irttp.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892
  1. /*********************************************************************
  2. *
  3. * Filename: irttp.c
  4. * Version: 1.2
  5. * Description: Tiny Transport Protocol (TTP) implementation
  6. * Status: Stable
  7. * Author: Dag Brattli <dagb@cs.uit.no>
  8. * Created at: Sun Aug 31 20:14:31 1997
  9. * Modified at: Wed Jan 5 11:31:27 2000
  10. * Modified by: Dag Brattli <dagb@cs.uit.no>
  11. *
  12. * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
  13. * All Rights Reserved.
  14. * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
  15. *
  16. * This program is free software; you can redistribute it and/or
  17. * modify it under the terms of the GNU General Public License as
  18. * published by the Free Software Foundation; either version 2 of
  19. * the License, or (at your option) any later version.
  20. *
  21. * Neither Dag Brattli nor University of Tromsø admit liability nor
  22. * provide warranty for any of this software. This material is
  23. * provided "AS-IS" and at no charge.
  24. *
  25. ********************************************************************/
  26. #include <linux/skbuff.h>
  27. #include <linux/init.h>
  28. #include <linux/fs.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/slab.h>
  31. #include <linux/export.h>
  32. #include <asm/byteorder.h>
  33. #include <asm/unaligned.h>
  34. #include <net/irda/irda.h>
  35. #include <net/irda/irlap.h>
  36. #include <net/irda/irlmp.h>
  37. #include <net/irda/parameters.h>
  38. #include <net/irda/irttp.h>
  39. static struct irttp_cb *irttp;
  40. static void __irttp_close_tsap(struct tsap_cb *self);
  41. static int irttp_data_indication(void *instance, void *sap,
  42. struct sk_buff *skb);
  43. static int irttp_udata_indication(void *instance, void *sap,
  44. struct sk_buff *skb);
  45. static void irttp_disconnect_indication(void *instance, void *sap,
  46. LM_REASON reason, struct sk_buff *);
  47. static void irttp_connect_indication(void *instance, void *sap,
  48. struct qos_info *qos, __u32 max_sdu_size,
  49. __u8 header_size, struct sk_buff *skb);
  50. static void irttp_connect_confirm(void *instance, void *sap,
  51. struct qos_info *qos, __u32 max_sdu_size,
  52. __u8 header_size, struct sk_buff *skb);
  53. static void irttp_run_tx_queue(struct tsap_cb *self);
  54. static void irttp_run_rx_queue(struct tsap_cb *self);
  55. static void irttp_flush_queues(struct tsap_cb *self);
  56. static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
  57. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
  58. static void irttp_todo_expired(unsigned long data);
  59. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  60. int get);
  61. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
  62. static void irttp_status_indication(void *instance,
  63. LINK_STATUS link, LOCK_STATUS lock);
  64. /* Information for parsing parameters in IrTTP */
  65. static const pi_minor_info_t pi_minor_call_table[] = {
  66. { NULL, 0 }, /* 0x00 */
  67. { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
  68. };
  69. static const pi_major_info_t pi_major_call_table[] = {
  70. { pi_minor_call_table, 2 }
  71. };
  72. static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
  73. /************************ GLOBAL PROCEDURES ************************/
  74. /*
  75. * Function irttp_init (void)
  76. *
  77. * Initialize the IrTTP layer. Called by module initialization code
  78. *
  79. */
  80. int __init irttp_init(void)
  81. {
  82. irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
  83. if (irttp == NULL)
  84. return -ENOMEM;
  85. irttp->magic = TTP_MAGIC;
  86. irttp->tsaps = hashbin_new(HB_LOCK);
  87. if (!irttp->tsaps) {
  88. net_err_ratelimited("%s: can't allocate IrTTP hashbin!\n",
  89. __func__);
  90. kfree(irttp);
  91. return -ENOMEM;
  92. }
  93. return 0;
  94. }
  95. /*
  96. * Function irttp_cleanup (void)
  97. *
  98. * Called by module destruction/cleanup code
  99. *
  100. */
  101. void irttp_cleanup(void)
  102. {
  103. /* Check for main structure */
  104. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
  105. /*
  106. * Delete hashbin and close all TSAP instances in it
  107. */
  108. hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
  109. irttp->magic = 0;
  110. /* De-allocate main structure */
  111. kfree(irttp);
  112. irttp = NULL;
  113. }
  114. /*************************** SUBROUTINES ***************************/
  115. /*
  116. * Function irttp_start_todo_timer (self, timeout)
  117. *
  118. * Start todo timer.
  119. *
  120. * Made it more effient and unsensitive to race conditions - Jean II
  121. */
  122. static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
  123. {
  124. /* Set new value for timer */
  125. mod_timer(&self->todo_timer, jiffies + timeout);
  126. }
  127. /*
  128. * Function irttp_todo_expired (data)
  129. *
  130. * Todo timer has expired!
  131. *
  132. * One of the restriction of the timer is that it is run only on the timer
  133. * interrupt which run every 10ms. This mean that even if you set the timer
  134. * with a delay of 0, it may take up to 10ms before it's run.
  135. * So, to minimise latency and keep cache fresh, we try to avoid using
  136. * it as much as possible.
  137. * Note : we can't use tasklets, because they can't be asynchronously
  138. * killed (need user context), and we can't guarantee that here...
  139. * Jean II
  140. */
  141. static void irttp_todo_expired(unsigned long data)
  142. {
  143. struct tsap_cb *self = (struct tsap_cb *) data;
  144. /* Check that we still exist */
  145. if (!self || self->magic != TTP_TSAP_MAGIC)
  146. return;
  147. pr_debug("%s(instance=%p)\n", __func__, self);
  148. /* Try to make some progress, especially on Tx side - Jean II */
  149. irttp_run_rx_queue(self);
  150. irttp_run_tx_queue(self);
  151. /* Check if time for disconnect */
  152. if (test_bit(0, &self->disconnect_pend)) {
  153. /* Check if it's possible to disconnect yet */
  154. if (skb_queue_empty(&self->tx_queue)) {
  155. /* Make sure disconnect is not pending anymore */
  156. clear_bit(0, &self->disconnect_pend); /* FALSE */
  157. /* Note : self->disconnect_skb may be NULL */
  158. irttp_disconnect_request(self, self->disconnect_skb,
  159. P_NORMAL);
  160. self->disconnect_skb = NULL;
  161. } else {
  162. /* Try again later */
  163. irttp_start_todo_timer(self, HZ/10);
  164. /* No reason to try and close now */
  165. return;
  166. }
  167. }
  168. /* Check if it's closing time */
  169. if (self->close_pend)
  170. /* Finish cleanup */
  171. irttp_close_tsap(self);
  172. }
  173. /*
  174. * Function irttp_flush_queues (self)
  175. *
  176. * Flushes (removes all frames) in transitt-buffer (tx_list)
  177. */
  178. static void irttp_flush_queues(struct tsap_cb *self)
  179. {
  180. struct sk_buff *skb;
  181. IRDA_ASSERT(self != NULL, return;);
  182. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  183. /* Deallocate frames waiting to be sent */
  184. while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
  185. dev_kfree_skb(skb);
  186. /* Deallocate received frames */
  187. while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
  188. dev_kfree_skb(skb);
  189. /* Deallocate received fragments */
  190. while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
  191. dev_kfree_skb(skb);
  192. }
  193. /*
  194. * Function irttp_reassemble (self)
  195. *
  196. * Makes a new (continuous) skb of all the fragments in the fragment
  197. * queue
  198. *
  199. */
  200. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
  201. {
  202. struct sk_buff *skb, *frag;
  203. int n = 0; /* Fragment index */
  204. IRDA_ASSERT(self != NULL, return NULL;);
  205. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
  206. pr_debug("%s(), self->rx_sdu_size=%d\n", __func__,
  207. self->rx_sdu_size);
  208. skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
  209. if (!skb)
  210. return NULL;
  211. /*
  212. * Need to reserve space for TTP header in case this skb needs to
  213. * be requeued in case delivery failes
  214. */
  215. skb_reserve(skb, TTP_HEADER);
  216. skb_put(skb, self->rx_sdu_size);
  217. /*
  218. * Copy all fragments to a new buffer
  219. */
  220. while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
  221. skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
  222. n += frag->len;
  223. dev_kfree_skb(frag);
  224. }
  225. pr_debug("%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
  226. __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
  227. /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
  228. * by summing the size of all fragments, so we should always
  229. * have n == self->rx_sdu_size, except in cases where we
  230. * droped the last fragment (when self->rx_sdu_size exceed
  231. * self->rx_max_sdu_size), where n < self->rx_sdu_size.
