tcp_input.c 185 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_max_reordering __read_mostly = 300;
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 1000;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_early_retrans __read_mostly = 3;
  94. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  95. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  96. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  97. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  98. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  99. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  100. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  101. #define FLAG_ECE 0x40 /* ECE in this ACK */
  102. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  103. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  104. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  105. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  106. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  109. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  110. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  111. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  112. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  113. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  114. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  115. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  116. #define REXMIT_NONE 0 /* no loss recovery to do */
  117. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  118. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  119. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
  120. {
  121. static bool __once __read_mostly;
  122. if (!__once) {
  123. struct net_device *dev;
  124. __once = true;
  125. rcu_read_lock();
  126. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  127. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  128. dev ? dev->name : "Unknown driver");
  129. rcu_read_unlock();
  130. }
  131. }
  132. /* Adapt the MSS value used to make delayed ack decision to the
  133. * real world.
  134. */
  135. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  136. {
  137. struct inet_connection_sock *icsk = inet_csk(sk);
  138. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  139. unsigned int len;
  140. icsk->icsk_ack.last_seg_size = 0;
  141. /* skb->len may jitter because of SACKs, even if peer
  142. * sends good full-sized frames.
  143. */
  144. len = skb_shinfo(skb)->gso_size ? : skb->len;
  145. if (len >= icsk->icsk_ack.rcv_mss) {
  146. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  147. tcp_sk(sk)->advmss);
  148. if (unlikely(icsk->icsk_ack.rcv_mss != len))
  149. tcp_gro_dev_warn(sk, skb);
  150. } else {
  151. /* Otherwise, we make more careful check taking into account,
  152. * that SACKs block is variable.
  153. *
  154. * "len" is invariant segment length, including TCP header.
  155. */
  156. len += skb->data - skb_transport_header(skb);
  157. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  158. /* If PSH is not set, packet should be
  159. * full sized, provided peer TCP is not badly broken.
  160. * This observation (if it is correct 8)) allows
  161. * to handle super-low mtu links fairly.
  162. */
  163. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  164. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  165. /* Subtract also invariant (if peer is RFC compliant),
  166. * tcp header plus fixed timestamp option length.
  167. * Resulting "len" is MSS free of SACK jitter.
  168. */
  169. len -= tcp_sk(sk)->tcp_header_len;
  170. icsk->icsk_ack.last_seg_size = len;
  171. if (len == lss) {
  172. icsk->icsk_ack.rcv_mss = len;
  173. return;
  174. }
  175. }
  176. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  177. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  178. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  179. }
  180. }
  181. static void tcp_incr_quickack(struct sock *sk)
  182. {
  183. struct inet_connection_sock *icsk = inet_csk(sk);
  184. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  185. if (quickacks == 0)
  186. quickacks = 2;
  187. if (quickacks > icsk->icsk_ack.quick)
  188. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  189. }
  190. void tcp_enter_quickack_mode(struct sock *sk)
  191. {
  192. struct inet_connection_sock *icsk = inet_csk(sk);
  193. tcp_incr_quickack(sk);
  194. icsk->icsk_ack.pingpong = 0;
  195. icsk->icsk_ack.ato = TCP_ATO_MIN;
  196. }
  197. EXPORT_SYMBOL(tcp_enter_quickack_mode);
  198. /* Send ACKs quickly, if "quick" count is not exhausted
  199. * and the session is not interactive.
  200. */
  201. static bool tcp_in_quickack_mode(struct sock *sk)
  202. {
  203. const struct inet_connection_sock *icsk = inet_csk(sk);
  204. const struct dst_entry *dst = __sk_dst_get(sk);
  205. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  206. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  207. }
  208. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  209. {
  210. if (tp->ecn_flags & TCP_ECN_OK)
  211. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  212. }
  213. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  214. {
  215. if (tcp_hdr(skb)->cwr)
  216. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  217. }
  218. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  219. {
  220. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  221. }
  222. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  223. {
  224. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  225. case INET_ECN_NOT_ECT:
  226. /* Funny extension: if ECT is not set on a segment,
  227. * and we already seen ECT on a previous segment,
  228. * it is probably a retransmit.
  229. */
  230. if (tp->ecn_flags & TCP_ECN_SEEN)
  231. tcp_enter_quickack_mode((struct sock *)tp);
  232. break;
  233. case INET_ECN_CE:
  234. if (tcp_ca_needs_ecn((struct sock *)tp))
  235. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  236. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  237. /* Better not delay acks, sender can have a very low cwnd */
  238. tcp_enter_quickack_mode((struct sock *)tp);
  239. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  240. }
  241. tp->ecn_flags |= TCP_ECN_SEEN;
  242. break;
  243. default:
  244. if (tcp_ca_needs_ecn((struct sock *)tp))
  245. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  246. tp->ecn_flags |= TCP_ECN_SEEN;
  247. break;
  248. }
  249. }
  250. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  251. {
  252. if (tp->ecn_flags & TCP_ECN_OK)
  253. __tcp_ecn_check_ce(tp, skb);
  254. }
  255. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  256. {
  257. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  258. tp->ecn_flags &= ~TCP_ECN_OK;
  259. }
  260. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  261. {
  262. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  263. tp->ecn_flags &= ~TCP_ECN_OK;
  264. }
  265. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  266. {
  267. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  268. return true;
  269. return false;
  270. }
  271. /* Buffer size and advertised window tuning.
  272. *
  273. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  274. */
  275. static void tcp_sndbuf_expand(struct sock *sk)
  276. {
  277. const struct tcp_sock *tp = tcp_sk(sk);
  278. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  279. int sndmem, per_mss;
  280. u32 nr_segs;
  281. /* Worst case is non GSO/TSO : each frame consumes one skb
  282. * and skb->head is kmalloced using power of two area of memory
  283. */
  284. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  285. MAX_TCP_HEADER +
  286. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  287. per_mss = roundup_pow_of_two(per_mss) +
  288. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  289. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  290. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  291. /* Fast Recovery (RFC 5681 3.2) :
  292. * Cubic needs 1.7 factor, rounded to 2 to include
  293. * extra cushion (application might react slowly to POLLOUT)
  294. */
  295. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  296. sndmem *= nr_segs * per_mss;
  297. if (sk->sk_sndbuf < sndmem)
  298. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  299. }
  300. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  301. *
  302. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  303. * forward and advertised in receiver window (tp->rcv_wnd) and
  304. * "application buffer", required to isolate scheduling/application
  305. * latencies from network.
  306. * window_clamp is maximal advertised window. It can be less than
  307. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  308. * is reserved for "application" buffer. The less window_clamp is
  309. * the smoother our behaviour from viewpoint of network, but the lower
  310. * throughput and the higher sensitivity of the connection to losses. 8)
  311. *
  312. * rcv_ssthresh is more strict window_clamp used at "slow start"
  313. * phase to predict further behaviour of this connection.
  314. * It is used for two goals:
  315. * - to enforce header prediction at sender, even when application
  316. * requires some significant "application buffer". It is check #1.
  317. * - to prevent pruning of receive queue because of misprediction
  318. * of receiver window. Check #2.
  319. *
  320. * The scheme does not work when sender sends good segments opening
  321. * window and then starts to feed us spaghetti. But it should work
  322. * in common situations. Otherwise, we have to rely on queue collapsing.
  323. */
  324. /* Slow part of check#2. */
  325. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  326. {
  327. struct tcp_sock *tp = tcp_sk(sk);
  328. /* Optimize this! */
  329. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  330. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  331. while (tp->rcv_ssthresh <= window) {
  332. if (truesize <= skb->len)
  333. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  334. truesize >>= 1;
  335. window >>= 1;
  336. }
  337. return 0;
  338. }
  339. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  340. {
  341. struct tcp_sock *tp = tcp_sk(sk);
  342. /* Check #1 */
  343. if (tp->rcv_ssthresh < tp->window_clamp &&
  344. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  345. !tcp_under_memory_pressure(sk)) {
  346. int incr;
  347. /* Check #2. Increase window, if skb with such overhead
  348. * will fit to rcvbuf in future.
  349. */
  350. if (tcp_win_from_space(skb->truesize) <= skb->len)
  351. incr = 2 * tp->advmss;
  352. else
  353. incr = __tcp_grow_window(sk, skb);
  354. if (incr) {
  355. incr = max_t(int, incr, 2 * skb->len);
  356. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  357. tp->window_clamp);
  358. inet_csk(sk)->icsk_ack.quick |= 1;
  359. }
  360. }
  361. }
  362. /* 3. Tuning rcvbuf, when connection enters established state. */
  363. static void tcp_fixup_rcvbuf(struct sock *sk)
  364. {
  365. u32 mss = tcp_sk(sk)->advmss;
  366. int rcvmem;
  367. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  368. tcp_default_init_rwnd(mss);
  369. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  370. * Allow enough cushion so that sender is not limited by our window
  371. */
  372. if (sysctl_tcp_moderate_rcvbuf)
  373. rcvmem <<= 2;
  374. if (sk->sk_rcvbuf < rcvmem)
  375. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  376. }
  377. /* 4. Try to fixup all. It is made immediately after connection enters
  378. * established state.
  379. */
  380. void tcp_init_buffer_space(struct sock *sk)
  381. {
  382. struct tcp_sock *tp = tcp_sk(sk);
  383. int maxwin;
  384. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  385. tcp_fixup_rcvbuf(sk);
  386. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  387. tcp_sndbuf_expand(sk);
  388. tp->rcvq_space.space = tp->rcv_wnd;
  389. tp->rcvq_space.time = tcp_time_stamp;
  390. tp->rcvq_space.seq = tp->copied_seq;
  391. maxwin = tcp_full_space(sk);
  392. if (tp->window_clamp >= maxwin) {
  393. tp->window_clamp = maxwin;
  394. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  395. tp->window_clamp = max(maxwin -
  396. (maxwin >> sysctl_tcp_app_win),
  397. 4 * tp->advmss);
  398. }
  399. /* Force reservation of one segment. */
  400. if (sysctl_tcp_app_win &&
  401. tp->window_clamp > 2 * tp->advmss &&
  402. tp->window_clamp + tp->advmss > maxwin)
  403. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  404. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  405. tp->snd_cwnd_stamp = tcp_time_stamp;
  406. }
  407. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  408. static void tcp_clamp_window(struct sock *sk)
  409. {
  410. struct tcp_sock *tp = tcp_sk(sk);
  411. struct inet_connection_sock *icsk = inet_csk(sk);
  412. icsk->icsk_ack.quick = 0;
  413. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  414. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  415. !tcp_under_memory_pressure(sk) &&
  416. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  417. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  418. sysctl_tcp_rmem[2]);
  419. }
  420. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  421. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  422. }
  423. /* Initialize RCV_MSS value.
  424. * RCV_MSS is an our guess about MSS used by the peer.
  425. * We haven't any direct information about the MSS.
  426. * It's better to underestimate the RCV_MSS rather than overestimate.
  427. * Overestimations make us ACKing less frequently than needed.
  428. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  429. */
  430. void tcp_initialize_rcv_mss(struct sock *sk)
  431. {
  432. const struct tcp_sock *tp = tcp_sk(sk);
  433. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  434. hint = min(hint, tp->rcv_wnd / 2);
  435. hint = min(hint, TCP_MSS_DEFAULT);
  436. hint = max(hint, TCP_MIN_MSS);
  437. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  438. }
  439. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  440. /* Receiver "autotuning" code.
  441. *
  442. * The algorithm for RTT estimation w/o timestamps is based on
  443. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  444. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  445. *
  446. * More detail on this code can be found at
  447. * <http://staff.psc.edu/jheffner/>,
  448. * though this reference is out of date. A new paper
  449. * is pending.
  450. */
  451. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  452. {
  453. u32 new_sample = tp->rcv_rtt_est.rtt;
  454. long m = sample;
  455. if (m == 0)
  456. m = 1;
  457. if (new_sample != 0) {
  458. /* If we sample in larger samples in the non-timestamp
  459. * case, we could grossly overestimate the RTT especially
  460. * with chatty applications or bulk transfer apps which
  461. * are stalled on filesystem I/O.
  462. *
  463. * Also, since we are only going for a minimum in the
  464. * non-timestamp case, we do not smooth things out
  465. * else with timestamps disabled convergence takes too
  466. * long.
  467. */
  468. if (!win_dep) {
  469. m -= (new_sample >> 3);
  470. new_sample += m;
  471. } else {
  472. m <<= 3;
  473. if (m < new_sample)
  474. new_sample = m;
  475. }
  476. } else {
  477. /* No previous measure. */
  478. new_sample = m << 3;
  479. }
  480. if (tp->rcv_rtt_est.rtt != new_sample)
  481. tp->rcv_rtt_est.rtt = new_sample;
  482. }
  483. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  484. {
  485. if (tp->rcv_rtt_est.time == 0)
  486. goto new_measure;
  487. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  488. return;
  489. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  490. new_measure:
  491. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  492. tp->rcv_rtt_est.time = tcp_time_stamp;
  493. }
  494. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  495. const struct sk_buff *skb)
  496. {
  497. struct tcp_sock *tp = tcp_sk(sk);
  498. if (tp->rx_opt.rcv_tsecr &&
  499. (TCP_SKB_CB(skb)->end_seq -
  500. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  501. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  502. }
  503. /*
  504. * This function should be called every time data is copied to user space.
  505. * It calculates the appropriate TCP receive buffer space.
  506. */
  507. void tcp_rcv_space_adjust(struct sock *sk)
  508. {
  509. struct tcp_sock *tp = tcp_sk(sk);
  510. u32 copied;
  511. int time;
  512. time = tcp_time_stamp - tp->rcvq_space.time;
  513. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  514. return;
  515. /* Number of bytes copied to user in last RTT */
  516. copied = tp->copied_seq - tp->rcvq_space.seq;
  517. if (copied <= tp->rcvq_space.space)
  518. goto new_measure;
  519. /* A bit of theory :
  520. * copied = bytes received in previous RTT, our base window
  521. * To cope with packet losses, we need a 2x factor
  522. * To cope with slow start, and sender growing its cwin by 100 %
  523. * every RTT, we need a 4x factor, because the ACK we are sending
  524. * now is for the next RTT, not the current one :
  525. * <prev RTT . ><current RTT .. ><next RTT .... >
  526. */
  527. if (sysctl_tcp_moderate_rcvbuf &&
  528. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  529. int rcvmem, rcvbuf;
  530. u64 rcvwin;
  531. /* minimal window to cope with packet losses, assuming
  532. * steady state. Add some cushion because of small variations.
  533. */
  534. rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
  535. /* If rate increased by 25%,
  536. * assume slow start, rcvwin = 3 * copied
  537. * If rate increased by 50%,
  538. * assume sender can use 2x growth, rcvwin = 4 * copied
  539. */
  540. if (copied >=
  541. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  542. if (copied >=
  543. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  544. rcvwin <<= 1;
  545. else
  546. rcvwin += (rcvwin >> 1);
  547. }
  548. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  549. while (tcp_win_from_space(rcvmem) < tp->advmss)
  550. rcvmem += 128;
  551. do_div(rcvwin, tp->advmss);
  552. rcvbuf = min_t(u64, rcvwin * rcvmem, sysctl_tcp_rmem[2]);
  553. if (rcvbuf > sk->sk_rcvbuf) {
  554. sk->sk_rcvbuf = rcvbuf;
  555. /* Make the window clamp follow along. */
  556. tp->window_clamp = tcp_win_from_space(rcvbuf);
  557. }
  558. }
  559. tp->rcvq_space.space = copied;
  560. new_measure:
  561. tp->rcvq_space.seq = tp->copied_seq;
  562. tp->rcvq_space.time = tcp_time_stamp;
  563. }
  564. /* There is something which you must keep in mind when you analyze the
  565. * behavior of the tp->ato delayed ack timeout interval. When a
  566. * connection starts up, we want to ack as quickly as possible. The
  567. * problem is that "good" TCP's do slow start at the beginning of data
  568. * transmission. The means that until we send the first few ACK's the
  569. * sender will sit on his end and only queue most of his data, because
  570. * he can only send snd_cwnd unacked packets at any given time. For
  571. * each ACK we send, he increments snd_cwnd and transmits more of his
  572. * queue. -DaveM
  573. */
  574. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  575. {
  576. struct tcp_sock *tp = tcp_sk(sk);
  577. struct inet_connection_sock *icsk = inet_csk(sk);
  578. u32 now;
  579. inet_csk_schedule_ack(sk);
  580. tcp_measure_rcv_mss(sk, skb);
  581. tcp_rcv_rtt_measure(tp);
  582. now = tcp_time_stamp;
  583. if (!icsk->icsk_ack.ato) {
  584. /* The _first_ data packet received, initialize
  585. * delayed ACK engine.
  586. */
  587. tcp_incr_quickack(sk);
  588. icsk->icsk_ack.ato = TCP_ATO_MIN;
  589. } else {
  590. int m = now - icsk->icsk_ack.lrcvtime;
  591. if (m <= TCP_ATO_MIN / 2) {
  592. /* The fastest case is the first. */
  593. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  594. } else if (m < icsk->icsk_ack.ato) {
  595. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  596. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  597. icsk->icsk_ack.ato = icsk->icsk_rto;
  598. } else if (m > icsk->icsk_rto) {
  599. /* Too long gap. Apparently sender failed to
  600. * restart window, so that we send ACKs quickly.
