameter sent by each endpoint are concatenated as byte vectors.
  157. * These parameters include the parameter type, parameter length, and
  158. * the parameter value, but padding is omitted; all padding MUST be
  159. * removed from this concatenation before proceeding with further
  160. * computation of keys. Parameters which were not sent are simply
  161. * omitted from the concatenation process. The resulting two vectors
  162. * are called the two key vectors.
  163. */
  164. static struct sctp_auth_bytes *sctp_auth_make_key_vector(
  165. sctp_random_param_t *random,
  166. sctp_chunks_param_t *chunks,
  167. sctp_hmac_algo_param_t *hmacs,
  168. gfp_t gfp)
  169. {
  170. struct sctp_auth_bytes *new;
  171. __u32 len;
  172. __u32 offset = 0;
  173. __u16 random_len, hmacs_len, chunks_len = 0;
  174. random_len = ntohs(random->param_hdr.length);
  175. hmacs_len = ntohs(hmacs->param_hdr.length);
  176. if (chunks)
  177. chunks_len = ntohs(chunks->param_hdr.length);
  178. len = random_len + hmacs_len + chunks_len;
  179. new = sctp_auth_create_key(len, gfp);
  180. if (!new)
  181. return NULL;
  182. memcpy(new->data, random, random_len);
  183. offset += random_len;
  184. if (chunks) {
  185. memcpy(new->data + offset, chunks, chunks_len);
  186. offset += chunks_len;
  187. }
  188. memcpy(new->data + offset, hmacs, hmacs_len);
  189. return new;
  190. }
  191. /* Make a key vector based on our local parameters */
  192. static struct sctp_auth_bytes *sctp_auth_make_local_vector(
  193. const struct sctp_association *asoc,
  194. gfp_t gfp)
  195. {
  196. return sctp_auth_make_key_vector(
  197. (sctp_random_param_t *)asoc->c.auth_random,
  198. (sctp_chunks_param_t *)asoc->c.auth_chunks,
  199. (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs,
  200. gfp);
  201. }
  202. /* Make a key vector based on peer's parameters */
  203. static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
  204. const struct sctp_association *asoc,
  205. gfp_t gfp)
  206. {
  207. return sctp_auth_make_key_vector(asoc->peer.peer_random,
  208. asoc->peer.peer_chunks,
  209. asoc->peer.peer_hmacs,
  210. gfp);
  211. }
  212. /* Set the value of the association shared key base on the parameters
  213. * given. The algorithm is:
  214. * From the endpoint pair shared keys and the key vectors the
  215. * association shared keys are computed. This is performed by selecting
  216. * the numerically smaller key vector and concatenating it to the
  217. * endpoint pair shared key, and then concatenating the numerically
  218. * larger key vector to that. The result of the concatenation is the
  219. * association shared key.
  220. */
  221. static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
  222. struct sctp_shared_key *ep_key,
  223. struct sctp_auth_bytes *first_vector,
  224. struct sctp_auth_bytes *last_vector,
  225. gfp_t gfp)
  226. {
  227. struct sctp_auth_bytes *secret;
  228. __u32 offset = 0;
  229. __u32 auth_len;
  230. auth_len = first_vector->len + last_vector->len;
  231. if (ep_key->key)
  232. auth_len += ep_key->key->len;
  233. secret = sctp_auth_create_key(auth_len, gfp);
  234. if (!secret)
  235. return NULL;
  236. if (ep_key->key) {
  237. memcpy(secret->data, ep_key->key->data, ep_key->key->len);
  238. offset += ep_key->key->len;
  239. }
  240. memcpy(secret->data + offset, first_vector->data, first_vector->len);
  241. offset += first_vector->len;
  242. memcpy(secret->data + offset, last_vector->data, last_vector->len);
  243. return secret;
  244. }
  245. /* Create an association shared key. Follow the algorithm
  246. * described in SCTP-AUTH, Section 6.1
  247. */
  248. static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
  249. const struct sctp_association *asoc,
  250. struct sctp_shared_key *ep_key,
  251. gfp_t gfp)
  252. {
  253. struct sctp_auth_bytes *local_key_vector;
  254. struct sctp_auth_bytes *peer_key_vector;
  255. struct sctp_auth_bytes *first_vector,
  256. *last_vector;
  257. struct sctp_auth_bytes *secret = NULL;
  258. int cmp;
  259. /* Now we need to build the key vectors
  260. * SCTP-AUTH , Section 6.1
  261. * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
  262. * parameter sent by each endpoint are concatenated as byte vectors.