  232. * Jean II */
  233. IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
  234. /* Set the new length */
  235. skb_trim(skb, n);
  236. self->rx_sdu_size = 0;
  237. return skb;
  238. }
  239. /*
  240. * Function irttp_fragment_skb (skb)
  241. *
  242. * Fragments a frame and queues all the fragments for transmission
  243. *
  244. */
  245. static inline void irttp_fragment_skb(struct tsap_cb *self,
  246. struct sk_buff *skb)
  247. {
  248. struct sk_buff *frag;
  249. __u8 *frame;
  250. IRDA_ASSERT(self != NULL, return;);
  251. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  252. IRDA_ASSERT(skb != NULL, return;);
  253. /*
  254. * Split frame into a number of segments
  255. */
  256. while (skb->len > self->max_seg_size) {
  257. pr_debug("%s(), fragmenting ...\n", __func__);
  258. /* Make new segment */
  259. frag = alloc_skb(self->max_seg_size+self->max_header_size,
  260. GFP_ATOMIC);
  261. if (!frag)
  262. return;
  263. skb_reserve(frag, self->max_header_size);
  264. /* Copy data from the original skb into this fragment. */
  265. skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
  266. self->max_seg_size);
  267. /* Insert TTP header, with the more bit set */
  268. frame = skb_push(frag, TTP_HEADER);
  269. frame[0] = TTP_MORE;
  270. /* Hide the copied data from the original skb */
  271. skb_pull(skb, self->max_seg_size);
  272. /* Queue fragment */
  273. skb_queue_tail(&self->tx_queue, frag);
  274. }
  275. /* Queue what is left of the original skb */
  276. pr_debug("%s(), queuing last segment\n", __func__);
  277. frame = skb_push(skb, TTP_HEADER);
  278. frame[0] = 0x00; /* Clear more bit */
  279. /* Queue fragment */
  280. skb_queue_tail(&self->tx_queue, skb);
  281. }
  282. /*
  283. * Function irttp_param_max_sdu_size (self, param)
  284. *
  285. * Handle the MaxSduSize parameter in the connect frames, this function
  286. * will be called both when this parameter needs to be inserted into, and
  287. * extracted from the connect frames
  288. */
  289. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  290. int get)
  291. {
  292. struct tsap_cb *self;
  293. self = instance;
  294. IRDA_ASSERT(self != NULL, return -1;);
  295. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  296. if (get)
  297. param->pv.i = self->tx_max_sdu_size;
  298. else
  299. self->tx_max_sdu_size = param->pv.i;
  300. pr_debug("%s(), MaxSduSize=%d\n", __func__, param->pv.i);
  301. return 0;
  302. }
  303. /*************************** CLIENT CALLS ***************************/
  304. /************************** LMP CALLBACKS **************************/
  305. /* Everything is happily mixed up. Waiting for next clean up - Jean II */
  306. /*
  307. * Initialization, that has to be done on new tsap
  308. * instance allocation and on duplication
  309. */
  310. static void irttp_init_tsap(struct tsap_cb *tsap)
  311. {
  312. spin_lock_init(&tsap->lock);
  313. init_timer(&tsap->todo_timer);
  314. skb_queue_head_init(&tsap->rx_queue);
  315. skb_queue_head_init(&tsap->tx_queue);
  316. skb_queue_head_init(&tsap->rx_fragments);
  317. }
  318. /*
  319. * Function irttp_open_tsap (stsap, notify)
  320. *
  321. * Create TSAP connection endpoint,
  322. */
  323. struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
  324. {
  325. struct tsap_cb *self;
  326. struct lsap_cb *lsap;
  327. notify_t ttp_notify;
  328. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
  329. /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
  330. * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
  331. * JeanII */
  332. if ((stsap_sel != LSAP_ANY) &&
  333. ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
  334. pr_debug("%s(), invalid tsap!\n", __func__);
  335. return NULL;
  336. }
  337. self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
  338. if (self == NULL)
  339. return NULL;
  340. /* Initialize internal objects */
  341. irttp_init_tsap(self);
  342. /* Initialise todo timer */
  343. self->todo_timer.data = (unsigned long) self;
  344. self->todo_timer.function = &irttp_todo_expired;
  345. /* Initialize callbacks for IrLMP to use */
  346. irda_notify_init(&ttp_notify);
  347. ttp_notify.connect_confirm = irttp_connect_confirm;
  348. ttp_notify.connect_indication = irttp_connect_indication;
  349. ttp_notify.disconnect_indication = irttp_disconnect_indication;
  350. ttp_notify.data_indication = irttp_data_indication;
  351. ttp_notify.udata_indication = irttp_udata_indication;
  352. ttp_notify.flow_indication = irttp_flow_indication;
  353. if (notify->status_indication != NULL)
  354. ttp_notify.status_indication = irttp_status_indication;
  355. ttp_notify.instance = self;
  356. strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
  357. self->magic = TTP_TSAP_MAGIC;
  358. self->connected = FALSE;
  359. /*
  360. * Create LSAP at IrLMP layer
  361. */
  362. lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
  363. if (lsap == NULL) {
  364. pr_debug("%s: unable to allocate LSAP!!\n", __func__);
  365. __irttp_close_tsap(self);
  366. return NULL;
  367. }
  368. /*
  369. * If user specified LSAP_ANY as source TSAP selector, then IrLMP
  370. * will replace it with whatever source selector which is free, so
  371. * the stsap_sel we have might not be valid anymore
  372. */
  373. self->stsap_sel = lsap->slsap_sel;
  374. pr_debug("%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
  375. self->notify = *notify;
  376. self->lsap = lsap;
  377. hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
  378. if (credit > TTP_RX_MAX_CREDIT)
  379. self->initial_credit = TTP_RX_MAX_CREDIT;
  380. else
  381. self->initial_credit = credit;
  382. return self;
  383. }
  384. EXPORT_SYMBOL(irttp_open_tsap);
  385. /*
  386. * Function irttp_close (handle)
  387. *
  388. * Remove an instance of a TSAP. This function should only deal with the
  389. * deallocation of the TSAP, and resetting of the TSAPs values;
  390. *
  391. */
  392. static void __irttp_close_tsap(struct tsap_cb *self)
  393. {
  394. /* First make sure we're connected. */
  395. IRDA_ASSERT(self != NULL, return;);
  396. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  397. irttp_flush_queues(self);
  398. del_timer(&self->todo_timer);
  399. /* This one won't be cleaned up if we are disconnect_pend + close_pend
  400. * and we receive a disconnect_indication */
  401. if (self->disconnect_skb)
  402. dev_kfree_skb(self->disconnect_skb);
  403. self->connected = FALSE;
  404. self->magic = ~TTP_TSAP_MAGIC;
  405. kfree(self);
  406. }
  407. /*
  408. * Function irttp_close (self)
  409. *
  410. * Remove TSAP from list of all TSAPs and then deallocate all resources
  411. * associated with this TSAP
  412. *
  413. * Note : because we *free* the tsap structure, it is the responsibility