  601. */
  602. tcp_incr_quickack(sk);
  603. sk_mem_reclaim(sk);
  604. }
  605. }
  606. icsk->icsk_ack.lrcvtime = now;
  607. tcp_ecn_check_ce(tp, skb);
  608. if (skb->len >= 128)
  609. tcp_grow_window(sk, skb);
  610. }
  611. /* Called to compute a smoothed rtt estimate. The data fed to this
  612. * routine either comes from timestamps, or from segments that were
  613. * known _not_ to have been retransmitted [see Karn/Partridge
  614. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  615. * piece by Van Jacobson.
  616. * NOTE: the next three routines used to be one big routine.
  617. * To save cycles in the RFC 1323 implementation it was better to break
  618. * it up into three procedures. -- erics
  619. */
  620. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  621. {
  622. struct tcp_sock *tp = tcp_sk(sk);
  623. long m = mrtt_us; /* RTT */
  624. u32 srtt = tp->srtt_us;
  625. /* The following amusing code comes from Jacobson's
  626. * article in SIGCOMM '88. Note that rtt and mdev
  627. * are scaled versions of rtt and mean deviation.
  628. * This is designed to be as fast as possible
  629. * m stands for "measurement".
  630. *
  631. * On a 1990 paper the rto value is changed to:
  632. * RTO = rtt + 4 * mdev
  633. *
  634. * Funny. This algorithm seems to be very broken.
  635. * These formulae increase RTO, when it should be decreased, increase
  636. * too slowly, when it should be increased quickly, decrease too quickly
  637. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  638. * does not matter how to _calculate_ it. Seems, it was trap
  639. * that VJ failed to avoid. 8)
  640. */
  641. if (srtt != 0) {
  642. m -= (srtt >> 3); /* m is now error in rtt est */
  643. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  644. if (m < 0) {
  645. m = -m; /* m is now abs(error) */
  646. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  647. /* This is similar to one of Eifel findings.
  648. * Eifel blocks mdev updates when rtt decreases.
  649. * This solution is a bit different: we use finer gain
  650. * for mdev in this case (alpha*beta).
  651. * Like Eifel it also prevents growth of rto,
  652. * but also it limits too fast rto decreases,
  653. * happening in pure Eifel.
  654. */
  655. if (m > 0)
  656. m >>= 3;
  657. } else {
  658. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  659. }
  660. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  661. if (tp->mdev_us > tp->mdev_max_us) {
  662. tp->mdev_max_us = tp->mdev_us;
  663. if (tp->mdev_max_us > tp->rttvar_us)
  664. tp->rttvar_us = tp->mdev_max_us;
  665. }
  666. if (after(tp->snd_una, tp->rtt_seq)) {
  667. if (tp->mdev_max_us < tp->rttvar_us)
  668. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  669. tp->rtt_seq = tp->snd_nxt;
  670. tp->mdev_max_us = tcp_rto_min_us(sk);
  671. }
  672. } else {
  673. /* no previous measure. */
  674. srtt = m << 3; /* take the measured time to be rtt */
  675. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  676. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  677. tp->mdev_max_us = tp->rttvar_us;
  678. tp->rtt_seq = tp->snd_nxt;
  679. }
  680. tp->srtt_us = max(1U, srtt);
  681. }
  682. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  683. * Note: TCP stack does not yet implement pacing.
  684. * FQ packet scheduler can be used to implement cheap but effective
  685. * TCP pacing, to smooth the burst on large writes when packets
  686. * in flight is significantly lower than cwnd (or rwin)
  687. */
  688. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  689. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  690. static void tcp_update_pacing_rate(struct sock *sk)
  691. {
  692. const struct tcp_sock *tp = tcp_sk(sk);
  693. u64 rate;
  694. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  695. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  696. /* current rate is (cwnd * mss) / srtt
  697. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  698. * In Congestion Avoidance phase, set it to 120 % the current rate.
  699. *
  700. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  701. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  702. * end of slow start and should slow down.
  703. */
  704. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  705. rate *= sysctl_tcp_pacing_ss_ratio;
  706. else
  707. rate *= sysctl_tcp_pacing_ca_ratio;
  708. rate *= max(tp->snd_cwnd, tp->packets_out);
  709. if (likely(tp->srtt_us))
  710. do_div(rate, tp->srtt_us);
  711. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  712. * without any lock. We want to make sure compiler wont store
  713. * intermediate values in this location.
  714. */
  715. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  716. sk->sk_max_pacing_rate);
  717. }
  718. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  719. * routine referred to above.
  720. */
  721. static void tcp_set_rto(struct sock *sk)
  722. {
  723. const struct tcp_sock *tp = tcp_sk(sk);
  724. /* Old crap is replaced with new one. 8)
  725. *
  726. * More seriously:
  727. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  728. * It cannot be less due to utterly erratic ACK generation made
  729. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  730. * to do with delayed acks, because at cwnd>2 true delack timeout
  731. * is invisible. Actually, Linux-2.4 also generates erratic
  732. * ACKs in some circumstances.
  733. */
  734. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  735. /* 2. Fixups made earlier cannot be right.
  736. * If we do not estimate RTO correctly without them,
  737. * all the algo is pure shit and should be replaced
  738. * with correct one. It is exactly, which we pretend to do.
  739. */
  740. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  741. * guarantees that rto is higher.
  742. */
  743. tcp_bound_rto(sk);
  744. }
  745. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  746. {
  747. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  748. if (!cwnd)
  749. cwnd = TCP_INIT_CWND;
  750. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  751. }
  752. /*
  753. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  754. * disables it when reordering is detected
  755. */
  756. void tcp_disable_fack(struct tcp_sock *tp)
  757. {
  758. /* RFC3517 uses different metric in lost marker => reset on change */
  759. if (tcp_is_fack(tp))
  760. tp->lost_skb_hint = NULL;
  761. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  762. }
  763. /* Take a notice that peer is sending D-SACKs */
  764. static void tcp_dsack_seen(struct tcp_sock *tp)
  765. {
  766. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  767. }
  768. static void tcp_update_reordering(struct sock *sk, const int metric,
  769. const int ts)
  770. {
  771. struct tcp_sock *tp = tcp_sk(sk);
  772. if (metric > tp->reordering) {
  773. int mib_idx;
  774. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  775. /* This exciting event is worth to be remembered. 8) */
  776. if (ts)
  777. mib_idx = LINUX_MIB_TCPTSREORDER;
  778. else if (tcp_is_reno(tp))
  779. mib_idx = LINUX_MIB_TCPRENOREORDER;
  780. else if (tcp_is_fack(tp))
  781. mib_idx = LINUX_MIB_TCPFACKREORDER;
  782. else
  783. mib_idx = LINUX_MIB_TCPSACKREORDER;
  784. NET_INC_STATS(sock_net(sk), mib_idx);
  785. #if FASTRETRANS_DEBUG > 1
  786. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  787. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  788. tp->reordering,
  789. tp->fackets_out,
  790. tp->sacked_out,
  791. tp->undo_marker ? tp->undo_retrans : 0);
  792. #endif
  793. tcp_disable_fack(tp);
  794. }
  795. if (metric > 0)
  796. tcp_disable_early_retrans(tp);
  797. tp->rack.reord = 1;
  798. }
  799. /* This must be called before lost_out is incremented */
  800. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  801. {
  802. if (!tp->retransmit_skb_hint ||
  803. before(TCP_SKB_CB(skb)->seq,
  804. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  805. tp->retransmit_skb_hint = skb;
  806. if (!tp->lost_out ||
  807. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  808. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  809. }
  810. /* Sum the number of packets on the wire we have marked as lost.
  811. * There are two cases we care about here:
  812. * a) Packet hasn't been marked lost (nor retransmitted),
  813. * and this is the first loss.
  814. * b) Packet has been marked both lost and retransmitted,
  815. * and this means we think it was lost again.
  816. */
  817. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  818. {
  819. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  820. if (!(sacked & TCPCB_LOST) ||
  821. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  822. tp->lost += tcp_skb_pcount(skb);
  823. }
  824. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  825. {
  826. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  827. tcp_verify_retransmit_hint(tp, skb);
  828. tp->lost_out += tcp_skb_pcount(skb);
  829. tcp_sum_lost(tp, skb);
  830. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  831. }
  832. }
  833. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  834. {
  835. tcp_verify_retransmit_hint(tp, skb);
  836. tcp_sum_lost(tp, skb);
  837. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  838. tp->lost_out += tcp_skb_pcount(skb);
  839. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  840. }
  841. }
  842. /* This procedure tags the retransmission queue when SACKs arrive.
  843. *
  844. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  845. * Packets in queue with these bits set are counted in variables
  846. * sacked_out, retrans_out and lost_out, correspondingly.
  847. *
  848. * Valid combinations are:
  849. * Tag InFlight Description
  850. * 0 1 - orig segment is in flight.
  851. * S 0 - nothing flies, orig reached receiver.
  852. * L 0 - nothing flies, orig lost by net.
  853. * R 2 - both orig and retransmit are in flight.
  854. * L|R 1 - orig is lost, retransmit is in flight.
  855. * S|R 1 - orig reached receiver, retrans is still in flight.
  856. * (L|S|R is logically valid, it could occur when L|R is sacked,
  857. * but it is equivalent to plain S and code short-curcuits it to S.
  858. * L|S is logically invalid, it would mean -1 packet in flight 8))
  859. *
  860. * These 6 states form finite state machine, controlled by the following events:
  861. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  862. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  863. * 3. Loss detection event of two flavors:
  864. * A. Scoreboard estimator decided the packet is lost.
  865. * A'. Reno "three dupacks" marks head of queue lost.
  866. * A''. Its FACK modification, head until snd.fack is lost.
  867. * B. SACK arrives sacking SND.NXT at the moment, when the
  868. * segment was retransmitted.
  869. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  870. *
  871. * It is pleasant to note, that state diagram turns out to be commutative,
  872. * so that we are allowed not to be bothered by order of our actions,
  873. * when multiple events arrive simultaneously. (see the function below).
  874. *
  875. * Reordering detection.
  876. * --------------------
  877. * Reordering metric is maximal distance, which a packet can be displaced
  878. * in packet stream. With SACKs we can estimate it:
  879. *
  880. * 1. SACK fills old hole and the corresponding segment was not
  881. * ever retransmitted -> reordering. Alas, we cannot use it
  882. * when segment was retransmitted.
  883. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  884. * for retransmitted and already SACKed segment -> reordering..
  885. * Both of these heuristics are not used in Loss state, when we cannot
  886. * account for retransmits accurately.
  887. *
  888. * SACK block validation.
  889. * ----------------------
  890. *
  891. * SACK block range validation checks that the received SACK block fits to
  892. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  893. * Note that SND.UNA is not included to the range though being valid because
  894. * it means that the receiver is rather inconsistent with itself reporting
  895. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  896. * perfectly valid, however, in light of RFC2018 which explicitly states
  897. * that "SACK block MUST reflect the newest segment. Even if the newest
  898. * segment is going to be discarded ...", not that it looks very clever
  899. * in case of head skb. Due to potentional receiver driven attacks, we
  900. * choose to avoid immediate execution of a walk in write queue due to
  901. * reneging and defer head skb's loss recovery to standard loss recovery
  902. * procedure that will eventually trigger (nothing forbids us doing this).
  903. *
  904. * Implements also blockage to start_seq wrap-around. Problem lies in the
  905. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  906. * there's no guarantee that it will be before snd_nxt (n). The problem
  907. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  908. * wrap (s_w):
  909. *
  910. * <- outs wnd -> <- wrapzone ->
  911. * u e n u_w e_w s n_w
  912. * | | | | | | |
  913. * |<------------+------+----- TCP seqno space --------------+---------->|
  914. * ...-- <2^31 ->| |<--------...
  915. * ...---- >2^31 ------>| |<--------...
  916. *
  917. * Current code wouldn't be vulnerable but it's better still to discard such
  918. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  919. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  920. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  921. * equal to the ideal case (infinite seqno space without wrap caused issues).
  922. *
  923. * With D-SACK the lower bound is extended to cover sequence space below
  924. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  925. * again, D-SACK block must not to go across snd_una (for the same reason as
  926. * for the normal SACK blocks, explained above). But there all simplicity
  927. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  928. * fully below undo_marker they do not affect behavior in anyway and can
  929. * therefore be safely ignored. In rare cases (which are more or less
  930. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  931. * fragmentation and packet reordering past skb's retransmission. To consider
  932. * them correctly, the acceptable range must be extended even more though
  933. * the exact amount is rather hard to quantify. However, tp->max_window can
  934. * be used as an exaggerated estimate.
  935. */
  936. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  937. u32 start_seq, u32 end_seq)
  938. {
  939. /* Too far in future, or reversed (interpretation is ambiguous) */
  940. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  941. return false;
  942. /* Nasty start_seq wrap-around check (see comments above) */
  943. if (!before(start_seq, tp->snd_nxt))
  944. return false;
  945. /* In outstanding window? ...This is valid exit for D-SACKs too.
  946. * start_seq == snd_una is non-sensical (see comments above)
  947. */
  948. if (after(start_seq, tp->snd_una))
  949. return true;
  950. if (!is_dsack || !tp->undo_marker)
  951. return false;
  952. /* ...Then it's D-SACK, and must reside below snd_una completely */
  953. if (after(end_seq, tp->snd_una))
  954. return false;
  955. if (!before(start_seq, tp->undo_marker))
  956. return true;
  957. /* Too old */
  958. if (!after(end_seq, tp->undo_marker))
  959. return false;
  960. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  961. * start_seq < undo_marker and end_seq >= undo_marker.
  962. */
  963. return !before(start_seq, end_seq - tp->max_window);
  964. }
  965. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  966. struct tcp_sack_block_wire *sp, int num_sacks,
  967. u32 prior_snd_una)
  968. {
  969. struct tcp_sock *tp = tcp_sk(sk);
  970. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  971. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  972. bool dup_sack = false;
  973. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  974. dup_sack = true;
  975. tcp_dsack_seen(tp);
  976. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  977. } else if (num_sacks > 1) {
  978. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  979. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  980. if (!after(end_seq_0, end_seq_1) &&
  981. !before(start_seq_0, start_seq_1)) {
  982. dup_sack = true;
  983. tcp_dsack_seen(tp);
  984. NET_INC_STATS(sock_net(sk),
  985. LINUX_MIB_TCPDSACKOFORECV);
  986. }
  987. }
  988. /* D-SACK for already forgotten data... Do dumb counting. */
  989. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  990. !after(end_seq_0, prior_snd_una) &&
  991. after(end_seq_0, tp->undo_marker))
  992. tp->undo_retrans--;
  993. return dup_sack;
  994. }
  995. struct tcp_sacktag_state {
  996. int reord;
  997. int fack_count;
  998. /* Timestamps for earliest and latest never-retransmitted segment
  999. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  1000. * but congestion control should still get an accurate delay signal.
  1001. */
  1002. struct skb_mstamp first_sackt;
  1003. struct skb_mstamp last_sackt;
  1004. struct rate_sample *rate;
  1005. int flag;
  1006. };
  1007. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1008. * the incoming SACK may not exactly match but we can find smaller MSS
  1009. * aligned portion of it that matches. Therefore we might need to fragment
  1010. * which may fail and creates some hassle (caller must handle error case
  1011. * returns).
  1012. *
  1013. * FIXME: this could be merged to shift decision code
  1014. */
  1015. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1016. u32 start_seq, u32 end_seq)
  1017. {
  1018. int err;
  1019. bool in_sack;
  1020. unsigned int pkt_len;
  1021. unsigned int mss;
  1022. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1023. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1024. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1025. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1026. mss = tcp_skb_mss(skb);
  1027. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1028. if (!in_sack) {
  1029. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1030. if (pkt_len < mss)
  1031. pkt_len = mss;
  1032. } else {
  1033. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1034. if (pkt_len < mss)
  1035. return -EINVAL;
  1036. }
  1037. /* Round if necessary so that SACKs cover only full MSSes
  1038. * and/or the remaining small portion (if present)
  1039. */
  1040. if (pkt_len > mss) {
  1041. unsigned int new_len = (pkt_len / mss) * mss;
  1042. if (!in_sack && new_len < pkt_len)
  1043. new_len += mss;
  1044. pkt_len = new_len;
  1045. }
  1046. if (pkt_len >= skb->len && !in_sack)
  1047. return 0;
  1048. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1049. if (err < 0)
  1050. return err;
  1051. }
  1052. return in_sack;
  1053. }
  1054. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1055. static u8 tcp_sacktag_one(struct sock *sk,
  1056. struct tcp_sacktag_state *state, u8 sacked,
  1057. u32 start_seq, u32 end_seq,
  1058. int dup_sack, int pcount,
  1059. const struct skb_mstamp *xmit_time)
  1060. {
  1061. struct tcp_sock *tp = tcp_sk(sk);
  1062. int fack_count = state->fack_count;
  1063. /* Account D-SACK for retransmitted packet. */
  1064. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1065. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1066. after(end_seq, tp->undo_marker))
  1067. tp->undo_retrans--;
  1068. if (sacked & TCPCB_SACKED_ACKED)
  1069. state->reord = min(fack_count, state->reord);
  1070. }
  1071. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1072. if (!after(end_seq, tp->snd_una))
  1073. return sacked;
  1074. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1075. tcp_rack_advance(tp, xmit_time, sacked);
  1076. if (sacked & TCPCB_SACKED_RETRANS) {
  1077. /* If the segment is not tagged as lost,
  1078. * we do not clear RETRANS, believing
  1079. * that retransmission is still in flight.