  263. * These parameters include the parameter type, parameter length, and
  264. * the parameter value, but padding is omitted; all padding MUST be
  265. * removed from this concatenation before proceeding with further
  266. * computation of keys. Parameters which were not sent are simply
  267. * omitted from the concatenation process. The resulting two vectors
  268. * are called the two key vectors.
  269. */
  270. local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
  271. peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
  272. if (!peer_key_vector || !local_key_vector)
  273. goto out;
  274. /* Figure out the order in which the key_vectors will be
  275. * added to the endpoint shared key.
  276. * SCTP-AUTH, Section 6.1:
  277. * This is performed by selecting the numerically smaller key
  278. * vector and concatenating it to the endpoint pair shared
  279. * key, and then concatenating the numerically larger key
  280. * vector to that. If the key vectors are equal as numbers
  281. * but differ in length, then the concatenation order is the
  282. * endpoint shared key, followed by the shorter key vector,
  283. * followed by the longer key vector. Otherwise, the key
  284. * vectors are identical, and may be concatenated to the
  285. * endpoint pair key in any order.
  286. */
  287. cmp = sctp_auth_compare_vectors(local_key_vector,
  288. peer_key_vector);
  289. if (cmp < 0) {
  290. first_vector = local_key_vector;
  291. last_vector = peer_key_vector;
  292. } else {
  293. first_vector = peer_key_vector;
  294. last_vector = local_key_vector;
  295. }
  296. secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
  297. gfp);
  298. out:
  299. sctp_auth_key_put(local_key_vector);
  300. sctp_auth_key_put(peer_key_vector);
  301. return secret;
  302. }
  303. /*
  304. * Populate the association overlay list with the list
  305. * from the endpoint.
  306. */
  307. int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
  308. struct sctp_association *asoc,
  309. gfp_t gfp)
  310. {
  311. struct sctp_shared_key *sh_key;
  312. struct sctp_shared_key *new;
  313. BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
  314. key_for_each(sh_key, &ep->endpoint_shared_keys) {
  315. new = sctp_auth_shkey_create(sh_key->key_id, gfp);
  316. if (!new)
  317. goto nomem;
  318. new->key = sh_key->key;
  319. sctp_auth_key_hold(new->key);
  320. list_add(&new->key_list, &asoc->endpoint_shared_keys);
  321. }
  322. return 0;
  323. nomem:
  324. sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
  325. return -ENOMEM;
  326. }
  327. /* Public interface to create the association shared key.
  328. * See code above for the algorithm.
  329. */
  330. int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
  331. {
  332. struct sctp_auth_bytes *secret;
  333. struct sctp_shared_key *ep_key;
  334. struct sctp_chunk *chunk;
  335. /* If we don't support AUTH, or peer is not capable
  336. * we don't need to do anything.
  337. */
  338. if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
  339. return 0;
  340. /* If the key_id is non-zero and we couldn't find an
  341. * endpoint pair shared key, we can't compute the
  342. * secret.
  343. * For key_id 0, endpoint pair shared key is a NULL key.
  344. */
  345. ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
  346. BUG_ON(!ep_key);
  347. secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
  348. if (!secret)
  349. return -ENOMEM;
  350. sctp_auth_key_put(asoc->asoc_shared_key);
  351. asoc->asoc_shared_key = secret;
  352. /* Update send queue in case any chunk already in there now
  353. * needs authenticating
  354. */
  355. list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
  356. if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
  357. chunk->auth = 1;
  358. }
  359. return 0;
  360. }
  361. /* Find the endpoint pair shared key based on the key_id */
  362. struct sctp_shared_key *sctp_auth_get_shkey(
  363. const struct sctp_association *asoc,
  364. __u16 key_id)
  365. {
  366. struct sctp_shared_key *key;
  367. /* First search associations set of endpoint pair shared keys */
  368. key_for_each(key, &asoc->endpoint_shared_keys) {
  369. if (key->key_id == key_id)
  370. return key;
  371. }
  372. return NULL;
  373. }
  374. /*
  375. * Initialize all the possible digest transforms that we can use. Right now
  376. * now, the supported digests are SHA1 and SHA256. We do this here once
  377. * because of the restrictiong that transforms may only be allocated in
  378. * user context. This forces us to pre-allocated all possible transforms
  379. * at the endpoint init time.