  414. * of the caller to make sure we are called only once and to deal with
  415. * possible race conditions. - Jean II
  416. */
  417. int irttp_close_tsap(struct tsap_cb *self)
  418. {
  419. struct tsap_cb *tsap;
  420. IRDA_ASSERT(self != NULL, return -1;);
  421. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  422. /* Make sure tsap has been disconnected */
  423. if (self->connected) {
  424. /* Check if disconnect is not pending */
  425. if (!test_bit(0, &self->disconnect_pend)) {
  426. net_warn_ratelimited("%s: TSAP still connected!\n",
  427. __func__);
  428. irttp_disconnect_request(self, NULL, P_NORMAL);
  429. }
  430. self->close_pend = TRUE;
  431. irttp_start_todo_timer(self, HZ/10);
  432. return 0; /* Will be back! */
  433. }
  434. tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
  435. IRDA_ASSERT(tsap == self, return -1;);
  436. /* Close corresponding LSAP */
  437. if (self->lsap) {
  438. irlmp_close_lsap(self->lsap);
  439. self->lsap = NULL;
  440. }
  441. __irttp_close_tsap(self);
  442. return 0;
  443. }
  444. EXPORT_SYMBOL(irttp_close_tsap);
  445. /*
  446. * Function irttp_udata_request (self, skb)
  447. *
  448. * Send unreliable data on this TSAP
  449. *
  450. */
  451. int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
  452. {
  453. int ret;
  454. IRDA_ASSERT(self != NULL, return -1;);
  455. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  456. IRDA_ASSERT(skb != NULL, return -1;);
  457. /* Take shortcut on zero byte packets */
  458. if (skb->len == 0) {
  459. ret = 0;
  460. goto err;
  461. }
  462. /* Check that nothing bad happens */
  463. if (!self->connected) {
  464. net_warn_ratelimited("%s(), Not connected\n", __func__);
  465. ret = -ENOTCONN;
  466. goto err;
  467. }
  468. if (skb->len > self->max_seg_size) {
  469. net_err_ratelimited("%s(), UData is too large for IrLAP!\n",
  470. __func__);
  471. ret = -EMSGSIZE;
  472. goto err;
  473. }
  474. irlmp_udata_request(self->lsap, skb);
  475. self->stats.tx_packets++;
  476. return 0;
  477. err:
  478. dev_kfree_skb(skb);
  479. return ret;
  480. }
  481. EXPORT_SYMBOL(irttp_udata_request);
  482. /*
  483. * Function irttp_data_request (handle, skb)
  484. *
  485. * Queue frame for transmission. If SAR is enabled, fragement the frame
  486. * and queue the fragments for transmission
  487. */
  488. int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
  489. {
  490. __u8 *frame;
  491. int ret;
  492. IRDA_ASSERT(self != NULL, return -1;);
  493. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  494. IRDA_ASSERT(skb != NULL, return -1;);
  495. pr_debug("%s() : queue len = %d\n", __func__,
  496. skb_queue_len(&self->tx_queue));
  497. /* Take shortcut on zero byte packets */
  498. if (skb->len == 0) {
  499. ret = 0;
  500. goto err;
  501. }
  502. /* Check that nothing bad happens */
  503. if (!self->connected) {
  504. net_warn_ratelimited("%s: Not connected\n", __func__);
  505. ret = -ENOTCONN;
  506. goto err;
  507. }
  508. /*
  509. * Check if SAR is disabled, and the frame is larger than what fits
  510. * inside an IrLAP frame
  511. */
  512. if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
  513. net_err_ratelimited("%s: SAR disabled, and data is too large for IrLAP!\n",
  514. __func__);
  515. ret = -EMSGSIZE;
  516. goto err;
  517. }
  518. /*
  519. * Check if SAR is enabled, and the frame is larger than the
  520. * TxMaxSduSize
  521. */
  522. if ((self->tx_max_sdu_size != 0) &&
  523. (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
  524. (skb->len > self->tx_max_sdu_size)) {
  525. net_err_ratelimited("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
  526. __func__);
  527. ret = -EMSGSIZE;
  528. goto err;
  529. }
  530. /*
  531. * Check if transmit queue is full
  532. */
  533. if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
  534. /*
  535. * Give it a chance to empty itself
  536. */
  537. irttp_run_tx_queue(self);
  538. /* Drop packet. This error code should trigger the caller
  539. * to resend the data in the client code - Jean II */
  540. ret = -ENOBUFS;
  541. goto err;
  542. }
  543. /* Queue frame, or queue frame segments */
  544. if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
  545. /* Queue frame */
  546. IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
  547. frame = skb_push(skb, TTP_HEADER);
  548. frame[0] = 0x00; /* Clear more bit */
  549. skb_queue_tail(&self->tx_queue, skb);
  550. } else {
  551. /*
  552. * Fragment the frame, this function will also queue the
  553. * fragments, we don't care about the fact the transmit
  554. * queue may be overfilled by all the segments for a little
  555. * while
  556. */
  557. irttp_fragment_skb(self, skb);
  558. }
  559. /* Check if we can accept more data from client */
  560. if ((!self->tx_sdu_busy) &&
  561. (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
  562. /* Tx queue filling up, so stop client. */
  563. if (self->notify.flow_indication) {
  564. self->notify.flow_indication(self->notify.instance,
  565. self, FLOW_STOP);
  566. }
  567. /* self->tx_sdu_busy is the state of the client.
  568. * Update state after notifying client to avoid
  569. * race condition with irttp_flow_indication().
  570. * If the queue empty itself after our test but before
  571. * we set the flag, we will fix ourselves below in
  572. * irttp_run_tx_queue().
  573. * Jean II */
  574. self->tx_sdu_busy = TRUE;
  575. }
  576. /* Try to make some progress */
  577. irttp_run_tx_queue(self);
  578. return 0;
  579. err:
  580. dev_kfree_skb(skb);
  581. return ret;
  582. }
  583. EXPORT_SYMBOL(irttp_data_request);
  584. /*
  585. * Function irttp_run_tx_queue (self)
  586. *
  587. * Transmit packets queued for transmission (if possible)
  588. *
  589. */
  590. static void irttp_run_tx_queue(struct tsap_cb *self)
  591. {
  592. struct sk_buff *skb;
  593. unsigned long flags;
  594. int n;
  595. pr_debug("%s() : send_credit = %d, queue_len = %d\n",
  596. __func__,
  597. self->send_credit, skb_queue_len(&self->tx_queue));
  598. /* Get exclusive access to the tx queue, otherwise don't touch it */
  599. if (irda_lock(&self->tx_queue_lock) == FALSE)
  600. return;
  601. /* Try to send out frames as long as we have credits
  602. * and as long as LAP is not full. If LAP is full, it will
  603. * poll us through irttp_flow_indication() - Jean II */
  604. while ((self->send_credit > 0) &&
  605. (!irlmp_lap_tx_queue_full(self->lsap)) &&
  606. (skb = skb_dequeue(&self->tx_queue))) {
  607. /*
  608. * Since we can transmit and receive frames concurrently,
  609. * the code below is a critical region and we must assure that
  610. * nobody messes with the credits while we update them.