  1080. */
  1081. if (sacked & TCPCB_LOST) {
  1082. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1083. tp->lost_out -= pcount;
  1084. tp->retrans_out -= pcount;
  1085. }
  1086. } else {
  1087. if (!(sacked & TCPCB_RETRANS)) {
  1088. /* New sack for not retransmitted frame,
  1089. * which was in hole. It is reordering.
  1090. */
  1091. if (before(start_seq,
  1092. tcp_highest_sack_seq(tp)))
  1093. state->reord = min(fack_count,
  1094. state->reord);
  1095. if (!after(end_seq, tp->high_seq))
  1096. state->flag |= FLAG_ORIG_SACK_ACKED;
  1097. if (state->first_sackt.v64 == 0)
  1098. state->first_sackt = *xmit_time;
  1099. state->last_sackt = *xmit_time;
  1100. }
  1101. if (sacked & TCPCB_LOST) {
  1102. sacked &= ~TCPCB_LOST;
  1103. tp->lost_out -= pcount;
  1104. }
  1105. }
  1106. sacked |= TCPCB_SACKED_ACKED;
  1107. state->flag |= FLAG_DATA_SACKED;
  1108. tp->sacked_out += pcount;
  1109. tp->delivered += pcount; /* Out-of-order packets delivered */
  1110. fack_count += pcount;
  1111. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1112. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1113. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1114. tp->lost_cnt_hint += pcount;
  1115. if (fack_count > tp->fackets_out)
  1116. tp->fackets_out = fack_count;
  1117. }
  1118. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1119. * frames and clear it. undo_retrans is decreased above, L|R frames
  1120. * are accounted above as well.
  1121. */
  1122. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1123. sacked &= ~TCPCB_SACKED_RETRANS;
  1124. tp->retrans_out -= pcount;
  1125. }
  1126. return sacked;
  1127. }
  1128. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1129. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1130. */
  1131. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1132. struct tcp_sacktag_state *state,
  1133. unsigned int pcount, int shifted, int mss,
  1134. bool dup_sack)
  1135. {
  1136. struct tcp_sock *tp = tcp_sk(sk);
  1137. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1138. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1139. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1140. BUG_ON(!pcount);
  1141. /* Adjust counters and hints for the newly sacked sequence
  1142. * range but discard the return value since prev is already
  1143. * marked. We must tag the range first because the seq
  1144. * advancement below implicitly advances
  1145. * tcp_highest_sack_seq() when skb is highest_sack.
  1146. */
  1147. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1148. start_seq, end_seq, dup_sack, pcount,
  1149. &skb->skb_mstamp);
  1150. tcp_rate_skb_delivered(sk, skb, state->rate);
  1151. if (skb == tp->lost_skb_hint)
  1152. tp->lost_cnt_hint += pcount;
  1153. TCP_SKB_CB(prev)->end_seq += shifted;
  1154. TCP_SKB_CB(skb)->seq += shifted;
  1155. tcp_skb_pcount_add(prev, pcount);
  1156. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1157. tcp_skb_pcount_add(skb, -pcount);
  1158. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1159. * in theory this shouldn't be necessary but as long as DSACK
  1160. * code can come after this skb later on it's better to keep
  1161. * setting gso_size to something.
  1162. */
  1163. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1164. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1165. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1166. if (tcp_skb_pcount(skb) <= 1)
  1167. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1168. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1169. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1170. if (skb->len > 0) {
  1171. BUG_ON(!tcp_skb_pcount(skb));
  1172. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1173. return false;
  1174. }
  1175. /* Whole SKB was eaten :-) */
  1176. if (skb == tp->retransmit_skb_hint)
  1177. tp->retransmit_skb_hint = prev;
  1178. if (skb == tp->lost_skb_hint) {
  1179. tp->lost_skb_hint = prev;
  1180. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1181. }
  1182. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1183. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1184. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1185. TCP_SKB_CB(prev)->end_seq++;
  1186. if (skb == tcp_highest_sack(sk))
  1187. tcp_advance_highest_sack(sk, skb);
  1188. tcp_skb_collapse_tstamp(prev, skb);
  1189. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
  1190. TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
  1191. tcp_unlink_write_queue(skb, sk);
  1192. sk_wmem_free_skb(sk, skb);
  1193. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1194. return true;
  1195. }
  1196. /* I wish gso_size would have a bit more sane initialization than
  1197. * something-or-zero which complicates things
  1198. */
  1199. static int tcp_skb_seglen(const struct sk_buff *skb)
  1200. {
  1201. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1202. }
  1203. /* Shifting pages past head area doesn't work */
  1204. static int skb_can_shift(const struct sk_buff *skb)
  1205. {
  1206. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1207. }
  1208. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1209. * skb.
  1210. */
  1211. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1212. struct tcp_sacktag_state *state,
  1213. u32 start_seq, u32 end_seq,
  1214. bool dup_sack)
  1215. {
  1216. struct tcp_sock *tp = tcp_sk(sk);
  1217. struct sk_buff *prev;
  1218. int mss;
  1219. int pcount = 0;
  1220. int len;
  1221. int in_sack;
  1222. if (!sk_can_gso(sk))
  1223. goto fallback;
  1224. /* Normally R but no L won't result in plain S */
  1225. if (!dup_sack &&
  1226. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1227. goto fallback;
  1228. if (!skb_can_shift(skb))
  1229. goto fallback;
  1230. /* This frame is about to be dropped (was ACKed). */
  1231. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1232. goto fallback;
  1233. /* Can only happen with delayed DSACK + discard craziness */
  1234. if (unlikely(skb == tcp_write_queue_head(sk)))
  1235. goto fallback;
  1236. prev = tcp_write_queue_prev(sk, skb);
  1237. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1238. goto fallback;
  1239. if (!tcp_skb_can_collapse_to(prev))
  1240. goto fallback;
  1241. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1242. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1243. if (in_sack) {
  1244. len = skb->len;
  1245. pcount = tcp_skb_pcount(skb);
  1246. mss = tcp_skb_seglen(skb);
  1247. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1248. * drop this restriction as unnecessary
  1249. */
  1250. if (mss != tcp_skb_seglen(prev))
  1251. goto fallback;
  1252. } else {
  1253. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1254. goto noop;
  1255. /* CHECKME: This is non-MSS split case only?, this will
  1256. * cause skipped skbs due to advancing loop btw, original
  1257. * has that feature too
  1258. */
  1259. if (tcp_skb_pcount(skb) <= 1)
  1260. goto noop;
  1261. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1262. if (!in_sack) {
  1263. /* TODO: head merge to next could be attempted here
  1264. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1265. * though it might not be worth of the additional hassle
  1266. *
  1267. * ...we can probably just fallback to what was done
  1268. * previously. We could try merging non-SACKed ones
  1269. * as well but it probably isn't going to buy off
  1270. * because later SACKs might again split them, and
  1271. * it would make skb timestamp tracking considerably
  1272. * harder problem.
  1273. */
  1274. goto fallback;
  1275. }
  1276. len = end_seq - TCP_SKB_CB(skb)->seq;
  1277. BUG_ON(len < 0);
  1278. BUG_ON(len > skb->len);
  1279. /* MSS boundaries should be honoured or else pcount will
  1280. * severely break even though it makes things bit trickier.
  1281. * Optimize common case to avoid most of the divides
  1282. */
  1283. mss = tcp_skb_mss(skb);
  1284. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1285. * drop this restriction as unnecessary
  1286. */
  1287. if (mss != tcp_skb_seglen(prev))
  1288. goto fallback;
  1289. if (len == mss) {
  1290. pcount = 1;
  1291. } else if (len < mss) {
  1292. goto noop;
  1293. } else {
  1294. pcount = len / mss;
  1295. len = pcount * mss;
  1296. }
  1297. }
  1298. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1299. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1300. goto fallback;
  1301. if (!skb_shift(prev, skb, len))
  1302. goto fallback;
  1303. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1304. goto out;
  1305. /* Hole filled allows collapsing with the next as well, this is very
  1306. * useful when hole on every nth skb pattern happens
  1307. */
  1308. if (prev == tcp_write_queue_tail(sk))
  1309. goto out;
  1310. skb = tcp_write_queue_next(sk, prev);
  1311. if (!skb_can_shift(skb) ||
  1312. (skb == tcp_send_head(sk)) ||
  1313. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1314. (mss != tcp_skb_seglen(skb)))
  1315. goto out;
  1316. len = skb->len;
  1317. if (skb_shift(prev, skb, len)) {
  1318. pcount += tcp_skb_pcount(skb);
  1319. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1320. }
  1321. out:
  1322. state->fack_count += pcount;
  1323. return prev;
  1324. noop:
  1325. return skb;
  1326. fallback:
  1327. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1328. return NULL;
  1329. }
  1330. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1331. struct tcp_sack_block *next_dup,
  1332. struct tcp_sacktag_state *state,
  1333. u32 start_seq, u32 end_seq,
  1334. bool dup_sack_in)
  1335. {
  1336. struct tcp_sock *tp = tcp_sk(sk);
  1337. struct sk_buff *tmp;
  1338. tcp_for_write_queue_from(skb, sk) {
  1339. int in_sack = 0;
  1340. bool dup_sack = dup_sack_in;
  1341. if (skb == tcp_send_head(sk))
  1342. break;
  1343. /* queue is in-order => we can short-circuit the walk early */
  1344. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1345. break;
  1346. if (next_dup &&
  1347. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1348. in_sack = tcp_match_skb_to_sack(sk, skb,
  1349. next_dup->start_seq,
  1350. next_dup->end_seq);
  1351. if (in_sack > 0)
  1352. dup_sack = true;
  1353. }
  1354. /* skb reference here is a bit tricky to get right, since
  1355. * shifting can eat and free both this skb and the next,
  1356. * so not even _safe variant of the loop is enough.
  1357. */
  1358. if (in_sack <= 0) {
  1359. tmp = tcp_shift_skb_data(sk, skb, state,
  1360. start_seq, end_seq, dup_sack);
  1361. if (tmp) {
  1362. if (tmp != skb) {
  1363. skb = tmp;
  1364. continue;
  1365. }
  1366. in_sack = 0;
  1367. } else {
  1368. in_sack = tcp_match_skb_to_sack(sk, skb,
  1369. start_seq,
  1370. end_seq);
  1371. }
  1372. }
  1373. if (unlikely(in_sack < 0))
  1374. break;
  1375. if (in_sack) {
  1376. TCP_SKB_CB(skb)->sacked =
  1377. tcp_sacktag_one(sk,
  1378. state,
  1379. TCP_SKB_CB(skb)->sacked,
  1380. TCP_SKB_CB(skb)->seq,
  1381. TCP_SKB_CB(skb)->end_seq,
  1382. dup_sack,
  1383. tcp_skb_pcount(skb),
  1384. &skb->skb_mstamp);
  1385. tcp_rate_skb_delivered(sk, skb, state->rate);
  1386. if (!before(TCP_SKB_CB(skb)->seq,
  1387. tcp_highest_sack_seq(tp)))
  1388. tcp_advance_highest_sack(sk, skb);
  1389. }
  1390. state->fack_count += tcp_skb_pcount(skb);
  1391. }
  1392. return skb;
  1393. }
  1394. /* Avoid all extra work that is being done by sacktag while walking in
  1395. * a normal way
  1396. */
  1397. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1398. struct tcp_sacktag_state *state,
  1399. u32 skip_to_seq)
  1400. {
  1401. tcp_for_write_queue_from(skb, sk) {
  1402. if (skb == tcp_send_head(sk))
  1403. break;
  1404. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1405. break;
  1406. state->fack_count += tcp_skb_pcount(skb);
  1407. }
  1408. return skb;
  1409. }
  1410. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1411. struct sock *sk,
  1412. struct tcp_sack_block *next_dup,
  1413. struct tcp_sacktag_state *state,
  1414. u32 skip_to_seq)
  1415. {
  1416. if (!next_dup)
  1417. return skb;
  1418. if (before(next_dup->start_seq, skip_to_seq)) {
  1419. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1420. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1421. next_dup->start_seq, next_dup->end_seq,
  1422. 1);
  1423. }
  1424. return skb;
  1425. }
  1426. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1427. {
  1428. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1429. }
  1430. static int
  1431. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1432. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1433. {
  1434. struct tcp_sock *tp = tcp_sk(sk);
  1435. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1436. TCP_SKB_CB(ack_skb)->sacked);
  1437. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1438. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1439. struct tcp_sack_block *cache;
  1440. struct sk_buff *skb;
  1441. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1442. int used_sacks;
  1443. bool found_dup_sack = false;
  1444. int i, j;
  1445. int first_sack_index;
  1446. state->flag = 0;
  1447. state->reord = tp->packets_out;
  1448. if (!tp->sacked_out) {
  1449. if (WARN_ON(tp->fackets_out))
  1450. tp->fackets_out = 0;
  1451. tcp_highest_sack_reset(sk);
  1452. }
  1453. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1454. num_sacks, prior_snd_una);
  1455. if (found_dup_sack) {
  1456. state->flag |= FLAG_DSACKING_ACK;
  1457. tp->delivered++; /* A spurious retransmission is delivered */
  1458. }
  1459. /* Eliminate too old ACKs, but take into
  1460. * account more or less fresh ones, they can
  1461. * contain valid SACK info.
  1462. */
  1463. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1464. return 0;
  1465. if (!tp->packets_out)
  1466. goto out;
  1467. used_sacks = 0;
  1468. first_sack_index = 0;
  1469. for (i = 0; i < num_sacks; i++) {
  1470. bool dup_sack = !i && found_dup_sack;
  1471. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1472. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1473. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1474. sp[used_sacks].start_seq,
  1475. sp[used_sacks].end_seq)) {
  1476. int mib_idx;
  1477. if (dup_sack) {
  1478. if (!tp->undo_marker)
  1479. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1480. else
  1481. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1482. } else {
  1483. /* Don't count olds caused by ACK reordering */
  1484. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1485. !after(sp[used_sacks].end_seq, tp->snd_una))
  1486. continue;
  1487. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1488. }
  1489. NET_INC_STATS(sock_net(sk), mib_idx);
  1490. if (i == 0)
  1491. first_sack_index = -1;
  1492. continue;
  1493. }
  1494. /* Ignore very old stuff early */
  1495. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1496. continue;
  1497. used_sacks++;
  1498. }
  1499. /* order SACK blocks to allow in order walk of the retrans queue */
  1500. for (i = used_sacks - 1; i > 0; i--) {
  1501. for (j = 0; j < i; j++) {
  1502. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1503. swap(sp[j], sp[j + 1]);
  1504. /* Track where the first SACK block goes to */
  1505. if (j == first_sack_index)
  1506. first_sack_index = j + 1;
  1507. }
  1508. }
  1509. }
  1510. skb = tcp_write_queue_head(sk);
  1511. state->fack_count = 0;
  1512. i = 0;
  1513. if (!tp->sacked_out) {
  1514. /* It's already past, so skip checking against it */
  1515. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1516. } else {
  1517. cache = tp->recv_sack_cache;
  1518. /* Skip empty blocks in at head of the cache */
  1519. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1520. !cache->end_seq)
  1521. cache++;
  1522. }
  1523. while (i < used_sacks) {
  1524. u32 start_seq = sp[i].start_seq;
  1525. u32 end_seq = sp[i].end_seq;
  1526. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1527. struct tcp_sack_block *next_dup = NULL;
  1528. if (found_dup_sack && ((i + 1) == first_sack_index))
  1529. next_dup = &sp[i + 1];
  1530. /* Skip too early cached blocks */
  1531. while (tcp_sack_cache_ok(tp, cache) &&
  1532. !before(start_seq, cache->end_seq))
  1533. cache++;
  1534. /* Can skip some work by looking recv_sack_cache? */
  1535. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1536. after(end_seq, cache->start_seq)) {
  1537. /* Head todo? */
  1538. if (before(start_seq, cache->start_seq)) {
  1539. skb = tcp_sacktag_skip(skb, sk, state,
  1540. start_seq);
  1541. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1542. state,
  1543. start_seq,
  1544. cache->start_seq,
  1545. dup_sack);
  1546. }
  1547. /* Rest of the block already fully processed? */
  1548. if (!after(end_seq, cache->end_seq))
  1549. goto advance_sp;
  1550. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1551. state,
  1552. cache->end_seq);
  1553. /* ...tail remains todo... */
  1554. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1555. /* ...but better entrypoint exists! */
  1556. skb = tcp_highest_sack(sk);
  1557. if (!skb)
  1558. break;
  1559. state->fack_count = tp->fackets_out;
  1560. cache++;
  1561. goto walk;
  1562. }
  1563. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1564. /* Check overlap against next cached too (past this one already) */
  1565. cache++;
  1566. continue;
  1567. }
  1568. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1569. skb = tcp_highest_sack(sk);
  1570. if (!skb)
  1571. break;
  1572. state->fack_count = tp->fackets_out;
  1573. }
  1574. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1575. walk:
  1576. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1577. start_seq, end_seq, dup_sack);
  1578. advance_sp:
  1579. i++;
  1580. }
  1581. /* Clear the head of the cache sack blocks so we can skip it next time */
  1582. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1583. tp->recv_sack_cache[i].start_seq = 0;
  1584. tp->recv_sack_cache[i].end_seq = 0;
  1585. }
  1586. for (j = 0; j < used_sacks; j++)
  1587. tp->recv_sack_cache[i++] = sp[j];
  1588. if ((state->reord < tp->fackets_out) &&
  1589. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1590. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1591. tcp_verify_left_out(tp);
  1592. out:
  1593. #if FASTRETRANS_DEBUG > 0
  1594. WARN_ON((int)tp->sacked_out < 0);
  1595. WARN_ON((int)tp->lost_out < 0);
  1596. WARN_ON((int)tp->retrans_out < 0);
  1597. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1598. #endif
  1599. return state->flag;
  1600. }
  1601. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1602. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1603. */
  1604. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1605. {
  1606. u32 holes;
  1607. holes = max(tp->lost_out, 1U);
  1608. holes = min(holes, tp->packets_out);
  1609. if ((tp->sacked_out + holes) > tp->packets_out) {
  1610. tp->sacked_out = tp->packets_out - holes;
  1611. return true;
  1612. }
  1613. return false;
  1614. }
  1615. /* If we receive more dupacks than we expected counting segments
  1616. * in assumption of absent reordering, interpret this as reordering.