  380. */
  381. int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
  382. {
  383. struct crypto_shash *tfm = NULL;
  384. __u16 id;
  385. /* If AUTH extension is disabled, we are done */
  386. if (!ep->auth_enable) {
  387. ep->auth_hmacs = NULL;
  388. return 0;
  389. }
  390. /* If the transforms are already allocated, we are done */
  391. if (ep->auth_hmacs)
  392. return 0;
  393. /* Allocated the array of pointers to transorms */
  394. ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
  395. SCTP_AUTH_NUM_HMACS, gfp);
  396. if (!ep->auth_hmacs)
  397. return -ENOMEM;
  398. for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
  399. /* See is we support the id. Supported IDs have name and
  400. * length fields set, so that we can allocated and use
  401. * them. We can safely just check for name, for without the
  402. * name, we can't allocate the TFM.
  403. */
  404. if (!sctp_hmac_list[id].hmac_name)
  405. continue;
  406. /* If this TFM has been allocated, we are all set */
  407. if (ep->auth_hmacs[id])
  408. continue;
  409. /* Allocate the ID */
  410. tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
  411. if (IS_ERR(tfm))
  412. goto out_err;
  413. ep->auth_hmacs[id] = tfm;
  414. }
  415. return 0;
  416. out_err:
  417. /* Clean up any successful allocations */
  418. sctp_auth_destroy_hmacs(ep->auth_hmacs);
  419. return -ENOMEM;
  420. }
  421. /* Destroy the hmac tfm array */
  422. void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
  423. {
  424. int i;
  425. if (!auth_hmacs)
  426. return;
  427. for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
  428. crypto_free_shash(auth_hmacs[i]);
  429. }
  430. kfree(auth_hmacs);
  431. }
  432. struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
  433. {
  434. return &sctp_hmac_list[hmac_id];
  435. }
  436. /* Get an hmac description information that we can use to build
  437. * the AUTH chunk
  438. */
  439. struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
  440. {
  441. struct sctp_hmac_algo_param *hmacs;
  442. __u16 n_elt;
  443. __u16 id = 0;
  444. int i;
  445. /* If we have a default entry, use it */
  446. if (asoc->default_hmac_id)
  447. return &sctp_hmac_list[asoc->default_hmac_id];
  448. /* Since we do not have a default entry, find the first entry
  449. * we support and return that. Do not cache that id.
  450. */
  451. hmacs = asoc->peer.peer_hmacs;
  452. if (!hmacs)
  453. return NULL;
  454. n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
  455. for (i = 0; i < n_elt; i++) {
  456. id = ntohs(hmacs->hmac_ids[i]);
  457. /* Check the id is in the supported range. And
  458. * see if we support the id. Supported IDs have name and
  459. * length fields set, so that we can allocate and use
  460. * them. We can safely just check for name, for without the
  461. * name, we can't allocate the TFM.
  462. */
  463. if (id > SCTP_AUTH_HMAC_ID_MAX ||
  464. !sctp_hmac_list[id].hmac_name) {
  465. id = 0;
  466. continue;
  467. }
  468. break;
  469. }
  470. if (id == 0)
  471. return NULL;
  472. return &sctp_hmac_list[id];
  473. }
  474. static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
  475. {
  476. int found = 0;
  477. int i;
  478. for (i = 0; i < n_elts; i++) {
  479. if (hmac_id == hmacs[i]) {
  480. found = 1;
  481. break;
  482. }
  483. }
  484. return found;
  485. }
  486. /* See if the HMAC_ID is one that we claim as supported */
  487. int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
  488. __be16 hmac_id)
  489. {
  490. struct sctp_hmac_algo_param *hmacs;
  491. __u16 n_elt;
  492. if (!asoc)
  493. return 0;
  494. hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
  495. n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
  496. return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
  497. }
  498. /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
  499. * Section 6.1:
  500. * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
  501. * algorithm it supports.