  611. */
  612. spin_lock_irqsave(&self->lock, flags);
  613. n = self->avail_credit;
  614. self->avail_credit = 0;
  615. /* Only room for 127 credits in frame */
  616. if (n > 127) {
  617. self->avail_credit = n-127;
  618. n = 127;
  619. }
  620. self->remote_credit += n;
  621. self->send_credit--;
  622. spin_unlock_irqrestore(&self->lock, flags);
  623. /*
  624. * More bit must be set by the data_request() or fragment()
  625. * functions
  626. */
  627. skb->data[0] |= (n & 0x7f);
  628. /* Detach from socket.
  629. * The current skb has a reference to the socket that sent
  630. * it (skb->sk). When we pass it to IrLMP, the skb will be
  631. * stored in in IrLAP (self->wx_list). When we are within
  632. * IrLAP, we lose the notion of socket, so we should not
  633. * have a reference to a socket. So, we drop it here.
  634. *
  635. * Why does it matter ?
  636. * When the skb is freed (kfree_skb), if it is associated
  637. * with a socket, it release buffer space on the socket
  638. * (through sock_wfree() and sock_def_write_space()).
  639. * If the socket no longer exist, we may crash. Hard.
  640. * When we close a socket, we make sure that associated packets
  641. * in IrTTP are freed. However, we have no way to cancel
  642. * the packet that we have passed to IrLAP. So, if a packet
  643. * remains in IrLAP (retry on the link or else) after we
  644. * close the socket, we are dead !
  645. * Jean II */
  646. if (skb->sk != NULL) {
  647. /* IrSOCK application, IrOBEX, ... */
  648. skb_orphan(skb);
  649. }
  650. /* IrCOMM over IrTTP, IrLAN, ... */
  651. /* Pass the skb to IrLMP - done */
  652. irlmp_data_request(self->lsap, skb);
  653. self->stats.tx_packets++;
  654. }
  655. /* Check if we can accept more frames from client.
  656. * We don't want to wait until the todo timer to do that, and we
  657. * can't use tasklets (grr...), so we are obliged to give control
  658. * to client. That's ok, this test will be true not too often
  659. * (max once per LAP window) and we are called from places
  660. * where we can spend a bit of time doing stuff. - Jean II */
  661. if ((self->tx_sdu_busy) &&
  662. (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
  663. (!self->close_pend)) {
  664. if (self->notify.flow_indication)
  665. self->notify.flow_indication(self->notify.instance,
  666. self, FLOW_START);
  667. /* self->tx_sdu_busy is the state of the client.
  668. * We don't really have a race here, but it's always safer
  669. * to update our state after the client - Jean II */
  670. self->tx_sdu_busy = FALSE;
  671. }
  672. /* Reset lock */
  673. self->tx_queue_lock = 0;
  674. }
  675. /*
  676. * Function irttp_give_credit (self)
  677. *
  678. * Send a dataless flowdata TTP-PDU and give available credit to peer
  679. * TSAP
  680. */
  681. static inline void irttp_give_credit(struct tsap_cb *self)
  682. {
  683. struct sk_buff *tx_skb = NULL;
  684. unsigned long flags;
  685. int n;
  686. IRDA_ASSERT(self != NULL, return;);
  687. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  688. pr_debug("%s() send=%d,avail=%d,remote=%d\n",
  689. __func__,
  690. self->send_credit, self->avail_credit, self->remote_credit);
  691. /* Give credit to peer */
  692. tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
  693. if (!tx_skb)
  694. return;
  695. /* Reserve space for LMP, and LAP header */
  696. skb_reserve(tx_skb, LMP_MAX_HEADER);
  697. /*
  698. * Since we can transmit and receive frames concurrently,
  699. * the code below is a critical region and we must assure that
  700. * nobody messes with the credits while we update them.
  701. */
  702. spin_lock_irqsave(&self->lock, flags);
  703. n = self->avail_credit;
  704. self->avail_credit = 0;
  705. /* Only space for 127 credits in frame */
  706. if (n > 127) {
  707. self->avail_credit = n - 127;
  708. n = 127;
  709. }
  710. self->remote_credit += n;
  711. spin_unlock_irqrestore(&self->lock, flags);
  712. skb_put(tx_skb, 1);
  713. tx_skb->data[0] = (__u8) (n & 0x7f);
  714. irlmp_data_request(self->lsap, tx_skb);
  715. self->stats.tx_packets++;
  716. }
  717. /*
  718. * Function irttp_udata_indication (instance, sap, skb)
  719. *
  720. * Received some unit-data (unreliable)
  721. *
  722. */
  723. static int irttp_udata_indication(void *instance, void *sap,
  724. struct sk_buff *skb)
  725. {
  726. struct tsap_cb *self;
  727. int err;
  728. self = instance;
  729. IRDA_ASSERT(self != NULL, return -1;);
  730. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  731. IRDA_ASSERT(skb != NULL, return -1;);
  732. self->stats.rx_packets++;
  733. /* Just pass data to layer above */
  734. if (self->notify.udata_indication) {
  735. err = self->notify.udata_indication(self->notify.instance,
  736. self, skb);
  737. /* Same comment as in irttp_do_data_indication() */
  738. if (!err)
  739. return 0;
  740. }
  741. /* Either no handler, or handler returns an error */
  742. dev_kfree_skb(skb);
  743. return 0;
  744. }
  745. /*
  746. * Function irttp_data_indication (instance, sap, skb)
  747. *
  748. * Receive segment from IrLMP.
  749. *
  750. */
  751. static int irttp_data_indication(void *instance, void *sap,
  752. struct sk_buff *skb)
  753. {
  754. struct tsap_cb *self;
  755. unsigned long flags;
  756. int n;
  757. self = instance;
  758. n = skb->data[0] & 0x7f; /* Extract the credits */
  759. self->stats.rx_packets++;
  760. /* Deal with inbound credit
  761. * Since we can transmit and receive frames concurrently,
  762. * the code below is a critical region and we must assure that
  763. * nobody messes with the credits while we update them.
  764. */
  765. spin_lock_irqsave(&self->lock, flags);
  766. self->send_credit += n;
  767. if (skb->len > 1)
  768. self->remote_credit--;
  769. spin_unlock_irqrestore(&self->lock, flags);
  770. /*
  771. * Data or dataless packet? Dataless frames contains only the
  772. * TTP_HEADER.
  773. */
  774. if (skb->len > 1) {
  775. /*
  776. * We don't remove the TTP header, since we must preserve the
  777. * more bit, so the defragment routing knows what to do
  778. */
  779. skb_queue_tail(&self->rx_queue, skb);
  780. } else {
  781. /* Dataless flowdata TTP-PDU */
  782. dev_kfree_skb(skb);
  783. }
  784. /* Push data to the higher layer.
  785. * We do it synchronously because running the todo timer for each
  786. * receive packet would be too much overhead and latency.
  787. * By passing control to the higher layer, we run the risk that
  788. * it may take time or grab a lock. Most often, the higher layer
  789. * will only put packet in a queue.
  790. * Anyway, packets are only dripping through the IrDA, so we can
  791. * have time before the next packet.
  792. * Further, we are run from NET_BH, so the worse that can happen is
  793. * us missing the optimal time to send back the PF bit in LAP.
  794. * Jean II */
  795. irttp_run_rx_queue(self);
  796. /* We now give credits to peer in irttp_run_rx_queue().
  797. * We need to send credit *NOW*, otherwise we are going
  798. * to miss the next Tx window. The todo timer may take
  799. * a while before it's run... - Jean II */
  800. /*
  801. * If the peer device has given us some credits and we didn't have
  802. * anyone from before, then we need to shedule the tx queue.