  1617. * The only another reason could be bug in receiver TCP.
  1618. */
  1619. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1620. {
  1621. struct tcp_sock *tp = tcp_sk(sk);
  1622. if (tcp_limit_reno_sacked(tp))
  1623. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1624. }
  1625. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1626. static void tcp_add_reno_sack(struct sock *sk)
  1627. {
  1628. struct tcp_sock *tp = tcp_sk(sk);
  1629. u32 prior_sacked = tp->sacked_out;
  1630. tp->sacked_out++;
  1631. tcp_check_reno_reordering(sk, 0);
  1632. if (tp->sacked_out > prior_sacked)
  1633. tp->delivered++; /* Some out-of-order packet is delivered */
  1634. tcp_verify_left_out(tp);
  1635. }
  1636. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1637. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1638. {
  1639. struct tcp_sock *tp = tcp_sk(sk);
  1640. if (acked > 0) {
  1641. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1642. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1643. if (acked - 1 >= tp->sacked_out)
  1644. tp->sacked_out = 0;
  1645. else
  1646. tp->sacked_out -= acked - 1;
  1647. }
  1648. tcp_check_reno_reordering(sk, acked);
  1649. tcp_verify_left_out(tp);
  1650. }
  1651. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1652. {
  1653. tp->sacked_out = 0;
  1654. }
  1655. void tcp_clear_retrans(struct tcp_sock *tp)
  1656. {
  1657. tp->retrans_out = 0;
  1658. tp->lost_out = 0;
  1659. tp->undo_marker = 0;
  1660. tp->undo_retrans = -1;
  1661. tp->fackets_out = 0;
  1662. tp->sacked_out = 0;
  1663. }
  1664. static inline void tcp_init_undo(struct tcp_sock *tp)
  1665. {
  1666. tp->undo_marker = tp->snd_una;
  1667. /* Retransmission still in flight may cause DSACKs later. */
  1668. tp->undo_retrans = tp->retrans_out ? : -1;
  1669. }
  1670. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1671. * and reset tags completely, otherwise preserve SACKs. If receiver
  1672. * dropped its ofo queue, we will know this due to reneging detection.
  1673. */
  1674. void tcp_enter_loss(struct sock *sk)
  1675. {
  1676. const struct inet_connection_sock *icsk = inet_csk(sk);
  1677. struct tcp_sock *tp = tcp_sk(sk);
  1678. struct net *net = sock_net(sk);
  1679. struct sk_buff *skb;
  1680. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1681. bool is_reneg; /* is receiver reneging on SACKs? */
  1682. bool mark_lost;
  1683. /* Reduce ssthresh if it has not yet been made inside this window. */
  1684. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1685. !after(tp->high_seq, tp->snd_una) ||
  1686. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1687. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1688. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1689. tcp_ca_event(sk, CA_EVENT_LOSS);
  1690. tcp_init_undo(tp);
  1691. }
  1692. tp->snd_cwnd = 1;
  1693. tp->snd_cwnd_cnt = 0;
  1694. tp->snd_cwnd_stamp = tcp_time_stamp;
  1695. tp->retrans_out = 0;
  1696. tp->lost_out = 0;
  1697. if (tcp_is_reno(tp))
  1698. tcp_reset_reno_sack(tp);
  1699. skb = tcp_write_queue_head(sk);
  1700. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1701. if (is_reneg) {
  1702. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1703. tp->sacked_out = 0;
  1704. tp->fackets_out = 0;
  1705. /* Mark SACK reneging until we recover from this loss event. */
  1706. tp->is_sack_reneg = 1;
  1707. }
  1708. tcp_clear_all_retrans_hints(tp);
  1709. tcp_for_write_queue(skb, sk) {
  1710. if (skb == tcp_send_head(sk))
  1711. break;
  1712. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1713. is_reneg);
  1714. if (mark_lost)
  1715. tcp_sum_lost(tp, skb);
  1716. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1717. if (mark_lost) {
  1718. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1719. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1720. tp->lost_out += tcp_skb_pcount(skb);
  1721. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1722. }
  1723. }
  1724. tcp_verify_left_out(tp);
  1725. /* Timeout in disordered state after receiving substantial DUPACKs
  1726. * suggests that the degree of reordering is over-estimated.
  1727. */
  1728. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1729. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1730. tp->reordering = min_t(unsigned int, tp->reordering,
  1731. net->ipv4.sysctl_tcp_reordering);
  1732. tcp_set_ca_state(sk, TCP_CA_Loss);
  1733. tp->high_seq = tp->snd_nxt;
  1734. tcp_ecn_queue_cwr(tp);
  1735. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1736. * loss recovery is underway except recurring timeout(s) on
  1737. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1738. */
  1739. tp->frto = sysctl_tcp_frto &&
  1740. (new_recovery || icsk->icsk_retransmits) &&
  1741. !inet_csk(sk)->icsk_mtup.probe_size;
  1742. }
  1743. /* If ACK arrived pointing to a remembered SACK, it means that our
  1744. * remembered SACKs do not reflect real state of receiver i.e.
  1745. * receiver _host_ is heavily congested (or buggy).
  1746. *
  1747. * To avoid big spurious retransmission bursts due to transient SACK
  1748. * scoreboard oddities that look like reneging, we give the receiver a
  1749. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1750. * restore sanity to the SACK scoreboard. If the apparent reneging
  1751. * persists until this RTO then we'll clear the SACK scoreboard.
  1752. */
  1753. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1754. {
  1755. if (flag & FLAG_SACK_RENEGING) {
  1756. struct tcp_sock *tp = tcp_sk(sk);
  1757. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1758. msecs_to_jiffies(10));
  1759. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1760. delay, TCP_RTO_MAX);
  1761. return true;
  1762. }
  1763. return false;
  1764. }
  1765. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1766. {
  1767. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1768. }
  1769. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1770. * counter when SACK is enabled (without SACK, sacked_out is used for
  1771. * that purpose).
  1772. *
  1773. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1774. * segments up to the highest received SACK block so far and holes in
  1775. * between them.
  1776. *
  1777. * With reordering, holes may still be in flight, so RFC3517 recovery
  1778. * uses pure sacked_out (total number of SACKed segments) even though
  1779. * it violates the RFC that uses duplicate ACKs, often these are equal
  1780. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1781. * they differ. Since neither occurs due to loss, TCP should really
  1782. * ignore them.
  1783. */
  1784. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1785. {
  1786. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1787. }
  1788. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1789. {
  1790. struct tcp_sock *tp = tcp_sk(sk);
  1791. unsigned long delay;
  1792. /* Delay early retransmit and entering fast recovery for
  1793. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1794. * available, or RTO is scheduled to fire first.
  1795. */
  1796. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1797. (flag & FLAG_ECE) || !tp->srtt_us)
  1798. return false;
  1799. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1800. msecs_to_jiffies(2));
  1801. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1802. return false;
  1803. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1804. TCP_RTO_MAX);
  1805. return true;
  1806. }
  1807. /* Linux NewReno/SACK/FACK/ECN state machine.
  1808. * --------------------------------------
  1809. *
  1810. * "Open" Normal state, no dubious events, fast path.
  1811. * "Disorder" In all the respects it is "Open",
  1812. * but requires a bit more attention. It is entered when
  1813. * we see some SACKs or dupacks. It is split of "Open"
  1814. * mainly to move some processing from fast path to slow one.
  1815. * "CWR" CWND was reduced due to some Congestion Notification event.
  1816. * It can be ECN, ICMP source quench, local device congestion.
  1817. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1818. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1819. *
  1820. * tcp_fastretrans_alert() is entered:
  1821. * - each incoming ACK, if state is not "Open"
  1822. * - when arrived ACK is unusual, namely:
  1823. * * SACK
  1824. * * Duplicate ACK.
  1825. * * ECN ECE.
  1826. *
  1827. * Counting packets in flight is pretty simple.
  1828. *
  1829. * in_flight = packets_out - left_out + retrans_out
  1830. *
  1831. * packets_out is SND.NXT-SND.UNA counted in packets.
  1832. *
  1833. * retrans_out is number of retransmitted segments.
  1834. *
  1835. * left_out is number of segments left network, but not ACKed yet.
  1836. *
  1837. * left_out = sacked_out + lost_out
  1838. *
  1839. * sacked_out: Packets, which arrived to receiver out of order
  1840. * and hence not ACKed. With SACKs this number is simply
  1841. * amount of SACKed data. Even without SACKs
  1842. * it is easy to give pretty reliable estimate of this number,
  1843. * counting duplicate ACKs.
  1844. *
  1845. * lost_out: Packets lost by network. TCP has no explicit
  1846. * "loss notification" feedback from network (for now).
  1847. * It means that this number can be only _guessed_.
  1848. * Actually, it is the heuristics to predict lossage that
  1849. * distinguishes different algorithms.
  1850. *
  1851. * F.e. after RTO, when all the queue is considered as lost,
  1852. * lost_out = packets_out and in_flight = retrans_out.
  1853. *
  1854. * Essentially, we have now two algorithms counting
  1855. * lost packets.
  1856. *
  1857. * FACK: It is the simplest heuristics. As soon as we decided
  1858. * that something is lost, we decide that _all_ not SACKed
  1859. * packets until the most forward SACK are lost. I.e.
  1860. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1861. * It is absolutely correct estimate, if network does not reorder
  1862. * packets. And it loses any connection to reality when reordering
  1863. * takes place. We use FACK by default until reordering
  1864. * is suspected on the path to this destination.
  1865. *
  1866. * NewReno: when Recovery is entered, we assume that one segment
  1867. * is lost (classic Reno). While we are in Recovery and
  1868. * a partial ACK arrives, we assume that one more packet
  1869. * is lost (NewReno). This heuristics are the same in NewReno
  1870. * and SACK.
  1871. *
  1872. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1873. * deflation etc. CWND is real congestion window, never inflated, changes
  1874. * only according to classic VJ rules.
  1875. *
  1876. * Really tricky (and requiring careful tuning) part of algorithm
  1877. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1878. * The first determines the moment _when_ we should reduce CWND and,
  1879. * hence, slow down forward transmission. In fact, it determines the moment
  1880. * when we decide that hole is caused by loss, rather than by a reorder.
  1881. *
  1882. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1883. * holes, caused by lost packets.
  1884. *
  1885. * And the most logically complicated part of algorithm is undo
  1886. * heuristics. We detect false retransmits due to both too early
  1887. * fast retransmit (reordering) and underestimated RTO, analyzing
  1888. * timestamps and D-SACKs. When we detect that some segments were
  1889. * retransmitted by mistake and CWND reduction was wrong, we undo
  1890. * window reduction and abort recovery phase. This logic is hidden
  1891. * inside several functions named tcp_try_undo_<something>.
  1892. */
  1893. /* This function decides, when we should leave Disordered state
  1894. * and enter Recovery phase, reducing congestion window.
  1895. *
  1896. * Main question: may we further continue forward transmission
  1897. * with the same cwnd?
  1898. */
  1899. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1900. {
  1901. struct tcp_sock *tp = tcp_sk(sk);
  1902. __u32 packets_out;
  1903. int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
  1904. /* Trick#1: The loss is proven. */
  1905. if (tp->lost_out)
  1906. return true;
  1907. /* Not-A-Trick#2 : Classic rule... */
  1908. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1909. return true;
  1910. /* Trick#4: It is still not OK... But will it be useful to delay
  1911. * recovery more?
  1912. */
  1913. packets_out = tp->packets_out;
  1914. if (packets_out <= tp->reordering &&
  1915. tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
  1916. !tcp_may_send_now(sk)) {
  1917. /* We have nothing to send. This connection is limited
  1918. * either by receiver window or by application.
  1919. */
  1920. return true;
  1921. }
  1922. /* If a thin stream is detected, retransmit after first
  1923. * received dupack. Employ only if SACK is supported in order
  1924. * to avoid possible corner-case series of spurious retransmissions
  1925. * Use only if there are no unsent data.
  1926. */
  1927. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1928. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1929. tcp_is_sack(tp) && !tcp_send_head(sk))
  1930. return true;
  1931. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1932. * retransmissions due to small network reorderings, we implement
  1933. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1934. * interval if appropriate.
  1935. */
  1936. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1937. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1938. !tcp_may_send_now(sk))
  1939. return !tcp_pause_early_retransmit(sk, flag);
  1940. return false;
  1941. }
  1942. /* Detect loss in event "A" above by marking head of queue up as lost.
  1943. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1944. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1945. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1946. * the maximum SACKed segments to pass before reaching this limit.
  1947. */
  1948. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1949. {
  1950. struct tcp_sock *tp = tcp_sk(sk);
  1951. struct sk_buff *skb;
  1952. int cnt, oldcnt, lost;
  1953. unsigned int mss;
  1954. /* Use SACK to deduce losses of new sequences sent during recovery */
  1955. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1956. WARN_ON(packets > tp->packets_out);
  1957. if (tp->lost_skb_hint) {
  1958. skb = tp->lost_skb_hint;
  1959. cnt = tp->lost_cnt_hint;
  1960. /* Head already handled? */
  1961. if (mark_head && skb != tcp_write_queue_head(sk))
  1962. return;
  1963. } else {
  1964. skb = tcp_write_queue_head(sk);
  1965. cnt = 0;
  1966. }
  1967. tcp_for_write_queue_from(skb, sk) {
  1968. if (skb == tcp_send_head(sk))
  1969. break;
  1970. /* TODO: do this better */
  1971. /* this is not the most efficient way to do this... */
  1972. tp->lost_skb_hint = skb;
  1973. tp->lost_cnt_hint = cnt;
  1974. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1975. break;
  1976. oldcnt = cnt;
  1977. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1978. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1979. cnt += tcp_skb_pcount(skb);
  1980. if (cnt > packets) {
  1981. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1982. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1983. (oldcnt >= packets))
  1984. break;
  1985. mss = tcp_skb_mss(skb);
  1986. /* If needed, chop off the prefix to mark as lost. */
  1987. lost = (packets - oldcnt) * mss;
  1988. if (lost < skb->len &&
  1989. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1990. break;
  1991. cnt = packets;
  1992. }
  1993. tcp_skb_mark_lost(tp, skb);
  1994. if (mark_head)
  1995. break;
  1996. }
  1997. tcp_verify_left_out(tp);
  1998. }
  1999. /* Account newly detected lost packet(s) */
  2000. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2001. {
  2002. struct tcp_sock *tp = tcp_sk(sk);
  2003. if (tcp_is_reno(tp)) {
  2004. tcp_mark_head_lost(sk, 1, 1);
  2005. } else if (tcp_is_fack(tp)) {
  2006. int lost = tp->fackets_out - tp->reordering;
  2007. if (lost <= 0)
  2008. lost = 1;
  2009. tcp_mark_head_lost(sk, lost, 0);
  2010. } else {
  2011. int sacked_upto = tp->sacked_out - tp->reordering;
  2012. if (sacked_upto >= 0)
  2013. tcp_mark_head_lost(sk, sacked_upto, 0);
  2014. else if (fast_rexmit)
  2015. tcp_mark_head_lost(sk, 1, 1);
  2016. }
  2017. }
  2018. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  2019. {
  2020. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2021. before(tp->rx_opt.rcv_tsecr, when);
  2022. }
  2023. /* skb is spurious retransmitted if the returned timestamp echo
  2024. * reply is prior to the skb transmission time
  2025. */
  2026. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  2027. const struct sk_buff *skb)
  2028. {
  2029. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  2030. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  2031. }
  2032. /* Nothing was retransmitted or returned timestamp is less
  2033. * than timestamp of the first retransmission.
  2034. */
  2035. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2036. {
  2037. return !tp->retrans_stamp ||
  2038. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  2039. }
  2040. /* Undo procedures. */
  2041. /* We can clear retrans_stamp when there are no retransmissions in the
  2042. * window. It would seem that it is trivially available for us in
  2043. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2044. * what will happen if errors occur when sending retransmission for the
  2045. * second time. ...It could the that such segment has only
  2046. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2047. * the head skb is enough except for some reneging corner cases that
  2048. * are not worth the effort.
  2049. *
  2050. * Main reason for all this complexity is the fact that connection dying
  2051. * time now depends on the validity of the retrans_stamp, in particular,
  2052. * that successive retransmissions of a segment must not advance
  2053. * retrans_stamp under any conditions.