  502. */
  503. void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
  504. struct sctp_hmac_algo_param *hmacs)
  505. {
  506. struct sctp_endpoint *ep;
  507. __u16 id;
  508. int i;
  509. int n_params;
  510. /* if the default id is already set, use it */
  511. if (asoc->default_hmac_id)
  512. return;
  513. n_params = (ntohs(hmacs->param_hdr.length)
  514. - sizeof(sctp_paramhdr_t)) >> 1;
  515. ep = asoc->ep;
  516. for (i = 0; i < n_params; i++) {
  517. id = ntohs(hmacs->hmac_ids[i]);
  518. /* Check the id is in the supported range */
  519. if (id > SCTP_AUTH_HMAC_ID_MAX)
  520. continue;
  521. /* If this TFM has been allocated, use this id */
  522. if (ep->auth_hmacs[id]) {
  523. asoc->default_hmac_id = id;
  524. break;
  525. }
  526. }
  527. }
  528. /* Check to see if the given chunk is supposed to be authenticated */
  529. static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
  530. {
  531. unsigned short len;
  532. int found = 0;
  533. int i;
  534. if (!param || param->param_hdr.length == 0)
  535. return 0;
  536. len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
  537. /* SCTP-AUTH, Section 3.2
  538. * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
  539. * chunks MUST NOT be listed in the CHUNKS parameter. However, if
  540. * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
  541. * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
  542. */
  543. for (i = 0; !found && i < len; i++) {
  544. switch (param->chunks[i]) {
  545. case SCTP_CID_INIT:
  546. case SCTP_CID_INIT_ACK:
  547. case SCTP_CID_SHUTDOWN_COMPLETE:
  548. case SCTP_CID_AUTH:
  549. break;
  550. default:
  551. if (param->chunks[i] == chunk)
  552. found = 1;
  553. break;
  554. }
  555. }
  556. return found;
  557. }
  558. /* Check if peer requested that this chunk is authenticated */
  559. int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
  560. {
  561. if (!asoc)
  562. return 0;
  563. if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
  564. return 0;
  565. return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
  566. }
  567. /* Check if we requested that peer authenticate this chunk. */
  568. int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
  569. {
  570. if (!asoc)
  571. return 0;
  572. if (!asoc->ep->auth_enable)
  573. return 0;
  574. return __sctp_auth_cid(chunk,
  575. (struct sctp_chunks_param *)asoc->c.auth_chunks);
  576. }
  577. /* SCTP-AUTH: Section 6.2:
  578. * The sender MUST calculate the MAC as described in RFC2104 [2] using
  579. * the hash function H as described by the MAC Identifier and the shared
  580. * association key K based on the endpoint pair shared key described by
  581. * the shared key identifier. The 'data' used for the computation of
  582. * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
  583. * zero (as shown in Figure 6) followed by all chunks that are placed
  584. * after the AUTH chunk in the SCTP packet.
  585. */
  586. void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
  587. struct sk_buff *skb,
  588. struct sctp_auth_chunk *auth,
  589. gfp_t gfp)
  590. {
  591. struct crypto_shash *tfm;
  592. struct sctp_auth_bytes *asoc_key;
  593. __u16 key_id, hmac_id;
  594. __u8 *digest;
  595. unsigned char *end;
  596. int free_key = 0;
  597. /* Extract the info we need:
  598. * - hmac id
  599. * - key id
  600. */
  601. key_id = ntohs(auth->auth_hdr.shkey_id);
  602. hmac_id = ntohs(auth->auth_hdr.hmac_id);
  603. if (key_id == asoc->active_key_id)
  604. asoc_key = asoc->asoc_shared_key;
  605. else {
  606. struct sctp_shared_key *ep_key;
  607. ep_key = sctp_auth_get_shkey(asoc, key_id);
  608. if (!ep_key)
  609. return;
  610. asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
  611. if (!asoc_key)
  612. return;
  613. free_key = 1;
  614. }
  615. /* set up scatter list */
  616. end = skb_tail_pointer(skb);
  617. tfm = asoc->ep->auth_hmacs[hmac_id];
  618. digest = auth->auth_hdr.hmac;
  619. if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
  620. goto free;
  621. {
  622. SHASH_DESC_ON_STACK(desc, tfm);
  623. desc->tfm = tfm;
  624. desc->flags = 0;
  625. crypto_shash_digest(desc, (u8 *)auth,
  626. end - (unsigned char *)auth, digest);
  627. shash_desc_zero(desc);
  628. }
  629. free:
  630. if (free_key)
  631. sctp_auth_key_put(asoc_key);
  632. }
  633. /* API Helpers */
  634. /* Add a chunk to the endpoint authenticated chunk list */
  635. int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
  636. {
  637. struct sctp_chunks_param *p = ep->auth_chunk_list;
  638. __u16 nchunks;
  639. __u16 param_len;
  640. /* If this chunk is already specified, we are done */
  641. if (__sctp_auth_cid(chunk_id, p))
  642. return 0;
  643. /* Check if we can add this chunk to the array */
  644. param_len = ntohs(p->param_hdr.length);
  645. nchunks = param_len - sizeof(sctp_paramhdr_t);
  646. if (nchunks == SCTP_NUM_CHUNK_TYPES)
  647. return -EINVAL;
  648. p->chunks[nchunks] = chunk_id;
  649. p->param_hdr.length = htons(param_len + 1);
  650. return 0;
  651. }
  652. /* Add hmac identifires to the endpoint list of supported hmac ids */
  653. int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
  654. struct sctp_hmacalgo *hmacs)
  655. {
  656. int has_sha1 = 0;
  657. __u16 id;
  658. int i;
  659. /* Scan the list looking for unsupported id. Also make sure that
  660. * SHA1 is specified.