  803. * We need to do that because our Tx have stopped (so we may not
  804. * get any LAP flow indication) and the user may be stopped as
  805. * well. - Jean II
  806. */
  807. if (self->send_credit == n) {
  808. /* Restart pushing stuff to LAP */
  809. irttp_run_tx_queue(self);
  810. /* Note : we don't want to schedule the todo timer
  811. * because it has horrible latency. No tasklets
  812. * because the tasklet API is broken. - Jean II */
  813. }
  814. return 0;
  815. }
  816. /*
  817. * Function irttp_status_indication (self, reason)
  818. *
  819. * Status_indication, just pass to the higher layer...
  820. *
  821. */
  822. static void irttp_status_indication(void *instance,
  823. LINK_STATUS link, LOCK_STATUS lock)
  824. {
  825. struct tsap_cb *self;
  826. self = instance;
  827. IRDA_ASSERT(self != NULL, return;);
  828. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  829. /* Check if client has already closed the TSAP and gone away */
  830. if (self->close_pend)
  831. return;
  832. /*
  833. * Inform service user if he has requested it
  834. */
  835. if (self->notify.status_indication != NULL)
  836. self->notify.status_indication(self->notify.instance,
  837. link, lock);
  838. else
  839. pr_debug("%s(), no handler\n", __func__);
  840. }
  841. /*
  842. * Function irttp_flow_indication (self, reason)
  843. *
  844. * Flow_indication : IrLAP tells us to send more data.
  845. *
  846. */
  847. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
  848. {
  849. struct tsap_cb *self;
  850. self = instance;
  851. IRDA_ASSERT(self != NULL, return;);
  852. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  853. pr_debug("%s(instance=%p)\n", __func__, self);
  854. /* We are "polled" directly from LAP, and the LAP want to fill
  855. * its Tx window. We want to do our best to send it data, so that
  856. * we maximise the window. On the other hand, we want to limit the
  857. * amount of work here so that LAP doesn't hang forever waiting
  858. * for packets. - Jean II */
  859. /* Try to send some packets. Currently, LAP calls us every time
  860. * there is one free slot, so we will send only one packet.
  861. * This allow the scheduler to do its round robin - Jean II */
  862. irttp_run_tx_queue(self);
  863. /* Note regarding the interraction with higher layer.
  864. * irttp_run_tx_queue() may call the client when its queue
  865. * start to empty, via notify.flow_indication(). Initially.
  866. * I wanted this to happen in a tasklet, to avoid client
  867. * grabbing the CPU, but we can't use tasklets safely. And timer
  868. * is definitely too slow.
  869. * This will happen only once per LAP window, and usually at
  870. * the third packet (unless window is smaller). LAP is still
  871. * doing mtt and sending first packet so it's sort of OK
  872. * to do that. Jean II */
  873. /* If we need to send disconnect. try to do it now */
  874. if (self->disconnect_pend)
  875. irttp_start_todo_timer(self, 0);
  876. }
  877. /*
  878. * Function irttp_flow_request (self, command)
  879. *
  880. * This function could be used by the upper layers to tell IrTTP to stop
  881. * delivering frames if the receive queues are starting to get full, or
  882. * to tell IrTTP to start delivering frames again.
  883. */
  884. void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
  885. {
  886. IRDA_ASSERT(self != NULL, return;);
  887. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  888. switch (flow) {
  889. case FLOW_STOP:
  890. pr_debug("%s(), flow stop\n", __func__);
  891. self->rx_sdu_busy = TRUE;
  892. break;
  893. case FLOW_START:
  894. pr_debug("%s(), flow start\n", __func__);
  895. self->rx_sdu_busy = FALSE;
  896. /* Client say he can accept more data, try to free our
  897. * queues ASAP - Jean II */
  898. irttp_run_rx_queue(self);
  899. break;
  900. default:
  901. pr_debug("%s(), Unknown flow command!\n", __func__);
  902. }
  903. }
  904. EXPORT_SYMBOL(irttp_flow_request);
  905. /*
  906. * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
  907. *
  908. * Try to connect to remote destination TSAP selector
  909. *
  910. */
  911. int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
  912. __u32 saddr, __u32 daddr,
  913. struct qos_info *qos, __u32 max_sdu_size,
  914. struct sk_buff *userdata)
  915. {
  916. struct sk_buff *tx_skb;
  917. __u8 *frame;
  918. __u8 n;
  919. pr_debug("%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
  920. IRDA_ASSERT(self != NULL, return -EBADR;);
  921. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
  922. if (self->connected) {
  923. if (userdata)
  924. dev_kfree_skb(userdata);
  925. return -EISCONN;
  926. }
  927. /* Any userdata supplied? */
  928. if (userdata == NULL) {
  929. tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
  930. GFP_ATOMIC);
  931. if (!tx_skb)
  932. return -ENOMEM;
  933. /* Reserve space for MUX_CONTROL and LAP header */
  934. skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
  935. } else {
  936. tx_skb = userdata;
  937. /*
  938. * Check that the client has reserved enough space for
  939. * headers
  940. */
  941. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  942. { dev_kfree_skb(userdata); return -1; });
  943. }
  944. /* Initialize connection parameters */
  945. self->connected = FALSE;
  946. self->avail_credit = 0;
  947. self->rx_max_sdu_size = max_sdu_size;
  948. self->rx_sdu_size = 0;
  949. self->rx_sdu_busy = FALSE;
  950. self->dtsap_sel = dtsap_sel;
  951. n = self->initial_credit;
  952. self->remote_credit = 0;
  953. self->send_credit = 0;
  954. /*
  955. * Give away max 127 credits for now
  956. */
  957. if (n > 127) {
  958. self->avail_credit = n - 127;
  959. n = 127;
  960. }
  961. self->remote_credit = n;
  962. /* SAR enabled? */
  963. if (max_sdu_size > 0) {
  964. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  965. { dev_kfree_skb(tx_skb); return -1; });
  966. /* Insert SAR parameters */
  967. frame = skb_push(tx_skb, TTP_HEADER + TTP_SAR_HEADER);
  968. frame[0] = TTP_PARAMETERS | n;
  969. frame[1] = 0x04; /* Length */
  970. frame[2] = 0x01; /* MaxSduSize */
  971. frame[3] = 0x02; /* Value length */
  972. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  973. (__be16 *)(frame+4));
  974. } else {
  975. /* Insert plain TTP header */
  976. frame = skb_push(tx_skb, TTP_HEADER);
  977. /* Insert initial credit in frame */
  978. frame[0] = n & 0x7f;
  979. }
  980. /* Connect with IrLMP. No QoS parameters for now */
  981. return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
  982. tx_skb);
  983. }
  984. EXPORT_SYMBOL(irttp_connect_request);
  985. /*
  986. * Function irttp_connect_confirm (handle, qos, skb)
  987. *
  988. * Service user confirms TSAP connection with peer.
  989. *
  990. */
  991. static void irttp_connect_confirm(void *instance, void *sap,
  992. struct qos_info *qos, __u32 max_seg_size,
  993. __u8 max_header_size, struct sk_buff *skb)
  994. {
  995. struct tsap_cb *self;
  996. int parameters;
  997. int ret;
  998. __u8 plen;
  999. __u8 n;
  1000. self = instance;
  1001. IRDA_ASSERT(self != NULL, return;);
  1002. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1003. IRDA_ASSERT(skb != NULL, return;);
  1004. self->max_seg_size = max_seg_size - TTP_HEADER;
  1005. self->max_header_size = max_header_size + TTP_HEADER;
  1006. /*
  1007. * Check if we have got some QoS parameters back! This should be the
  1008. * negotiated QoS for the link.