  2054. */
  2055. static bool tcp_any_retrans_done(const struct sock *sk)
  2056. {
  2057. const struct tcp_sock *tp = tcp_sk(sk);
  2058. struct sk_buff *skb;
  2059. if (tp->retrans_out)
  2060. return true;
  2061. skb = tcp_write_queue_head(sk);
  2062. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2063. return true;
  2064. return false;
  2065. }
  2066. #if FASTRETRANS_DEBUG > 1
  2067. static void DBGUNDO(struct sock *sk, const char *msg)
  2068. {
  2069. struct tcp_sock *tp = tcp_sk(sk);
  2070. struct inet_sock *inet = inet_sk(sk);
  2071. if (sk->sk_family == AF_INET) {
  2072. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2073. msg,
  2074. &inet->inet_daddr, ntohs(inet->inet_dport),
  2075. tp->snd_cwnd, tcp_left_out(tp),
  2076. tp->snd_ssthresh, tp->prior_ssthresh,
  2077. tp->packets_out);
  2078. }
  2079. #if IS_ENABLED(CONFIG_IPV6)
  2080. else if (sk->sk_family == AF_INET6) {
  2081. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2082. msg,
  2083. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2084. tp->snd_cwnd, tcp_left_out(tp),
  2085. tp->snd_ssthresh, tp->prior_ssthresh,
  2086. tp->packets_out);
  2087. }
  2088. #endif
  2089. }
  2090. #else
  2091. #define DBGUNDO(x...) do { } while (0)
  2092. #endif
  2093. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2094. {
  2095. struct tcp_sock *tp = tcp_sk(sk);
  2096. if (unmark_loss) {
  2097. struct sk_buff *skb;
  2098. tcp_for_write_queue(skb, sk) {
  2099. if (skb == tcp_send_head(sk))
  2100. break;
  2101. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2102. }
  2103. tp->lost_out = 0;
  2104. tcp_clear_all_retrans_hints(tp);
  2105. }
  2106. if (tp->prior_ssthresh) {
  2107. const struct inet_connection_sock *icsk = inet_csk(sk);
  2108. if (icsk->icsk_ca_ops->undo_cwnd)
  2109. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2110. else
  2111. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2112. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2113. tp->snd_ssthresh = tp->prior_ssthresh;
  2114. tcp_ecn_withdraw_cwr(tp);
  2115. }
  2116. }
  2117. tp->snd_cwnd_stamp = tcp_time_stamp;
  2118. tp->undo_marker = 0;
  2119. }
  2120. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2121. {
  2122. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2123. }
  2124. /* People celebrate: "We love our President!" */
  2125. static bool tcp_try_undo_recovery(struct sock *sk)
  2126. {
  2127. struct tcp_sock *tp = tcp_sk(sk);
  2128. if (tcp_may_undo(tp)) {
  2129. int mib_idx;
  2130. /* Happy end! We did not retransmit anything
  2131. * or our original transmission succeeded.
  2132. */
  2133. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2134. tcp_undo_cwnd_reduction(sk, false);
  2135. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2136. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2137. else
  2138. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2139. NET_INC_STATS(sock_net(sk), mib_idx);
  2140. }
  2141. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2142. /* Hold old state until something *above* high_seq
  2143. * is ACKed. For Reno it is MUST to prevent false
  2144. * fast retransmits (RFC2582). SACK TCP is safe. */
  2145. if (!tcp_any_retrans_done(sk))
  2146. tp->retrans_stamp = 0;
  2147. return true;
  2148. }
  2149. tcp_set_ca_state(sk, TCP_CA_Open);
  2150. tp->is_sack_reneg = 0;
  2151. return false;
  2152. }
  2153. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2154. static bool tcp_try_undo_dsack(struct sock *sk)
  2155. {
  2156. struct tcp_sock *tp = tcp_sk(sk);
  2157. if (tp->undo_marker && !tp->undo_retrans) {
  2158. DBGUNDO(sk, "D-SACK");
  2159. tcp_undo_cwnd_reduction(sk, false);
  2160. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2161. return true;
  2162. }
  2163. return false;
  2164. }
  2165. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2166. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2167. {
  2168. struct tcp_sock *tp = tcp_sk(sk);
  2169. if (frto_undo || tcp_may_undo(tp)) {
  2170. tcp_undo_cwnd_reduction(sk, true);
  2171. DBGUNDO(sk, "partial loss");
  2172. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2173. if (frto_undo)
  2174. NET_INC_STATS(sock_net(sk),
  2175. LINUX_MIB_TCPSPURIOUSRTOS);
  2176. inet_csk(sk)->icsk_retransmits = 0;
  2177. if (frto_undo || tcp_is_sack(tp)) {
  2178. tcp_set_ca_state(sk, TCP_CA_Open);
  2179. tp->is_sack_reneg = 0;
  2180. }
  2181. return true;
  2182. }
  2183. return false;
  2184. }
  2185. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2186. * It computes the number of packets to send (sndcnt) based on packets newly
  2187. * delivered:
  2188. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2189. * cwnd reductions across a full RTT.
  2190. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2191. * But when the retransmits are acked without further losses, PRR
  2192. * slow starts cwnd up to ssthresh to speed up the recovery.
  2193. */
  2194. static void tcp_init_cwnd_reduction(struct sock *sk)
  2195. {
  2196. struct tcp_sock *tp = tcp_sk(sk);
  2197. tp->high_seq = tp->snd_nxt;
  2198. tp->tlp_high_seq = 0;
  2199. tp->snd_cwnd_cnt = 0;
  2200. tp->prior_cwnd = tp->snd_cwnd;
  2201. tp->prr_delivered = 0;
  2202. tp->prr_out = 0;
  2203. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2204. tcp_ecn_queue_cwr(tp);
  2205. }
  2206. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2207. int flag)
  2208. {
  2209. struct tcp_sock *tp = tcp_sk(sk);
  2210. int sndcnt = 0;
  2211. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2212. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2213. return;
  2214. tp->prr_delivered += newly_acked_sacked;
  2215. if (delta < 0) {
  2216. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2217. tp->prior_cwnd - 1;
  2218. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2219. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2220. !(flag & FLAG_LOST_RETRANS)) {
  2221. sndcnt = min_t(int, delta,
  2222. max_t(int, tp->prr_delivered - tp->prr_out,
  2223. newly_acked_sacked) + 1);
  2224. } else {
  2225. sndcnt = min(delta, newly_acked_sacked);
  2226. }
  2227. /* Force a fast retransmit upon entering fast recovery */
  2228. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2229. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2230. }
  2231. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2232. {
  2233. struct tcp_sock *tp = tcp_sk(sk);
  2234. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2235. return;
  2236. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2237. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2238. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2239. tp->snd_cwnd = tp->snd_ssthresh;
  2240. tp->snd_cwnd_stamp = tcp_time_stamp;
  2241. }
  2242. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2243. }
  2244. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2245. void tcp_enter_cwr(struct sock *sk)
  2246. {
  2247. struct tcp_sock *tp = tcp_sk(sk);
  2248. tp->prior_ssthresh = 0;
  2249. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2250. tp->undo_marker = 0;
  2251. tcp_init_cwnd_reduction(sk);
  2252. tcp_set_ca_state(sk, TCP_CA_CWR);
  2253. }
  2254. }
  2255. EXPORT_SYMBOL(tcp_enter_cwr);
  2256. static void tcp_try_keep_open(struct sock *sk)
  2257. {
  2258. struct tcp_sock *tp = tcp_sk(sk);
  2259. int state = TCP_CA_Open;
  2260. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2261. state = TCP_CA_Disorder;
  2262. if (inet_csk(sk)->icsk_ca_state != state) {
  2263. tcp_set_ca_state(sk, state);
  2264. tp->high_seq = tp->snd_nxt;
  2265. }
  2266. }
  2267. static void tcp_try_to_open(struct sock *sk, int flag)
  2268. {
  2269. struct tcp_sock *tp = tcp_sk(sk);
  2270. tcp_verify_left_out(tp);
  2271. if (!tcp_any_retrans_done(sk))
  2272. tp->retrans_stamp = 0;
  2273. if (flag & FLAG_ECE)
  2274. tcp_enter_cwr(sk);
  2275. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2276. tcp_try_keep_open(sk);
  2277. }
  2278. }
  2279. static void tcp_mtup_probe_failed(struct sock *sk)
  2280. {
  2281. struct inet_connection_sock *icsk = inet_csk(sk);
  2282. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2283. icsk->icsk_mtup.probe_size = 0;
  2284. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2285. }
  2286. static void tcp_mtup_probe_success(struct sock *sk)
  2287. {
  2288. struct tcp_sock *tp = tcp_sk(sk);
  2289. struct inet_connection_sock *icsk = inet_csk(sk);
  2290. /* FIXME: breaks with very large cwnd */
  2291. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2292. tp->snd_cwnd = tp->snd_cwnd *
  2293. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2294. icsk->icsk_mtup.probe_size;
  2295. tp->snd_cwnd_cnt = 0;
  2296. tp->snd_cwnd_stamp = tcp_time_stamp;
  2297. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2298. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2299. icsk->icsk_mtup.probe_size = 0;
  2300. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2301. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2302. }
  2303. /* Do a simple retransmit without using the backoff mechanisms in
  2304. * tcp_timer. This is used for path mtu discovery.
  2305. * The socket is already locked here.
  2306. */
  2307. void tcp_simple_retransmit(struct sock *sk)
  2308. {
  2309. const struct inet_connection_sock *icsk = inet_csk(sk);
  2310. struct tcp_sock *tp = tcp_sk(sk);
  2311. struct sk_buff *skb;
  2312. unsigned int mss = tcp_current_mss(sk);
  2313. u32 prior_lost = tp->lost_out;
  2314. tcp_for_write_queue(skb, sk) {
  2315. if (skb == tcp_send_head(sk))
  2316. break;
  2317. if (tcp_skb_seglen(skb) > mss &&
  2318. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2319. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2320. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2321. tp->retrans_out -= tcp_skb_pcount(skb);
  2322. }
  2323. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2324. }
  2325. }
  2326. tcp_clear_retrans_hints_partial(tp);
  2327. if (prior_lost == tp->lost_out)
  2328. return;
  2329. if (tcp_is_reno(tp))
  2330. tcp_limit_reno_sacked(tp);
  2331. tcp_verify_left_out(tp);
  2332. /* Don't muck with the congestion window here.
  2333. * Reason is that we do not increase amount of _data_
  2334. * in network, but units changed and effective
  2335. * cwnd/ssthresh really reduced now.
  2336. */
  2337. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2338. tp->high_seq = tp->snd_nxt;
  2339. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2340. tp->prior_ssthresh = 0;
  2341. tp->undo_marker = 0;
  2342. tcp_set_ca_state(sk, TCP_CA_Loss);
  2343. }
  2344. tcp_xmit_retransmit_queue(sk);
  2345. }
  2346. EXPORT_SYMBOL(tcp_simple_retransmit);
  2347. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2348. {
  2349. struct tcp_sock *tp = tcp_sk(sk);
  2350. int mib_idx;
  2351. if (tcp_is_reno(tp))
  2352. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2353. else
  2354. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2355. NET_INC_STATS(sock_net(sk), mib_idx);
  2356. tp->prior_ssthresh = 0;
  2357. tcp_init_undo(tp);
  2358. if (!tcp_in_cwnd_reduction(sk)) {
  2359. if (!ece_ack)
  2360. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2361. tcp_init_cwnd_reduction(sk);
  2362. }
  2363. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2364. }
  2365. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2366. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2367. */
  2368. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2369. int *rexmit)
  2370. {
  2371. struct tcp_sock *tp = tcp_sk(sk);
  2372. bool recovered = !before(tp->snd_una, tp->high_seq);
  2373. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2374. tcp_try_undo_loss(sk, false))
  2375. return;
  2376. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2377. /* Step 3.b. A timeout is spurious if not all data are
  2378. * lost, i.e., never-retransmitted data are (s)acked.
  2379. */
  2380. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2381. tcp_try_undo_loss(sk, true))
  2382. return;
  2383. if (after(tp->snd_nxt, tp->high_seq)) {
  2384. if (flag & FLAG_DATA_SACKED || is_dupack)
  2385. tp->frto = 0; /* Step 3.a. loss was real */
  2386. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2387. tp->high_seq = tp->snd_nxt;
  2388. /* Step 2.b. Try send new data (but deferred until cwnd
  2389. * is updated in tcp_ack()). Otherwise fall back to
  2390. * the conventional recovery.
  2391. */
  2392. if (tcp_send_head(sk) &&
  2393. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2394. *rexmit = REXMIT_NEW;
  2395. return;
  2396. }
  2397. tp->frto = 0;
  2398. }
  2399. }
  2400. if (recovered) {
  2401. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2402. tcp_try_undo_recovery(sk);
  2403. return;
  2404. }
  2405. if (tcp_is_reno(tp)) {
  2406. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2407. * delivered. Lower inflight to clock out (re)tranmissions.
  2408. */
  2409. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2410. tcp_add_reno_sack(sk);
  2411. else if (flag & FLAG_SND_UNA_ADVANCED)
  2412. tcp_reset_reno_sack(tp);
  2413. }
  2414. *rexmit = REXMIT_LOST;
  2415. }
  2416. /* Undo during fast recovery after partial ACK. */
  2417. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2418. {
  2419. struct tcp_sock *tp = tcp_sk(sk);
  2420. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2421. /* Plain luck! Hole if filled with delayed
  2422. * packet, rather than with a retransmit.
  2423. */
  2424. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2425. /* We are getting evidence that the reordering degree is higher
  2426. * than we realized. If there are no retransmits out then we
  2427. * can undo. Otherwise we clock out new packets but do not
  2428. * mark more packets lost or retransmit more.
  2429. */
  2430. if (tp->retrans_out)
  2431. return true;
  2432. if (!tcp_any_retrans_done(sk))
  2433. tp->retrans_stamp = 0;
  2434. DBGUNDO(sk, "partial recovery");
  2435. tcp_undo_cwnd_reduction(sk, true);
  2436. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2437. tcp_try_keep_open(sk);
  2438. return true;
  2439. }
  2440. return false;
  2441. }
  2442. /* Process an event, which can update packets-in-flight not trivially.
  2443. * Main goal of this function is to calculate new estimate for left_out,
  2444. * taking into account both packets sitting in receiver's buffer and
  2445. * packets lost by network.
  2446. *
  2447. * Besides that it updates the congestion state when packet loss or ECN
  2448. * is detected. But it does not reduce the cwnd, it is done by the
  2449. * congestion control later.
  2450. *
  2451. * It does _not_ decide what to send, it is made in function
  2452. * tcp_xmit_retransmit_queue().
  2453. */
  2454. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2455. bool is_dupack, int *ack_flag, int *rexmit)
  2456. {
  2457. struct inet_connection_sock *icsk = inet_csk(sk);
  2458. struct tcp_sock *tp = tcp_sk(sk);
  2459. int fast_rexmit = 0, flag = *ack_flag;
  2460. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2461. (tcp_fackets_out(tp) > tp->reordering));
  2462. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2463. tp->sacked_out = 0;
  2464. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2465. tp->fackets_out = 0;
  2466. /* Now state machine starts.
  2467. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2468. if (flag & FLAG_ECE)
  2469. tp->prior_ssthresh = 0;
  2470. /* B. In all the states check for reneging SACKs. */
  2471. if (tcp_check_sack_reneging(sk, flag))
  2472. return;
  2473. /* C. Check consistency of the current state. */
  2474. tcp_verify_left_out(tp);
  2475. /* D. Check state exit conditions. State can be terminated
  2476. * when high_seq is ACKed. */
  2477. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2478. WARN_ON(tp->retrans_out != 0);
  2479. tp->retrans_stamp = 0;
  2480. } else if (!before(tp->snd_una, tp->high_seq)) {
  2481. switch (icsk->icsk_ca_state) {
  2482. case TCP_CA_CWR:
  2483. /* CWR is to be held something *above* high_seq
  2484. * is ACKed for CWR bit to reach receiver. */
  2485. if (tp->snd_una != tp->high_seq) {
  2486. tcp_end_cwnd_reduction(sk);
  2487. tcp_set_ca_state(sk, TCP_CA_Open);
  2488. }
  2489. break;
  2490. case TCP_CA_Recovery:
  2491. if (tcp_is_reno(tp))
  2492. tcp_reset_reno_sack(tp);
  2493. if (tcp_try_undo_recovery(sk))
  2494. return;
  2495. tcp_end_cwnd_reduction(sk);
  2496. break;
  2497. }
  2498. }
  2499. /* Use RACK to detect loss */
  2500. if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
  2501. tcp_rack_mark_lost(sk)) {
  2502. flag |= FLAG_LOST_RETRANS;
  2503. *ack_flag |= FLAG_LOST_RETRANS;
  2504. }
  2505. /* E. Process state. */
  2506. switch (icsk->icsk_ca_state) {
  2507. case TCP_CA_Recovery:
  2508. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2509. if (tcp_is_reno(tp) && is_dupack)
  2510. tcp_add_reno_sack(sk);
  2511. } else {
  2512. if (tcp_try_undo_partial(sk, acked))
  2513. return;
  2514. /* Partial ACK arrived. Force fast retransmit. */
  2515. do_lost = tcp_is_reno(tp) ||
  2516. tcp_fackets_out(tp) > tp->reordering;
  2517. }
  2518. if (tcp_try_undo_dsack(sk)) {
  2519. tcp_try_keep_open(sk);
  2520. return;
  2521. }
  2522. break;
  2523. case TCP_CA_Loss:
  2524. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2525. if (icsk->icsk_ca_state != TCP_CA_Open &&
  2526. !(flag & FLAG_LOST_RETRANS))
  2527. return;
  2528. /* Change state if cwnd is undone or retransmits are lost */
  2529. default:
  2530. if (tcp_is_reno(tp)) {
  2531. if (flag & FLAG_SND_UNA_ADVANCED)
  2532. tcp_reset_reno_sack(tp);
  2533. if (is_dupack)
  2534. tcp_add_reno_sack(sk);
  2535. }
  2536. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2537. tcp_try_undo_dsack(sk);
  2538. if (!tcp_time_to_recover(sk, flag)) {
  2539. tcp_try_to_open(sk, flag);
  2540. return;
  2541. }
  2542. /* MTU probe failure: don't reduce cwnd */
  2543. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2544. icsk->icsk_mtup.probe_size &&
  2545. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2546. tcp_mtup_probe_failed(sk);
  2547. /* Restores the reduction we did in tcp_mtup_probe() */
  2548. tp->snd_cwnd++;
  2549. tcp_simple_retransmit(sk);
  2550. return;
  2551. }
  2552. /* Otherwise enter Recovery state */
  2553. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2554. fast_rexmit = 1;
  2555. }
  2556. if (do_lost)
  2557. tcp_update_scoreboard(sk, fast_rexmit);
  2558. *rexmit = REXMIT_LOST;
  2559. }
  2560. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2561. {
  2562. struct tcp_sock *tp = tcp_sk(sk);
  2563. u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2564. minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
  2565. rtt_us ? : jiffies_to_usecs(1));
  2566. }
  2567. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2568. long seq_rtt_us, long sack_rtt_us,
  2569. long ca_rtt_us)
  2570. {
  2571. const struct tcp_sock *tp = tcp_sk(sk);
  2572. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2573. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2574. * Karn's algorithm forbids taking RTT if some retransmitted data
  2575. * is acked (RFC6298).