  661. */
  662. for (i = 0; i < hmacs->shmac_num_idents; i++) {
  663. id = hmacs->shmac_idents[i];
  664. if (id > SCTP_AUTH_HMAC_ID_MAX)
  665. return -EOPNOTSUPP;
  666. if (SCTP_AUTH_HMAC_ID_SHA1 == id)
  667. has_sha1 = 1;
  668. if (!sctp_hmac_list[id].hmac_name)
  669. return -EOPNOTSUPP;
  670. }
  671. if (!has_sha1)
  672. return -EINVAL;
  673. for (i = 0; i < hmacs->shmac_num_idents; i++)
  674. ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]);
  675. ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
  676. hmacs->shmac_num_idents * sizeof(__u16));
  677. return 0;
  678. }
  679. /* Set a new shared key on either endpoint or association. If the
  680. * the key with a same ID already exists, replace the key (remove the
  681. * old key and add a new one).
  682. */
  683. int sctp_auth_set_key(struct sctp_endpoint *ep,
  684. struct sctp_association *asoc,
  685. struct sctp_authkey *auth_key)
  686. {
  687. struct sctp_shared_key *cur_key = NULL;
  688. struct sctp_auth_bytes *key;
  689. struct list_head *sh_keys;
  690. int replace = 0;
  691. /* Try to find the given key id to see if
  692. * we are doing a replace, or adding a new key
  693. */
  694. if (asoc)
  695. sh_keys = &asoc->endpoint_shared_keys;
  696. else
  697. sh_keys = &ep->endpoint_shared_keys;
  698. key_for_each(cur_key, sh_keys) {
  699. if (cur_key->key_id == auth_key->sca_keynumber) {
  700. replace = 1;
  701. break;
  702. }
  703. }
  704. /* If we are not replacing a key id, we need to allocate
  705. * a shared key.
  706. */
  707. if (!replace) {
  708. cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
  709. GFP_KERNEL);
  710. if (!cur_key)
  711. return -ENOMEM;
  712. }
  713. /* Create a new key data based on the info passed in */
  714. key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
  715. if (!key)
  716. goto nomem;
  717. memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
  718. /* If we are replacing, remove the old keys data from the
  719. * key id. If we are adding new key id, add it to the
  720. * list.
  721. */
  722. if (replace)
  723. sctp_auth_key_put(cur_key->key);
  724. else
  725. list_add(&cur_key->key_list, sh_keys);
  726. cur_key->key = key;
  727. return 0;
  728. nomem:
  729. if (!replace)
  730. sctp_auth_shkey_free(cur_key);
  731. return -ENOMEM;
  732. }
  733. int sctp_auth_set_active_key(struct sctp_endpoint *ep,
  734. struct sctp_association *asoc,
  735. __u16 key_id)
  736. {
  737. struct sctp_shared_key *key;
  738. struct list_head *sh_keys;
  739. int found = 0;
  740. /* The key identifier MUST correst to an existing key */
  741. if (asoc)
  742. sh_keys = &asoc->endpoint_shared_keys;
  743. else
  744. sh_keys = &ep->endpoint_shared_keys;
  745. key_for_each(key, sh_keys) {
  746. if (key->key_id == key_id) {
  747. found = 1;
  748. break;
  749. }
  750. }
  751. if (!found)
  752. return -EINVAL;
  753. if (asoc) {
  754. asoc->active_key_id = key_id;
  755. sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
  756. } else
  757. ep->active_key_id = key_id;
  758. return 0;
  759. }
  760. int sctp_auth_del_key_id(struct sctp_endpoint *ep,
  761. struct sctp_association *asoc,
  762. __u16 key_id)
  763. {
  764. struct sctp_shared_key *key;
  765. struct list_head *sh_keys;
  766. int found = 0;
  767. /* The key identifier MUST NOT be the current active key
  768. * The key identifier MUST correst to an existing key
  769. */
  770. if (asoc) {
  771. if (asoc->active_key_id == key_id)
  772. return -EINVAL;
  773. sh_keys = &asoc->endpoint_shared_keys;
  774. } else {
  775. if (ep->active_key_id == key_id)
  776. return -EINVAL;
  777. sh_keys = &ep->endpoint_shared_keys;
  778. }
  779. key_for_each(key, sh_keys) {
  780. if (key->key_id == key_id) {
  781. found = 1;
  782. break;
  783. }
  784. }
  785. if (!found)
  786. return -EINVAL;
  787. /* Delete the shared key */
  788. list_del_init(&key->key_list);
  789. sctp_auth_shkey_free(key);
  790. return 0;
  791. }