  1009. */
  1010. if (qos) {
  1011. pr_debug("IrTTP, Negotiated BAUD_RATE: %02x\n",
  1012. qos->baud_rate.bits);
  1013. pr_debug("IrTTP, Negotiated BAUD_RATE: %d bps.\n",
  1014. qos->baud_rate.value);
  1015. }
  1016. n = skb->data[0] & 0x7f;
  1017. pr_debug("%s(), Initial send_credit=%d\n", __func__, n);
  1018. self->send_credit = n;
  1019. self->tx_max_sdu_size = 0;
  1020. self->connected = TRUE;
  1021. parameters = skb->data[0] & 0x80;
  1022. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1023. skb_pull(skb, TTP_HEADER);
  1024. if (parameters) {
  1025. plen = skb->data[0];
  1026. ret = irda_param_extract_all(self, skb->data+1,
  1027. IRDA_MIN(skb->len-1, plen),
  1028. &param_info);
  1029. /* Any errors in the parameter list? */
  1030. if (ret < 0) {
  1031. net_warn_ratelimited("%s: error extracting parameters\n",
  1032. __func__);
  1033. dev_kfree_skb(skb);
  1034. /* Do not accept this connection attempt */
  1035. return;
  1036. }
  1037. /* Remove parameters */
  1038. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1039. }
  1040. pr_debug("%s() send=%d,avail=%d,remote=%d\n", __func__,
  1041. self->send_credit, self->avail_credit, self->remote_credit);
  1042. pr_debug("%s(), MaxSduSize=%d\n", __func__,
  1043. self->tx_max_sdu_size);
  1044. if (self->notify.connect_confirm) {
  1045. self->notify.connect_confirm(self->notify.instance, self, qos,
  1046. self->tx_max_sdu_size,
  1047. self->max_header_size, skb);
  1048. } else
  1049. dev_kfree_skb(skb);
  1050. }
  1051. /*
  1052. * Function irttp_connect_indication (handle, skb)
  1053. *
  1054. * Some other device is connecting to this TSAP
  1055. *
  1056. */
  1057. static void irttp_connect_indication(void *instance, void *sap,
  1058. struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
  1059. struct sk_buff *skb)
  1060. {
  1061. struct tsap_cb *self;
  1062. struct lsap_cb *lsap;
  1063. int parameters;
  1064. int ret;
  1065. __u8 plen;
  1066. __u8 n;
  1067. self = instance;
  1068. IRDA_ASSERT(self != NULL, return;);
  1069. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1070. IRDA_ASSERT(skb != NULL, return;);
  1071. lsap = sap;
  1072. self->max_seg_size = max_seg_size - TTP_HEADER;
  1073. self->max_header_size = max_header_size+TTP_HEADER;
  1074. pr_debug("%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
  1075. /* Need to update dtsap_sel if its equal to LSAP_ANY */
  1076. self->dtsap_sel = lsap->dlsap_sel;
  1077. n = skb->data[0] & 0x7f;
  1078. self->send_credit = n;
  1079. self->tx_max_sdu_size = 0;
  1080. parameters = skb->data[0] & 0x80;
  1081. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1082. skb_pull(skb, TTP_HEADER);
  1083. if (parameters) {
  1084. plen = skb->data[0];
  1085. ret = irda_param_extract_all(self, skb->data+1,
  1086. IRDA_MIN(skb->len-1, plen),
  1087. &param_info);
  1088. /* Any errors in the parameter list? */
  1089. if (ret < 0) {
  1090. net_warn_ratelimited("%s: error extracting parameters\n",
  1091. __func__);
  1092. dev_kfree_skb(skb);
  1093. /* Do not accept this connection attempt */
  1094. return;
  1095. }
  1096. /* Remove parameters */
  1097. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1098. }
  1099. if (self->notify.connect_indication) {
  1100. self->notify.connect_indication(self->notify.instance, self,
  1101. qos, self->tx_max_sdu_size,
  1102. self->max_header_size, skb);
  1103. } else
  1104. dev_kfree_skb(skb);
  1105. }
  1106. /*
  1107. * Function irttp_connect_response (handle, userdata)
  1108. *
  1109. * Service user is accepting the connection, just pass it down to
  1110. * IrLMP!
  1111. *
  1112. */
  1113. int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
  1114. struct sk_buff *userdata)
  1115. {
  1116. struct sk_buff *tx_skb;
  1117. __u8 *frame;
  1118. int ret;
  1119. __u8 n;
  1120. IRDA_ASSERT(self != NULL, return -1;);
  1121. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1122. pr_debug("%s(), Source TSAP selector=%02x\n", __func__,
  1123. self->stsap_sel);
  1124. /* Any userdata supplied? */
  1125. if (userdata == NULL) {
  1126. tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
  1127. GFP_ATOMIC);
  1128. if (!tx_skb)
  1129. return -ENOMEM;
  1130. /* Reserve space for MUX_CONTROL and LAP header */
  1131. skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
  1132. } else {
  1133. tx_skb = userdata;
  1134. /*
  1135. * Check that the client has reserved enough space for
  1136. * headers
  1137. */
  1138. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  1139. { dev_kfree_skb(userdata); return -1; });
  1140. }
  1141. self->avail_credit = 0;
  1142. self->remote_credit = 0;
  1143. self->rx_max_sdu_size = max_sdu_size;
  1144. self->rx_sdu_size = 0;
  1145. self->rx_sdu_busy = FALSE;
  1146. n = self->initial_credit;
  1147. /* Frame has only space for max 127 credits (7 bits) */
  1148. if (n > 127) {
  1149. self->avail_credit = n - 127;
  1150. n = 127;
  1151. }
  1152. self->remote_credit = n;
  1153. self->connected = TRUE;
  1154. /* SAR enabled? */
  1155. if (max_sdu_size > 0) {
  1156. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  1157. { dev_kfree_skb(tx_skb); return -1; });
  1158. /* Insert TTP header with SAR parameters */
  1159. frame = skb_push(tx_skb, TTP_HEADER + TTP_SAR_HEADER);
  1160. frame[0] = TTP_PARAMETERS | n;
  1161. frame[1] = 0x04; /* Length */
  1162. /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
  1163. /* TTP_SAR_HEADER, &param_info) */
  1164. frame[2] = 0x01; /* MaxSduSize */
  1165. frame[3] = 0x02; /* Value length */
  1166. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  1167. (__be16 *)(frame+4));
  1168. } else {
  1169. /* Insert TTP header */
  1170. frame = skb_push(tx_skb, TTP_HEADER);
  1171. frame[0] = n & 0x7f;
  1172. }
  1173. ret = irlmp_connect_response(self->lsap, tx_skb);
  1174. return ret;
  1175. }
  1176. EXPORT_SYMBOL(irttp_connect_response);
  1177. /*
  1178. * Function irttp_dup (self, instance)
  1179. *
  1180. * Duplicate TSAP, can be used by servers to confirm a connection on a
  1181. * new TSAP so it can keep listening on the old one.