  2576. */
  2577. if (seq_rtt_us < 0)
  2578. seq_rtt_us = sack_rtt_us;
  2579. /* RTTM Rule: A TSecr value received in a segment is used to
  2580. * update the averaged RTT measurement only if the segment
  2581. * acknowledges some new data, i.e., only if it advances the
  2582. * left edge of the send window.
  2583. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2584. */
  2585. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2586. flag & FLAG_ACKED)
  2587. seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
  2588. tp->rx_opt.rcv_tsecr);
  2589. if (seq_rtt_us < 0)
  2590. return false;
  2591. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2592. * always taken together with ACK, SACK, or TS-opts. Any negative
  2593. * values will be skipped with the seq_rtt_us < 0 check above.
  2594. */
  2595. tcp_update_rtt_min(sk, ca_rtt_us);
  2596. tcp_rtt_estimator(sk, seq_rtt_us);
  2597. tcp_set_rto(sk);
  2598. /* RFC6298: only reset backoff on valid RTT measurement. */
  2599. inet_csk(sk)->icsk_backoff = 0;
  2600. return true;
  2601. }
  2602. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2603. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2604. {
  2605. long rtt_us = -1L;
  2606. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
  2607. struct skb_mstamp now;
  2608. skb_mstamp_get(&now);
  2609. rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
  2610. }
  2611. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
  2612. }
  2613. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2614. {
  2615. const struct inet_connection_sock *icsk = inet_csk(sk);
  2616. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2617. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2618. }
  2619. /* Restart timer after forward progress on connection.
  2620. * RFC2988 recommends to restart timer to now+rto.
  2621. */
  2622. void tcp_rearm_rto(struct sock *sk)
  2623. {
  2624. const struct inet_connection_sock *icsk = inet_csk(sk);
  2625. struct tcp_sock *tp = tcp_sk(sk);
  2626. /* If the retrans timer is currently being used by Fast Open
  2627. * for SYN-ACK retrans purpose, stay put.
  2628. */
  2629. if (tp->fastopen_rsk)
  2630. return;
  2631. if (!tp->packets_out) {
  2632. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2633. } else {
  2634. u32 rto = inet_csk(sk)->icsk_rto;
  2635. /* Offset the time elapsed after installing regular RTO */
  2636. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2637. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2638. struct sk_buff *skb = tcp_write_queue_head(sk);
  2639. const u32 rto_time_stamp =
  2640. tcp_skb_timestamp(skb) + rto;
  2641. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2642. /* delta may not be positive if the socket is locked
  2643. * when the retrans timer fires and is rescheduled.
  2644. */
  2645. rto = max(delta, 1);
  2646. }
  2647. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2648. TCP_RTO_MAX);
  2649. }
  2650. }
  2651. /* This function is called when the delayed ER timer fires. TCP enters
  2652. * fast recovery and performs fast-retransmit.
  2653. */
  2654. void tcp_resume_early_retransmit(struct sock *sk)
  2655. {
  2656. struct tcp_sock *tp = tcp_sk(sk);
  2657. tcp_rearm_rto(sk);
  2658. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2659. if (!tp->do_early_retrans)
  2660. return;
  2661. tcp_enter_recovery(sk, false);
  2662. tcp_update_scoreboard(sk, 1);
  2663. tcp_xmit_retransmit_queue(sk);
  2664. }
  2665. /* If we get here, the whole TSO packet has not been acked. */
  2666. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2667. {
  2668. struct tcp_sock *tp = tcp_sk(sk);
  2669. u32 packets_acked;
  2670. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2671. packets_acked = tcp_skb_pcount(skb);
  2672. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2673. return 0;
  2674. packets_acked -= tcp_skb_pcount(skb);
  2675. if (packets_acked) {
  2676. BUG_ON(tcp_skb_pcount(skb) == 0);
  2677. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2678. }
  2679. return packets_acked;
  2680. }
  2681. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2682. u32 prior_snd_una)
  2683. {
  2684. const struct skb_shared_info *shinfo;
  2685. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2686. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2687. return;
  2688. shinfo = skb_shinfo(skb);
  2689. if (!before(shinfo->tskey, prior_snd_una) &&
  2690. before(shinfo->tskey, tcp_sk(sk)->snd_una))
  2691. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2692. }
  2693. /* Remove acknowledged frames from the retransmission queue. If our packet
  2694. * is before the ack sequence we can discard it as it's confirmed to have
  2695. * arrived at the other end.
  2696. */
  2697. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2698. u32 prior_snd_una, int *acked,
  2699. struct tcp_sacktag_state *sack,
  2700. struct skb_mstamp *now)
  2701. {
  2702. const struct inet_connection_sock *icsk = inet_csk(sk);
  2703. struct skb_mstamp first_ackt, last_ackt;
  2704. struct tcp_sock *tp = tcp_sk(sk);
  2705. u32 prior_sacked = tp->sacked_out;
  2706. u32 reord = tp->packets_out;
  2707. bool fully_acked = true;
  2708. long sack_rtt_us = -1L;
  2709. long seq_rtt_us = -1L;
  2710. long ca_rtt_us = -1L;
  2711. struct sk_buff *skb;
  2712. u32 pkts_acked = 0;
  2713. u32 last_in_flight = 0;
  2714. bool rtt_update;
  2715. int flag = 0;
  2716. first_ackt.v64 = 0;
  2717. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2718. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2719. u8 sacked = scb->sacked;
  2720. u32 acked_pcount;
  2721. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2722. /* Determine how many packets and what bytes were acked, tso and else */
  2723. if (after(scb->end_seq, tp->snd_una)) {
  2724. if (tcp_skb_pcount(skb) == 1 ||
  2725. !after(tp->snd_una, scb->seq))
  2726. break;
  2727. acked_pcount = tcp_tso_acked(sk, skb);
  2728. if (!acked_pcount)
  2729. break;
  2730. fully_acked = false;
  2731. } else {
  2732. /* Speedup tcp_unlink_write_queue() and next loop */
  2733. prefetchw(skb->next);
  2734. acked_pcount = tcp_skb_pcount(skb);
  2735. }
  2736. if (unlikely(sacked & TCPCB_RETRANS)) {
  2737. if (sacked & TCPCB_SACKED_RETRANS)
  2738. tp->retrans_out -= acked_pcount;
  2739. flag |= FLAG_RETRANS_DATA_ACKED;
  2740. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2741. last_ackt = skb->skb_mstamp;
  2742. WARN_ON_ONCE(last_ackt.v64 == 0);
  2743. if (!first_ackt.v64)
  2744. first_ackt = last_ackt;
  2745. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2746. reord = min(pkts_acked, reord);
  2747. if (!after(scb->end_seq, tp->high_seq))
  2748. flag |= FLAG_ORIG_SACK_ACKED;
  2749. }
  2750. if (sacked & TCPCB_SACKED_ACKED) {
  2751. tp->sacked_out -= acked_pcount;
  2752. } else if (tcp_is_sack(tp)) {
  2753. tp->delivered += acked_pcount;
  2754. if (!tcp_skb_spurious_retrans(tp, skb))
  2755. tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
  2756. }
  2757. if (sacked & TCPCB_LOST)
  2758. tp->lost_out -= acked_pcount;
  2759. tp->packets_out -= acked_pcount;
  2760. pkts_acked += acked_pcount;
  2761. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2762. /* Initial outgoing SYN's get put onto the write_queue
  2763. * just like anything else we transmit. It is not
  2764. * true data, and if we misinform our callers that
  2765. * this ACK acks real data, we will erroneously exit
  2766. * connection startup slow start one packet too
  2767. * quickly. This is severely frowned upon behavior.
  2768. */
  2769. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2770. flag |= FLAG_DATA_ACKED;
  2771. } else {
  2772. flag |= FLAG_SYN_ACKED;
  2773. tp->retrans_stamp = 0;
  2774. }
  2775. if (!fully_acked)
  2776. break;
  2777. tcp_unlink_write_queue(skb, sk);
  2778. sk_wmem_free_skb(sk, skb);
  2779. if (unlikely(skb == tp->retransmit_skb_hint))
  2780. tp->retransmit_skb_hint = NULL;
  2781. if (unlikely(skb == tp->lost_skb_hint))
  2782. tp->lost_skb_hint = NULL;
  2783. }
  2784. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2785. tp->snd_up = tp->snd_una;
  2786. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2787. flag |= FLAG_SACK_RENEGING;
  2788. if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2789. seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
  2790. ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
  2791. }
  2792. if (sack->first_sackt.v64) {
  2793. sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
  2794. ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
  2795. }
  2796. sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
  2797. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2798. ca_rtt_us);
  2799. if (flag & FLAG_ACKED) {
  2800. tcp_rearm_rto(sk);
  2801. if (unlikely(icsk->icsk_mtup.probe_size &&
  2802. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2803. tcp_mtup_probe_success(sk);
  2804. }
  2805. if (tcp_is_reno(tp)) {
  2806. tcp_remove_reno_sacks(sk, pkts_acked);
  2807. /* If any of the cumulatively ACKed segments was
  2808. * retransmitted, non-SACK case cannot confirm that
  2809. * progress was due to original transmission due to
  2810. * lack of TCPCB_SACKED_ACKED bits even if some of
  2811. * the packets may have been never retransmitted.
  2812. */
  2813. if (flag & FLAG_RETRANS_DATA_ACKED)
  2814. flag &= ~FLAG_ORIG_SACK_ACKED;
  2815. } else {
  2816. int delta;
  2817. /* Non-retransmitted hole got filled? That's reordering */
  2818. if (reord < prior_fackets && reord <= tp->fackets_out)
  2819. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2820. delta = tcp_is_fack(tp) ? pkts_acked :
  2821. prior_sacked - tp->sacked_out;
  2822. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2823. }
  2824. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2825. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2826. sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
  2827. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2828. * after when the head was last (re)transmitted. Otherwise the
  2829. * timeout may continue to extend in loss recovery.
  2830. */
  2831. tcp_rearm_rto(sk);
  2832. }
  2833. if (icsk->icsk_ca_ops->pkts_acked) {
  2834. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2835. .rtt_us = ca_rtt_us,
  2836. .in_flight = last_in_flight };
  2837. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2838. }
  2839. #if FASTRETRANS_DEBUG > 0
  2840. WARN_ON((int)tp->sacked_out < 0);
  2841. WARN_ON((int)tp->lost_out < 0);
  2842. WARN_ON((int)tp->retrans_out < 0);
  2843. if (!tp->packets_out && tcp_is_sack(tp)) {
  2844. icsk = inet_csk(sk);
  2845. if (tp->lost_out) {
  2846. pr_debug("Leak l=%u %d\n",
  2847. tp->lost_out, icsk->icsk_ca_state);
  2848. tp->lost_out = 0;
  2849. }
  2850. if (tp->sacked_out) {
  2851. pr_debug("Leak s=%u %d\n",
  2852. tp->sacked_out, icsk->icsk_ca_state);
  2853. tp->sacked_out = 0;
  2854. }
  2855. if (tp->retrans_out) {
  2856. pr_debug("Leak r=%u %d\n",
  2857. tp->retrans_out, icsk->icsk_ca_state);
  2858. tp->retrans_out = 0;
  2859. }
  2860. }
  2861. #endif
  2862. *acked = pkts_acked;
  2863. return flag;
  2864. }
  2865. static void tcp_ack_probe(struct sock *sk)
  2866. {
  2867. const struct tcp_sock *tp = tcp_sk(sk);
  2868. struct inet_connection_sock *icsk = inet_csk(sk);
  2869. /* Was it a usable window open? */
  2870. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2871. icsk->icsk_backoff = 0;
  2872. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2873. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2874. * This function is not for random using!
  2875. */
  2876. } else {
  2877. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2878. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2879. when, TCP_RTO_MAX);
  2880. }
  2881. }
  2882. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2883. {
  2884. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2885. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2886. }
  2887. /* Decide wheather to run the increase function of congestion control. */
  2888. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2889. {
  2890. /* If reordering is high then always grow cwnd whenever data is
  2891. * delivered regardless of its ordering. Otherwise stay conservative
  2892. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2893. * new SACK or ECE mark may first advance cwnd here and later reduce
  2894. * cwnd in tcp_fastretrans_alert() based on more states.
  2895. */
  2896. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2897. return flag & FLAG_FORWARD_PROGRESS;
  2898. return flag & FLAG_DATA_ACKED;
  2899. }
  2900. /* The "ultimate" congestion control function that aims to replace the rigid
  2901. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2902. * It's called toward the end of processing an ACK with precise rate
  2903. * information. All transmission or retransmission are delayed afterwards.
  2904. */
  2905. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2906. int flag, const struct rate_sample *rs)
  2907. {
  2908. const struct inet_connection_sock *icsk = inet_csk(sk);
  2909. if (icsk->icsk_ca_ops->cong_control) {
  2910. icsk->icsk_ca_ops->cong_control(sk, rs);
  2911. return;
  2912. }
  2913. if (tcp_in_cwnd_reduction(sk)) {
  2914. /* Reduce cwnd if state mandates */
  2915. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2916. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2917. /* Advance cwnd if state allows */
  2918. tcp_cong_avoid(sk, ack, acked_sacked);
  2919. }
  2920. tcp_update_pacing_rate(sk);
  2921. }
  2922. /* Check that window update is acceptable.
  2923. * The function assumes that snd_una<=ack<=snd_next.
  2924. */
  2925. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2926. const u32 ack, const u32 ack_seq,
  2927. const u32 nwin)
  2928. {
  2929. return after(ack, tp->snd_una) ||
  2930. after(ack_seq, tp->snd_wl1) ||
  2931. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2932. }
  2933. /* If we update tp->snd_una, also update tp->bytes_acked */
  2934. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2935. {
  2936. u32 delta = ack - tp->snd_una;
  2937. sock_owned_by_me((struct sock *)tp);
  2938. u64_stats_update_begin_raw(&tp->syncp);
  2939. tp->bytes_acked += delta;
  2940. u64_stats_update_end_raw(&tp->syncp);
  2941. tp->snd_una = ack;
  2942. }
  2943. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2944. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2945. {
  2946. u32 delta = seq - tp->rcv_nxt;
  2947. sock_owned_by_me((struct sock *)tp);
  2948. u64_stats_update_begin_raw(&tp->syncp);
  2949. tp->bytes_received += delta;
  2950. u64_stats_update_end_raw(&tp->syncp);
  2951. tp->rcv_nxt = seq;
  2952. }
  2953. /* Update our send window.
  2954. *
  2955. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2956. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2957. */
  2958. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2959. u32 ack_seq)
  2960. {
  2961. struct tcp_sock *tp = tcp_sk(sk);
  2962. int flag = 0;
  2963. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2964. if (likely(!tcp_hdr(skb)->syn))
  2965. nwin <<= tp->rx_opt.snd_wscale;
  2966. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2967. flag |= FLAG_WIN_UPDATE;
  2968. tcp_update_wl(tp, ack_seq);
  2969. if (tp->snd_wnd != nwin) {
  2970. tp->snd_wnd = nwin;
  2971. /* Note, it is the only place, where
  2972. * fast path is recovered for sending TCP.