  1182. */
  1183. struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
  1184. {
  1185. struct tsap_cb *new;
  1186. unsigned long flags;
  1187. /* Protect our access to the old tsap instance */
  1188. spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
  1189. /* Find the old instance */
  1190. if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
  1191. pr_debug("%s(), unable to find TSAP\n", __func__);
  1192. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1193. return NULL;
  1194. }
  1195. /* Allocate a new instance */
  1196. new = kmemdup(orig, sizeof(struct tsap_cb), GFP_ATOMIC);
  1197. if (!new) {
  1198. pr_debug("%s(), unable to kmalloc\n", __func__);
  1199. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1200. return NULL;
  1201. }
  1202. spin_lock_init(&new->lock);
  1203. /* We don't need the old instance any more */
  1204. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1205. /* Try to dup the LSAP (may fail if we were too slow) */
  1206. new->lsap = irlmp_dup(orig->lsap, new);
  1207. if (!new->lsap) {
  1208. pr_debug("%s(), dup failed!\n", __func__);
  1209. kfree(new);
  1210. return NULL;
  1211. }
  1212. /* Not everything should be copied */
  1213. new->notify.instance = instance;
  1214. /* Initialize internal objects */
  1215. irttp_init_tsap(new);
  1216. /* This is locked */
  1217. hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
  1218. return new;
  1219. }
  1220. EXPORT_SYMBOL(irttp_dup);
  1221. /*
  1222. * Function irttp_disconnect_request (self)
  1223. *
  1224. * Close this connection please! If priority is high, the queued data
  1225. * segments, if any, will be deallocated first
  1226. *
  1227. */
  1228. int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
  1229. int priority)
  1230. {
  1231. int ret;
  1232. IRDA_ASSERT(self != NULL, return -1;);
  1233. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1234. /* Already disconnected? */
  1235. if (!self->connected) {
  1236. pr_debug("%s(), already disconnected!\n", __func__);
  1237. if (userdata)
  1238. dev_kfree_skb(userdata);
  1239. return -1;
  1240. }
  1241. /* Disconnect already pending ?
  1242. * We need to use an atomic operation to prevent reentry. This
  1243. * function may be called from various context, like user, timer
  1244. * for following a disconnect_indication() (i.e. net_bh).
  1245. * Jean II */
  1246. if (test_and_set_bit(0, &self->disconnect_pend)) {
  1247. pr_debug("%s(), disconnect already pending\n",
  1248. __func__);
  1249. if (userdata)
  1250. dev_kfree_skb(userdata);
  1251. /* Try to make some progress */
  1252. irttp_run_tx_queue(self);
  1253. return -1;
  1254. }
  1255. /*
  1256. * Check if there is still data segments in the transmit queue
  1257. */
  1258. if (!skb_queue_empty(&self->tx_queue)) {
  1259. if (priority == P_HIGH) {
  1260. /*
  1261. * No need to send the queued data, if we are
  1262. * disconnecting right now since the data will
  1263. * not have any usable connection to be sent on
  1264. */
  1265. pr_debug("%s(): High priority!!()\n", __func__);
  1266. irttp_flush_queues(self);
  1267. } else if (priority == P_NORMAL) {
  1268. /*
  1269. * Must delay disconnect until after all data segments
  1270. * have been sent and the tx_queue is empty
  1271. */
  1272. /* We'll reuse this one later for the disconnect */
  1273. self->disconnect_skb = userdata; /* May be NULL */
  1274. irttp_run_tx_queue(self);
  1275. irttp_start_todo_timer(self, HZ/10);
  1276. return -1;
  1277. }
  1278. }
  1279. /* Note : we don't need to check if self->rx_queue is full and the
  1280. * state of self->rx_sdu_busy because the disconnect response will
  1281. * be sent at the LMP level (so even if the peer has its Tx queue
  1282. * full of data). - Jean II */
  1283. pr_debug("%s(), Disconnecting ...\n", __func__);
  1284. self->connected = FALSE;
  1285. if (!userdata) {
  1286. struct sk_buff *tx_skb;
  1287. tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
  1288. if (!tx_skb)
  1289. return -ENOMEM;
  1290. /*
  1291. * Reserve space for MUX and LAP header
  1292. */
  1293. skb_reserve(tx_skb, LMP_MAX_HEADER);
  1294. userdata = tx_skb;
  1295. }
  1296. ret = irlmp_disconnect_request(self->lsap, userdata);
  1297. /* The disconnect is no longer pending */
  1298. clear_bit(0, &self->disconnect_pend); /* FALSE */
  1299. return ret;
  1300. }
  1301. EXPORT_SYMBOL(irttp_disconnect_request);
  1302. /*
  1303. * Function irttp_disconnect_indication (self, reason)
  1304. *
  1305. * Disconnect indication, TSAP disconnected by peer?
  1306. *
  1307. */
  1308. static void irttp_disconnect_indication(void *instance, void *sap,
  1309. LM_REASON reason, struct sk_buff *skb)
  1310. {
  1311. struct tsap_cb *self;
  1312. self = instance;
  1313. IRDA_ASSERT(self != NULL, return;);
  1314. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1315. /* Prevent higher layer to send more data */
  1316. self->connected = FALSE;
  1317. /* Check if client has already tried to close the TSAP */
  1318. if (self->close_pend) {
  1319. /* In this case, the higher layer is probably gone. Don't
  1320. * bother it and clean up the remains - Jean II */
  1321. if (skb)
  1322. dev_kfree_skb(skb);
  1323. irttp_close_tsap(self);
  1324. return;
  1325. }
  1326. /* If we are here, we assume that is the higher layer is still
  1327. * waiting for the disconnect notification and able to process it,
  1328. * even if he tried to disconnect. Otherwise, it would have already
  1329. * attempted to close the tsap and self->close_pend would be TRUE.
  1330. * Jean II */
  1331. /* No need to notify the client if has already tried to disconnect */
  1332. if (self->notify.disconnect_indication)
  1333. self->notify.disconnect_indication(self->notify.instance, self,
  1334. reason, skb);
  1335. else
  1336. if (skb)
  1337. dev_kfree_skb(skb);
  1338. }
  1339. /*
  1340. * Function irttp_do_data_indication (self, skb)
  1341. *
  1342. * Try to deliver reassembled skb to layer above, and requeue it if that
  1343. * for some reason should fail. We mark rx sdu as busy to apply back
  1344. * pressure is necessary.
  1345. */
  1346. static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
  1347. {
  1348. int err;
  1349. /* Check if client has already closed the TSAP and gone away */
  1350. if (self->close_pend) {
  1351. dev_kfree_skb(skb);
  1352. return;
  1353. }
  1354. err = self->notify.data_indication(self->notify.instance, self, skb);
  1355. /* Usually the layer above will notify that it's input queue is
  1356. * starting to get filled by using the flow request, but this may
  1357. * be difficult, so it can instead just refuse to eat it and just
  1358. * give an error back
  1359. */
  1360. if (err) {
  1361. pr_debug("%s() requeueing skb!\n", __func__);
  1362. /* Make sure we take a break */
  1363. self->rx_sdu_busy = TRUE;
  1364. /* Need to push the header in again */
  1365. skb_push(skb, TTP_HEADER);
  1366. skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
  1367. /* Put skb back on queue */
  1368. skb_queue_head(&self->rx_queue, skb);
  1369. }
  1370. }
  1371. /*
  1372. * Function irttp_run_rx_queue (self)
  1373. *
  1374. * Check if we have any frames to be transmitted, or if we have any
  1375. * available credit to give away.
  1376. */
  1377. static void irttp_run_rx_queue(struct tsap_cb *self)
  1378. {
  1379. struct sk_buff *skb;
  1380. int more = 0;
  1381. pr_debug("%s() send=%d,avail=%d,remote=%d\n", __func__,
  1382. self->send_credit, self->avail_credit, self->remote_credit);
  1383. /* Get exclusive access to the rx queue, otherwise don't touch it */
  1384. if (irda_lock(&self->rx_queue_lock) == FALSE)
  1385. return;
  1386. /*
  1387. * Reassemble all frames in receive queue and deliver them
  1388. */
  1389. while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
  1390. /* This bit will tell us if it's the last fragment or not */
  1391. more = skb->data[0] & 0x80;
  1392. /* Remove TTP header */
  1393. skb_pull(skb, TTP_HEADER);
  1394. /* Add the length of the remaining data */
  1395. self->rx_sdu_size += skb->len;
  1396. /*
  1397. * If SAR is disabled, or user has requested no reassembly
  1398. * of received fragments then we just deliver them
  1399. * immediately. This can be requested by clients that
  1400. * implements byte streams without any message boundaries
  1401. */
  1402. if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
  1403. irttp_do_data_indication(self, skb);
  1404. self->rx_sdu_size = 0;
  1405. continue;
  1406. }
  1407. /* Check if this is a fragment, and not the last fragment */
  1408. if (more) {
  1409. /*
  1410. * Queue the fragment if we still are within the
  1411. * limits of the maximum size of the rx_sdu
  1412. */
  1413. if (self->rx_sdu_size <= self->rx_max_sdu_size) {
  1414. pr_debug("%s(), queueing frag\n",
  1415. __func__);
  1416. skb_queue_tail(&self->rx_fragments, skb);
  1417. } else {
  1418. /* Free the part of the SDU that is too big */
  1419. dev_kfree_skb(skb);
  1420. }
  1421. continue;
  1422. }
  1423. /*
  1424. * This is the last fragment, so time to reassemble!