  2973. */
  2974. tp->pred_flags = 0;
  2975. tcp_fast_path_check(sk);
  2976. if (tcp_send_head(sk))
  2977. tcp_slow_start_after_idle_check(sk);
  2978. if (nwin > tp->max_window) {
  2979. tp->max_window = nwin;
  2980. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2981. }
  2982. }
  2983. }
  2984. tcp_snd_una_update(tp, ack);
  2985. return flag;
  2986. }
  2987. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2988. u32 *last_oow_ack_time)
  2989. {
  2990. if (*last_oow_ack_time) {
  2991. s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
  2992. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2993. NET_INC_STATS(net, mib_idx);
  2994. return true; /* rate-limited: don't send yet! */
  2995. }
  2996. }
  2997. *last_oow_ack_time = tcp_time_stamp;
  2998. return false; /* not rate-limited: go ahead, send dupack now! */
  2999. }
  3000. /* Return true if we're currently rate-limiting out-of-window ACKs and
  3001. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  3002. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  3003. * attacks that send repeated SYNs or ACKs for the same connection. To
  3004. * do this, we do not send a duplicate SYNACK or ACK if the remote
  3005. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  3006. */
  3007. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  3008. int mib_idx, u32 *last_oow_ack_time)
  3009. {
  3010. /* Data packets without SYNs are not likely part of an ACK loop. */
  3011. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  3012. !tcp_hdr(skb)->syn)
  3013. return false;
  3014. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  3015. }
  3016. /* RFC 5961 7 [ACK Throttling] */
  3017. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  3018. {
  3019. /* unprotected vars, we dont care of overwrites */
  3020. static u32 challenge_timestamp;
  3021. static unsigned int challenge_count;
  3022. struct tcp_sock *tp = tcp_sk(sk);
  3023. u32 count, now;
  3024. /* First check our per-socket dupack rate limit. */
  3025. if (__tcp_oow_rate_limited(sock_net(sk),
  3026. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  3027. &tp->last_oow_ack_time))
  3028. return;
  3029. /* Then check host-wide RFC 5961 rate limit. */
  3030. now = jiffies / HZ;
  3031. if (now != challenge_timestamp) {
  3032. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  3033. challenge_timestamp = now;
  3034. WRITE_ONCE(challenge_count, half +
  3035. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  3036. }
  3037. count = READ_ONCE(challenge_count);
  3038. if (count > 0) {
  3039. WRITE_ONCE(challenge_count, count - 1);
  3040. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3041. tcp_send_ack(sk);
  3042. }
  3043. }
  3044. static void tcp_store_ts_recent(struct tcp_sock *tp)
  3045. {
  3046. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3047. tp->rx_opt.ts_recent_stamp = get_seconds();
  3048. }
  3049. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3050. {
  3051. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3052. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3053. * extra check below makes sure this can only happen
  3054. * for pure ACK frames. -DaveM
  3055. *
  3056. * Not only, also it occurs for expired timestamps.
  3057. */
  3058. if (tcp_paws_check(&tp->rx_opt, 0))
  3059. tcp_store_ts_recent(tp);
  3060. }
  3061. }
  3062. /* This routine deals with acks during a TLP episode.
  3063. * We mark the end of a TLP episode on receiving TLP dupack or when
  3064. * ack is after tlp_high_seq.
  3065. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3066. */
  3067. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3068. {
  3069. struct tcp_sock *tp = tcp_sk(sk);
  3070. if (before(ack, tp->tlp_high_seq))
  3071. return;
  3072. if (flag & FLAG_DSACKING_ACK) {
  3073. /* This DSACK means original and TLP probe arrived; no loss */
  3074. tp->tlp_high_seq = 0;
  3075. } else if (after(ack, tp->tlp_high_seq)) {
  3076. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3077. * tlp_high_seq in tcp_init_cwnd_reduction()
  3078. */
  3079. tcp_init_cwnd_reduction(sk);
  3080. tcp_set_ca_state(sk, TCP_CA_CWR);
  3081. tcp_end_cwnd_reduction(sk);
  3082. tcp_try_keep_open(sk);
  3083. NET_INC_STATS(sock_net(sk),
  3084. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3085. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3086. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3087. /* Pure dupack: original and TLP probe arrived; no loss */
  3088. tp->tlp_high_seq = 0;
  3089. }
  3090. }
  3091. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3092. {
  3093. const struct inet_connection_sock *icsk = inet_csk(sk);
  3094. if (icsk->icsk_ca_ops->in_ack_event)
  3095. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3096. }
  3097. /* Congestion control has updated the cwnd already. So if we're in
  3098. * loss recovery then now we do any new sends (for FRTO) or
  3099. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3100. */
  3101. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3102. {
  3103. struct tcp_sock *tp = tcp_sk(sk);
  3104. if (rexmit == REXMIT_NONE)
  3105. return;
  3106. if (unlikely(rexmit == 2)) {
  3107. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3108. TCP_NAGLE_OFF);
  3109. if (after(tp->snd_nxt, tp->high_seq))
  3110. return;
  3111. tp->frto = 0;
  3112. }
  3113. tcp_xmit_retransmit_queue(sk);
  3114. }
  3115. /* This routine deals with incoming acks, but not outgoing ones. */
  3116. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3117. {
  3118. struct inet_connection_sock *icsk = inet_csk(sk);
  3119. struct tcp_sock *tp = tcp_sk(sk);
  3120. struct tcp_sacktag_state sack_state;
  3121. struct rate_sample rs = { .prior_delivered = 0 };
  3122. u32 prior_snd_una = tp->snd_una;
  3123. bool is_sack_reneg = tp->is_sack_reneg;
  3124. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3125. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3126. bool is_dupack = false;
  3127. u32 prior_fackets;
  3128. int prior_packets = tp->packets_out;
  3129. u32 delivered = tp->delivered;
  3130. u32 lost = tp->lost;
  3131. int acked = 0; /* Number of packets newly acked */
  3132. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3133. struct skb_mstamp now;
  3134. sack_state.first_sackt.v64 = 0;
  3135. sack_state.rate = &rs;
  3136. /* We very likely will need to access write queue head. */
  3137. prefetchw(sk->sk_write_queue.next);
  3138. /* If the ack is older than previous acks
  3139. * then we can probably ignore it.
  3140. */
  3141. if (before(ack, prior_snd_una)) {
  3142. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3143. if (before(ack, prior_snd_una - tp->max_window)) {
  3144. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3145. tcp_send_challenge_ack(sk, skb);
  3146. return -1;
  3147. }
  3148. goto old_ack;
  3149. }
  3150. /* If the ack includes data we haven't sent yet, discard
  3151. * this segment (RFC793 Section 3.9).
  3152. */
  3153. if (after(ack, tp->snd_nxt))
  3154. goto invalid_ack;
  3155. skb_mstamp_get(&now);
  3156. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  3157. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3158. tcp_rearm_rto(sk);
  3159. if (after(ack, prior_snd_una)) {
  3160. flag |= FLAG_SND_UNA_ADVANCED;
  3161. icsk->icsk_retransmits = 0;
  3162. }
  3163. prior_fackets = tp->fackets_out;
  3164. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3165. /* ts_recent update must be made after we are sure that the packet
  3166. * is in window.
  3167. */
  3168. if (flag & FLAG_UPDATE_TS_RECENT)
  3169. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3170. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3171. /* Window is constant, pure forward advance.
  3172. * No more checks are required.
  3173. * Note, we use the fact that SND.UNA>=SND.WL2.
  3174. */
  3175. tcp_update_wl(tp, ack_seq);
  3176. tcp_snd_una_update(tp, ack);
  3177. flag |= FLAG_WIN_UPDATE;
  3178. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3179. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3180. } else {
  3181. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3182. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3183. flag |= FLAG_DATA;
  3184. else
  3185. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3186. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3187. if (TCP_SKB_CB(skb)->sacked)
  3188. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3189. &sack_state);
  3190. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3191. flag |= FLAG_ECE;
  3192. ack_ev_flags |= CA_ACK_ECE;
  3193. }
  3194. if (flag & FLAG_WIN_UPDATE)
  3195. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3196. tcp_in_ack_event(sk, ack_ev_flags);
  3197. }
  3198. /* We passed data and got it acked, remove any soft error
  3199. * log. Something worked...
  3200. */
  3201. sk->sk_err_soft = 0;
  3202. icsk->icsk_probes_out = 0;
  3203. tp->rcv_tstamp = tcp_time_stamp;
  3204. if (!prior_packets)
  3205. goto no_queue;
  3206. /* See if we can take anything off of the retransmit queue. */
  3207. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3208. &sack_state, &now);
  3209. if (tcp_ack_is_dubious(sk, flag)) {
  3210. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3211. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3212. }
  3213. if (tp->tlp_high_seq)
  3214. tcp_process_tlp_ack(sk, ack, flag);
  3215. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3216. struct dst_entry *dst = __sk_dst_get(sk);
  3217. if (dst)
  3218. dst_confirm(dst);
  3219. }
  3220. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3221. tcp_schedule_loss_probe(sk);
  3222. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3223. lost = tp->lost - lost; /* freshly marked lost */
  3224. tcp_rate_gen(sk, delivered, lost, is_sack_reneg, &now, &rs);
  3225. tcp_cong_control(sk, ack, delivered, flag, &rs);
  3226. tcp_xmit_recovery(sk, rexmit);
  3227. return 1;
  3228. no_queue:
  3229. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3230. if (flag & FLAG_DSACKING_ACK)
  3231. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3232. /* If this ack opens up a zero window, clear backoff. It was
  3233. * being used to time the probes, and is probably far higher than
  3234. * it needs to be for normal retransmission.
  3235. */
  3236. if (tcp_send_head(sk))
  3237. tcp_ack_probe(sk);
  3238. if (tp->tlp_high_seq)
  3239. tcp_process_tlp_ack(sk, ack, flag);
  3240. return 1;
  3241. invalid_ack:
  3242. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3243. return -1;
  3244. old_ack:
  3245. /* If data was SACKed, tag it and see if we should send more data.
  3246. * If data was DSACKed, see if we can undo a cwnd reduction.
  3247. */
  3248. if (TCP_SKB_CB(skb)->sacked) {
  3249. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3250. &sack_state);
  3251. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3252. tcp_xmit_recovery(sk, rexmit);
  3253. }
  3254. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3255. return 0;
  3256. }
  3257. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3258. bool syn, struct tcp_fastopen_cookie *foc,
  3259. bool exp_opt)
  3260. {
  3261. /* Valid only in SYN or SYN-ACK with an even length. */
  3262. if (!foc || !syn || len < 0 || (len & 1))
  3263. return;
  3264. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3265. len <= TCP_FASTOPEN_COOKIE_MAX)
  3266. memcpy(foc->val, cookie, len);
  3267. else if (len != 0)
  3268. len = -1;
  3269. foc->len = len;
  3270. foc->exp = exp_opt;
  3271. }
  3272. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3273. * But, this can also be called on packets in the established flow when
  3274. * the fast version below fails.
  3275. */
  3276. void tcp_parse_options(const struct sk_buff *skb,
  3277. struct tcp_options_received *opt_rx, int estab,
  3278. struct tcp_fastopen_cookie *foc)
  3279. {
  3280. const unsigned char *ptr;
  3281. const struct tcphdr *th = tcp_hdr(skb);
  3282. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3283. ptr = (const unsigned char *)(th + 1);
  3284. opt_rx->saw_tstamp = 0;
  3285. while (length > 0) {
  3286. int opcode = *ptr++;
  3287. int opsize;
  3288. switch (opcode) {
  3289. case TCPOPT_EOL:
  3290. return;
  3291. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3292. length--;
  3293. continue;
  3294. default:
  3295. opsize = *ptr++;
  3296. if (opsize < 2) /* "silly options" */
  3297. return;
  3298. if (opsize > length)
  3299. return; /* don't parse partial options */
  3300. switch (opcode) {
  3301. case TCPOPT_MSS:
  3302. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3303. u16 in_mss = get_unaligned_be16(ptr);
  3304. if (in_mss) {
  3305. if (opt_rx->user_mss &&
  3306. opt_rx->user_mss < in_mss)
  3307. in_mss = opt_rx->user_mss;
  3308. opt_rx->mss_clamp = in_mss;
  3309. }
  3310. }
  3311. break;
  3312. case TCPOPT_WINDOW:
  3313. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3314. !estab && sysctl_tcp_window_scaling) {
  3315. __u8 snd_wscale = *(__u8 *)ptr;
  3316. opt_rx->wscale_ok = 1;
  3317. if (snd_wscale > 14) {
  3318. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3319. __func__,
  3320. snd_wscale);
  3321. snd_wscale = 14;
  3322. }
  3323. opt_rx->snd_wscale = snd_wscale;
  3324. }
  3325. break;
  3326. case TCPOPT_TIMESTAMP:
  3327. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3328. ((estab && opt_rx->tstamp_ok) ||
  3329. (!estab && sysctl_tcp_timestamps))) {
  3330. opt_rx->saw_tstamp = 1;
  3331. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3332. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3333. }
  3334. break;
  3335. case TCPOPT_SACK_PERM:
  3336. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3337. !estab && sysctl_tcp_sack) {
  3338. opt_rx->sack_ok = TCP_SACK_SEEN;
  3339. tcp_sack_reset(opt_rx);
  3340. }
  3341. break;
  3342. case TCPOPT_SACK:
  3343. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3344. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3345. opt_rx->sack_ok) {
  3346. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3347. }
  3348. break;
  3349. #ifdef CONFIG_TCP_MD5SIG
  3350. case TCPOPT_MD5SIG:
  3351. /*
  3352. * The MD5 Hash has already been
  3353. * checked (see tcp_v{4,6}_do_rcv()).
  3354. */
  3355. break;
  3356. #endif
  3357. case TCPOPT_FASTOPEN:
  3358. tcp_parse_fastopen_option(
  3359. opsize - TCPOLEN_FASTOPEN_BASE,
  3360. ptr, th->syn, foc, false);
  3361. break;
  3362. case TCPOPT_EXP:
  3363. /* Fast Open option shares code 254 using a
  3364. * 16 bits magic number.
  3365. */
  3366. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3367. get_unaligned_be16(ptr) ==
  3368. TCPOPT_FASTOPEN_MAGIC)
  3369. tcp_parse_fastopen_option(opsize -
  3370. TCPOLEN_EXP_FASTOPEN_BASE,
  3371. ptr + 2, th->syn, foc, true);
  3372. break;
  3373. }
  3374. ptr += opsize-2;
  3375. length -= opsize;
  3376. }
  3377. }
  3378. }
  3379. EXPORT_SYMBOL(tcp_parse_options);
  3380. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3381. {
  3382. const __be32 *ptr = (const __be32 *)(th + 1);
  3383. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3384. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3385. tp->rx_opt.saw_tstamp = 1;
  3386. ++ptr;
  3387. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3388. ++ptr;
  3389. if (*ptr)
  3390. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3391. else
  3392. tp->rx_opt.rcv_tsecr = 0;
  3393. return true;
  3394. }
  3395. return false;
  3396. }
  3397. /* Fast parse options. This hopes to only see timestamps.
  3398. * If it is wrong it falls back on tcp_parse_options().
  3399. */
  3400. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3401. const struct tcphdr *th, struct tcp_sock *tp)
  3402. {
  3403. /* In the spirit of fast parsing, compare doff directly to constant
  3404. * values. Because equality is used, short doff can be ignored here.
  3405. */
  3406. if (th->doff == (sizeof(*th) / 4)) {
  3407. tp->rx_opt.saw_tstamp = 0;
  3408. return false;
  3409. } else if (tp->rx_opt.tstamp_ok &&
  3410. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3411. if (tcp_parse_aligned_timestamp(tp, th))
  3412. return true;
  3413. }
  3414. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3415. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3416. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3417. return true;
  3418. }
  3419. #ifdef CONFIG_TCP_MD5SIG
  3420. /*
  3421. * Parse MD5 Signature option
  3422. */
  3423. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3424. {
  3425. int length = (th->doff << 2) - sizeof(*th);
  3426. const u8 *ptr = (const u8 *)(th + 1);
  3427. /* If not enough data remaining, we can short cut */
  3428. while (length >= TCPOLEN_MD5SIG) {
  3429. int opcode = *ptr++;
  3430. int opsize;
  3431. switch (opcode) {
  3432. case TCPOPT_EOL:
  3433. return NULL;
  3434. case TCPOPT_NOP:
  3435. length--;
  3436. continue;
  3437. default:
  3438. opsize = *ptr++;
  3439. if (opsize < 2 || opsize > length)
  3440. return NULL;
  3441. if (opcode == TCPOPT_MD5SIG)
  3442. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3443. }
  3444. ptr += opsize - 2;
  3445. length -= opsize;
  3446. }
  3447. return NULL;
  3448. }
  3449. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3450. #endif
  3451. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3452. *
  3453. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3454. * it can pass through stack. So, the following predicate verifies that
  3455. * this segment is not used for anything but congestion avoidance or
  3456. * fast retransmit. Moreover, we even are able to eliminate most of such
  3457. * second order effects, if we apply some small "replay" window (~RTO)
  3458. * to timestamp space.
  3459. *
  3460. * All these measures still do not guarantee that we reject wrapped ACKs
  3461. * on networks with high bandwidth, when sequence space is recycled fastly,
  3462. * but it guarantees that such events will be very rare and do not affect
  3463. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3464. * buggy extension.
  3465. *
  3466. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3467. * states that events when retransmit arrives after original data are rare.
  3468. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3469. * the biggest problem on large power networks even with minor reordering.
  3470. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3471. * up to bandwidth of 18Gigabit/sec. 8) ]
  3472. */
  3473. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3474. {
  3475. const struct tcp_sock *tp = tcp_sk(sk);
  3476. const struct tcphdr *th = tcp_hdr(skb);
  3477. u32 seq = TCP_SKB_CB(skb)->seq;
  3478. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3479. return (/* 1. Pure ACK with correct sequence number. */
  3480. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3481. /* 2. ... and duplicate ACK. */
  3482. ack == tp->snd_una &&
  3483. /* 3. ... and does not update window. */
  3484. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3485. /* 4. ... and sits in replay window. */
  3486. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3487. }
  3488. static inline bool tcp_paws_discard(const struct sock *sk,
  3489. const struct sk_buff *skb)
  3490. {
  3491. const struct tcp_sock *tp = tcp_sk(sk);
  3492. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3493. !tcp_disordered_ack(sk, skb);
  3494. }
  3495. /* Check segment sequence number for validity.