  1425. */
  1426. if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
  1427. (self->rx_max_sdu_size == TTP_SAR_UNBOUND)) {
  1428. /*
  1429. * A little optimizing. Only queue the fragment if
  1430. * there are other fragments. Since if this is the
  1431. * last and only fragment, there is no need to
  1432. * reassemble :-)
  1433. */
  1434. if (!skb_queue_empty(&self->rx_fragments)) {
  1435. skb_queue_tail(&self->rx_fragments,
  1436. skb);
  1437. skb = irttp_reassemble_skb(self);
  1438. }
  1439. /* Now we can deliver the reassembled skb */
  1440. irttp_do_data_indication(self, skb);
  1441. } else {
  1442. pr_debug("%s(), Truncated frame\n", __func__);
  1443. /* Free the part of the SDU that is too big */
  1444. dev_kfree_skb(skb);
  1445. /* Deliver only the valid but truncated part of SDU */
  1446. skb = irttp_reassemble_skb(self);
  1447. irttp_do_data_indication(self, skb);
  1448. }
  1449. self->rx_sdu_size = 0;
  1450. }
  1451. /*
  1452. * It's not trivial to keep track of how many credits are available
  1453. * by incrementing at each packet, because delivery may fail
  1454. * (irttp_do_data_indication() may requeue the frame) and because
  1455. * we need to take care of fragmentation.
  1456. * We want the other side to send up to initial_credit packets.
  1457. * We have some frames in our queues, and we have already allowed it
  1458. * to send remote_credit.
  1459. * No need to spinlock, write is atomic and self correcting...
  1460. * Jean II
  1461. */
  1462. self->avail_credit = (self->initial_credit -
  1463. (self->remote_credit +
  1464. skb_queue_len(&self->rx_queue) +
  1465. skb_queue_len(&self->rx_fragments)));
  1466. /* Do we have too much credits to send to peer ? */
  1467. if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
  1468. (self->avail_credit > 0)) {
  1469. /* Send explicit credit frame */
  1470. irttp_give_credit(self);
  1471. /* Note : do *NOT* check if tx_queue is non-empty, that
  1472. * will produce deadlocks. I repeat : send a credit frame
  1473. * even if we have something to send in our Tx queue.
  1474. * If we have credits, it means that our Tx queue is blocked.
  1475. *
  1476. * Let's suppose the peer can't keep up with our Tx. He will
  1477. * flow control us by not sending us any credits, and we
  1478. * will stop Tx and start accumulating credits here.
  1479. * Up to the point where the peer will stop its Tx queue,
  1480. * for lack of credits.
  1481. * Let's assume the peer application is single threaded.
  1482. * It will block on Tx and never consume any Rx buffer.
  1483. * Deadlock. Guaranteed. - Jean II
  1484. */
  1485. }
  1486. /* Reset lock */
  1487. self->rx_queue_lock = 0;
  1488. }
  1489. #ifdef CONFIG_PROC_FS
  1490. struct irttp_iter_state {
  1491. int id;
  1492. };
  1493. static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
  1494. {
  1495. struct irttp_iter_state *iter = seq->private;
  1496. struct tsap_cb *self;
  1497. /* Protect our access to the tsap list */
  1498. spin_lock_irq(&irttp->tsaps->hb_spinlock);
  1499. iter->id = 0;
  1500. for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
  1501. self != NULL;
  1502. self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
  1503. if (iter->id == *pos)
  1504. break;
  1505. ++iter->id;
  1506. }
  1507. return self;
  1508. }
  1509. static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1510. {
  1511. struct irttp_iter_state *iter = seq->private;
  1512. ++*pos;
  1513. ++iter->id;
  1514. return (void *) hashbin_get_next(irttp->tsaps);
  1515. }
  1516. static void irttp_seq_stop(struct seq_file *seq, void *v)
  1517. {
  1518. spin_unlock_irq(&irttp->tsaps->hb_spinlock);
  1519. }
  1520. static int irttp_seq_show(struct seq_file *seq, void *v)
  1521. {
  1522. const struct irttp_iter_state *iter = seq->private;
  1523. const struct tsap_cb *self = v;
  1524. seq_printf(seq, "TSAP %d, ", iter->id);
  1525. seq_printf(seq, "stsap_sel: %02x, ",
  1526. self->stsap_sel);
  1527. seq_printf(seq, "dtsap_sel: %02x\n",
  1528. self->dtsap_sel);
  1529. seq_printf(seq, " connected: %s, ",
  1530. self->connected ? "TRUE" : "FALSE");
  1531. seq_printf(seq, "avail credit: %d, ",
  1532. self->avail_credit);
  1533. seq_printf(seq, "remote credit: %d, ",
  1534. self->remote_credit);
  1535. seq_printf(seq, "send credit: %d\n",
  1536. self->send_credit);
  1537. seq_printf(seq, " tx packets: %lu, ",
  1538. self->stats.tx_packets);
  1539. seq_printf(seq, "rx packets: %lu, ",
  1540. self->stats.rx_packets);
  1541. seq_printf(seq, "tx_queue len: %u ",
  1542. skb_queue_len(&self->tx_queue));
  1543. seq_printf(seq, "rx_queue len: %u\n",
  1544. skb_queue_len(&self->rx_queue));
  1545. seq_printf(seq, " tx_sdu_busy: %s, ",
  1546. self->tx_sdu_busy ? "TRUE" : "FALSE");
  1547. seq_printf(seq, "rx_sdu_busy: %s\n",
  1548. self->rx_sdu_busy ? "TRUE" : "FALSE");
  1549. seq_printf(seq, " max_seg_size: %u, ",
  1550. self->max_seg_size);
  1551. seq_printf(seq, "tx_max_sdu_size: %u, ",
  1552. self->tx_max_sdu_size);
  1553. seq_printf(seq, "rx_max_sdu_size: %u\n",
  1554. self->rx_max_sdu_size);
  1555. seq_printf(seq, " Used by (%s)\n\n",
  1556. self->notify.name);
  1557. return 0;
  1558. }
  1559. static const struct seq_operations irttp_seq_ops = {
  1560. .start = irttp_seq_start,
  1561. .next = irttp_seq_next,
  1562. .stop = irttp_seq_stop,
  1563. .show = irttp_seq_show,
  1564. };
  1565. static int irttp_seq_open(struct inode *inode, struct file *file)
  1566. {
  1567. return seq_open_private(file, &irttp_seq_ops,
  1568. sizeof(struct irttp_iter_state));
  1569. }
  1570. const struct file_operations irttp_seq_fops = {
  1571. .owner = THIS_MODULE,
  1572. .open = irttp_seq_open,
  1573. .read = seq_read,
  1574. .llseek = seq_lseek,
  1575. .release = seq_release_private,
  1576. };
  1577. #endif /* PROC_FS */