  3496. *
  3497. * Segment controls are considered valid, if the segment
  3498. * fits to the window after truncation to the window. Acceptability
  3499. * of data (and SYN, FIN, of course) is checked separately.
  3500. * See tcp_data_queue(), for example.
  3501. *
  3502. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3503. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3504. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3505. * (borrowed from freebsd)
  3506. */
  3507. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3508. {
  3509. return !before(end_seq, tp->rcv_wup) &&
  3510. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3511. }
  3512. /* When we get a reset we do this. */
  3513. void tcp_reset(struct sock *sk)
  3514. {
  3515. /* We want the right error as BSD sees it (and indeed as we do). */
  3516. switch (sk->sk_state) {
  3517. case TCP_SYN_SENT:
  3518. sk->sk_err = ECONNREFUSED;
  3519. break;
  3520. case TCP_CLOSE_WAIT:
  3521. sk->sk_err = EPIPE;
  3522. break;
  3523. case TCP_CLOSE:
  3524. return;
  3525. default:
  3526. sk->sk_err = ECONNRESET;
  3527. }
  3528. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3529. smp_wmb();
  3530. if (!sock_flag(sk, SOCK_DEAD))
  3531. sk->sk_error_report(sk);
  3532. tcp_done(sk);
  3533. }
  3534. /*
  3535. * Process the FIN bit. This now behaves as it is supposed to work
  3536. * and the FIN takes effect when it is validly part of sequence
  3537. * space. Not before when we get holes.
  3538. *
  3539. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3540. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3541. * TIME-WAIT)
  3542. *
  3543. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3544. * close and we go into CLOSING (and later onto TIME-WAIT)
  3545. *
  3546. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3547. */
  3548. void tcp_fin(struct sock *sk)
  3549. {
  3550. struct tcp_sock *tp = tcp_sk(sk);
  3551. inet_csk_schedule_ack(sk);
  3552. sk->sk_shutdown |= RCV_SHUTDOWN;
  3553. sock_set_flag(sk, SOCK_DONE);
  3554. switch (sk->sk_state) {
  3555. case TCP_SYN_RECV:
  3556. case TCP_ESTABLISHED:
  3557. /* Move to CLOSE_WAIT */
  3558. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3559. inet_csk(sk)->icsk_ack.pingpong = 1;
  3560. break;
  3561. case TCP_CLOSE_WAIT:
  3562. case TCP_CLOSING:
  3563. /* Received a retransmission of the FIN, do
  3564. * nothing.
  3565. */
  3566. break;
  3567. case TCP_LAST_ACK:
  3568. /* RFC793: Remain in the LAST-ACK state. */
  3569. break;
  3570. case TCP_FIN_WAIT1:
  3571. /* This case occurs when a simultaneous close
  3572. * happens, we must ack the received FIN and
  3573. * enter the CLOSING state.
  3574. */
  3575. tcp_send_ack(sk);
  3576. tcp_set_state(sk, TCP_CLOSING);
  3577. break;
  3578. case TCP_FIN_WAIT2:
  3579. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3580. tcp_send_ack(sk);
  3581. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3582. break;
  3583. default:
  3584. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3585. * cases we should never reach this piece of code.
  3586. */
  3587. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3588. __func__, sk->sk_state);
  3589. break;
  3590. }
  3591. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3592. * Probably, we should reset in this case. For now drop them.
  3593. */
  3594. skb_rbtree_purge(&tp->out_of_order_queue);
  3595. if (tcp_is_sack(tp))
  3596. tcp_sack_reset(&tp->rx_opt);
  3597. sk_mem_reclaim(sk);
  3598. if (!sock_flag(sk, SOCK_DEAD)) {
  3599. sk->sk_state_change(sk);
  3600. /* Do not send POLL_HUP for half duplex close. */
  3601. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3602. sk->sk_state == TCP_CLOSE)
  3603. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3604. else
  3605. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3606. }
  3607. }
  3608. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3609. u32 end_seq)
  3610. {
  3611. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3612. if (before(seq, sp->start_seq))
  3613. sp->start_seq = seq;
  3614. if (after(end_seq, sp->end_seq))
  3615. sp->end_seq = end_seq;
  3616. return true;
  3617. }
  3618. return false;
  3619. }
  3620. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3621. {
  3622. struct tcp_sock *tp = tcp_sk(sk);
  3623. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3624. int mib_idx;
  3625. if (before(seq, tp->rcv_nxt))
  3626. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3627. else
  3628. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3629. NET_INC_STATS(sock_net(sk), mib_idx);
  3630. tp->rx_opt.dsack = 1;
  3631. tp->duplicate_sack[0].start_seq = seq;
  3632. tp->duplicate_sack[0].end_seq = end_seq;
  3633. }
  3634. }
  3635. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3636. {
  3637. struct tcp_sock *tp = tcp_sk(sk);
  3638. if (!tp->rx_opt.dsack)
  3639. tcp_dsack_set(sk, seq, end_seq);
  3640. else
  3641. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3642. }
  3643. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3644. {
  3645. struct tcp_sock *tp = tcp_sk(sk);
  3646. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3647. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3648. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3649. tcp_enter_quickack_mode(sk);
  3650. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3651. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3652. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3653. end_seq = tp->rcv_nxt;
  3654. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3655. }
  3656. }
  3657. tcp_send_ack(sk);
  3658. }
  3659. /* These routines update the SACK block as out-of-order packets arrive or
  3660. * in-order packets close up the sequence space.
  3661. */
  3662. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3663. {
  3664. int this_sack;
  3665. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3666. struct tcp_sack_block *swalk = sp + 1;
  3667. /* See if the recent change to the first SACK eats into
  3668. * or hits the sequence space of other SACK blocks, if so coalesce.
  3669. */
  3670. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3671. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3672. int i;
  3673. /* Zap SWALK, by moving every further SACK up by one slot.
  3674. * Decrease num_sacks.
  3675. */
  3676. tp->rx_opt.num_sacks--;
  3677. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3678. sp[i] = sp[i + 1];
  3679. continue;
  3680. }
  3681. this_sack++, swalk++;
  3682. }
  3683. }
  3684. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3685. {
  3686. struct tcp_sock *tp = tcp_sk(sk);
  3687. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3688. int cur_sacks = tp->rx_opt.num_sacks;
  3689. int this_sack;
  3690. if (!cur_sacks)
  3691. goto new_sack;
  3692. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3693. if (tcp_sack_extend(sp, seq, end_seq)) {
  3694. /* Rotate this_sack to the first one. */
  3695. for (; this_sack > 0; this_sack--, sp--)
  3696. swap(*sp, *(sp - 1));
  3697. if (cur_sacks > 1)
  3698. tcp_sack_maybe_coalesce(tp);
  3699. return;
  3700. }
  3701. }
  3702. /* Could not find an adjacent existing SACK, build a new one,
  3703. * put it at the front, and shift everyone else down. We
  3704. * always know there is at least one SACK present already here.
  3705. *
  3706. * If the sack array is full, forget about the last one.
  3707. */
  3708. if (this_sack >= TCP_NUM_SACKS) {
  3709. this_sack--;
  3710. tp->rx_opt.num_sacks--;
  3711. sp--;
  3712. }
  3713. for (; this_sack > 0; this_sack--, sp--)
  3714. *sp = *(sp - 1);
  3715. new_sack:
  3716. /* Build the new head SACK, and we're done. */
  3717. sp->start_seq = seq;
  3718. sp->end_seq = end_seq;
  3719. tp->rx_opt.num_sacks++;
  3720. }
  3721. /* RCV.NXT advances, some SACKs should be eaten. */
  3722. static void tcp_sack_remove(struct tcp_sock *tp)
  3723. {
  3724. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3725. int num_sacks = tp->rx_opt.num_sacks;
  3726. int this_sack;
  3727. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3728. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3729. tp->rx_opt.num_sacks = 0;
  3730. return;
  3731. }
  3732. for (this_sack = 0; this_sack < num_sacks;) {
  3733. /* Check if the start of the sack is covered by RCV.NXT. */
  3734. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3735. int i;
  3736. /* RCV.NXT must cover all the block! */
  3737. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3738. /* Zap this SACK, by moving forward any other SACKS. */
  3739. for (i = this_sack+1; i < num_sacks; i++)
  3740. tp->selective_acks[i-1] = tp->selective_acks[i];
  3741. num_sacks--;
  3742. continue;
  3743. }
  3744. this_sack++;
  3745. sp++;
  3746. }
  3747. tp->rx_opt.num_sacks = num_sacks;
  3748. }
  3749. /**
  3750. * tcp_try_coalesce - try to merge skb to prior one
  3751. * @sk: socket
  3752. * @to: prior buffer
  3753. * @from: buffer to add in queue
  3754. * @fragstolen: pointer to boolean
  3755. *
  3756. * Before queueing skb @from after @to, try to merge them
  3757. * to reduce overall memory use and queue lengths, if cost is small.
  3758. * Packets in ofo or receive queues can stay a long time.
  3759. * Better try to coalesce them right now to avoid future collapses.
  3760. * Returns true if caller should free @from instead of queueing it
  3761. */
  3762. static bool tcp_try_coalesce(struct sock *sk,
  3763. struct sk_buff *to,
  3764. struct sk_buff *from,
  3765. bool *fragstolen)
  3766. {
  3767. int delta;
  3768. *fragstolen = false;
  3769. /* Its possible this segment overlaps with prior segment in queue */
  3770. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3771. return false;
  3772. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3773. return false;
  3774. atomic_add(delta, &sk->sk_rmem_alloc);
  3775. sk_mem_charge(sk, delta);
  3776. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3777. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3778. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3779. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3780. return true;
  3781. }
  3782. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3783. {
  3784. sk_drops_add(sk, skb);
  3785. __kfree_skb(skb);
  3786. }
  3787. /* This one checks to see if we can put data from the
  3788. * out_of_order queue into the receive_queue.
  3789. */
  3790. static void tcp_ofo_queue(struct sock *sk)
  3791. {
  3792. struct tcp_sock *tp = tcp_sk(sk);
  3793. __u32 dsack_high = tp->rcv_nxt;
  3794. bool fin, fragstolen, eaten;
  3795. struct sk_buff *skb, *tail;
  3796. struct rb_node *p;
  3797. p = rb_first(&tp->out_of_order_queue);
  3798. while (p) {
  3799. skb = rb_entry(p, struct sk_buff, rbnode);
  3800. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3801. break;
  3802. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3803. __u32 dsack = dsack_high;
  3804. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3805. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3806. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3807. }
  3808. p = rb_next(p);
  3809. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3810. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3811. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3812. tcp_drop(sk, skb);
  3813. continue;
  3814. }
  3815. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3816. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3817. TCP_SKB_CB(skb)->end_seq);
  3818. tail = skb_peek_tail(&sk->sk_receive_queue);
  3819. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3820. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3821. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3822. if (!eaten)
  3823. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3824. else
  3825. kfree_skb_partial(skb, fragstolen);
  3826. if (unlikely(fin)) {
  3827. tcp_fin(sk);
  3828. /* tcp_fin() purges tp->out_of_order_queue,
  3829. * so we must end this loop right now.
  3830. */
  3831. break;
  3832. }
  3833. }
  3834. }
  3835. static bool tcp_prune_ofo_queue(struct sock *sk);
  3836. static int tcp_prune_queue(struct sock *sk);
  3837. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3838. unsigned int size)
  3839. {
  3840. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3841. !sk_rmem_schedule(sk, skb, size)) {
  3842. if (tcp_prune_queue(sk) < 0)
  3843. return -1;
  3844. while (!sk_rmem_schedule(sk, skb, size)) {
  3845. if (!tcp_prune_ofo_queue(sk))
  3846. return -1;
  3847. }
  3848. }
  3849. return 0;
  3850. }
  3851. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3852. {
  3853. struct tcp_sock *tp = tcp_sk(sk);
  3854. struct rb_node **p, *q, *parent;
  3855. struct sk_buff *skb1;
  3856. u32 seq, end_seq;
  3857. bool fragstolen;
  3858. tcp_ecn_check_ce(tp, skb);
  3859. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3860. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3861. tcp_drop(sk, skb);
  3862. return;
  3863. }
  3864. /* Disable header prediction. */
  3865. tp->pred_flags = 0;
  3866. inet_csk_schedule_ack(sk);
  3867. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3868. seq = TCP_SKB_CB(skb)->seq;
  3869. end_seq = TCP_SKB_CB(skb)->end_seq;
  3870. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3871. tp->rcv_nxt, seq, end_seq);
  3872. p = &tp->out_of_order_queue.rb_node;
  3873. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3874. /* Initial out of order segment, build 1 SACK. */
  3875. if (tcp_is_sack(tp)) {
  3876. tp->rx_opt.num_sacks = 1;
  3877. tp->selective_acks[0].start_seq = seq;
  3878. tp->selective_acks[0].end_seq = end_seq;
  3879. }
  3880. rb_link_node(&skb->rbnode, NULL, p);
  3881. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3882. tp->ooo_last_skb = skb;
  3883. goto end;
  3884. }
  3885. /* In the typical case, we are adding an skb to the end of the list.
  3886. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3887. */
  3888. if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
  3889. coalesce_done:
  3890. tcp_grow_window(sk, skb);
  3891. kfree_skb_partial(skb, fragstolen);
  3892. skb = NULL;
  3893. goto add_sack;
  3894. }
  3895. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3896. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3897. parent = &tp->ooo_last_skb->rbnode;
  3898. p = &parent->rb_right;
  3899. goto insert;
  3900. }
  3901. /* Find place to insert this segment. Handle overlaps on the way. */
  3902. parent = NULL;
  3903. while (*p) {
  3904. parent = *p;
  3905. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  3906. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3907. p = &parent->rb_left;
  3908. continue;
  3909. }
  3910. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3911. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3912. /* All the bits are present. Drop. */
  3913. NET_INC_STATS(sock_net(sk),
  3914. LINUX_MIB_TCPOFOMERGE);
  3915. tcp_drop(sk, skb);
  3916. skb = NULL;
  3917. tcp_dsack_set(sk, seq, end_seq);
  3918. goto add_sack;
  3919. }
  3920. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3921. /* Partial overlap. */
  3922. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3923. } else {
  3924. /* skb's seq == skb1's seq and skb covers skb1.
  3925. * Replace skb1 with skb.
  3926. */
  3927. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3928. &tp->out_of_order_queue);
  3929. tcp_dsack_extend(sk,
  3930. TCP_SKB_CB(skb1)->seq,
  3931. TCP_SKB_CB(skb1)->end_seq);
  3932. NET_INC_STATS(sock_net(sk),
  3933. LINUX_MIB_TCPOFOMERGE);
  3934. tcp_drop(sk, skb1);
  3935. goto merge_right;
  3936. }
  3937. } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3938. goto coalesce_done;
  3939. }
  3940. p = &parent->rb_right;
  3941. }
  3942. insert:
  3943. /* Insert segment into RB tree. */
  3944. rb_link_node(&skb->rbnode, parent, p);
  3945. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3946. merge_right:
  3947. /* Remove other segments covered by skb. */
  3948. while ((q = rb_next(&skb->rbnode)) != NULL) {
  3949. skb1 = rb_entry(q, struct sk_buff, rbnode);
  3950. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3951. break;
  3952. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3953. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3954. end_seq);
  3955. break;
  3956. }
  3957. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3958. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3959. TCP_SKB_CB(skb1)->end_seq);
  3960. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3961. tcp_drop(sk, skb1);
  3962. }
  3963. /* If there is no skb after us, we are the last_skb ! */
  3964. if (!q)
  3965. tp->ooo_last_skb = skb;
  3966. add_sack:
  3967. if (tcp_is_sack(tp))
  3968. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3969. end:
  3970. if (skb) {
  3971. tcp_grow_window(sk, skb);
  3972. skb_set_owner_r(skb, sk);
  3973. }
  3974. }
  3975. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3976. bool *fragstolen)
  3977. {
  3978. int eaten;
  3979. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3980. __skb_pull(skb, hdrlen);
  3981. eaten = (tail &&
  3982. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3983. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3984. if (!eaten) {
  3985. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3986. skb_set_owner_r(skb, sk);
  3987. }
  3988. return eaten;
  3989. }
  3990. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3991. {
  3992. struct sk_buff *skb;
  3993. int err = -ENOMEM;
  3994. int data_len = 0;
  3995. bool fragstolen;
  3996. if (size == 0)
  3997. return 0;
  3998. if (size > PAGE_SIZE) {
  3999. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  4000. data_len = npages << PAGE_SHIFT;
  4001. size = data_len + (size & ~PAGE_MASK);
  4002. }
  4003. skb = alloc_skb_with_frags(size - data_len, data_len,
  4004. PAGE_ALLOC_COSTLY_ORDER,
  4005. &err, sk->sk_allocation);
  4006. if (!skb)
  4007. goto err;
  4008. skb_put(skb, size - data_len);
  4009. skb->data_len = data_len;
  4010. skb->len = size;
  4011. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4012. goto err_free;
  4013. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  4014. if (err)
  4015. goto err_free;
  4016. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  4017. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  4018. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  4019. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  4020. WARN_ON_ONCE(fragstolen); /* should not happen */
  4021. __kfree_skb(skb);
  4022. }
  4023. return size;
  4024. err_free:
  4025. kfree_skb(skb);
  4026. err:
  4027. return err;
  4028. }
  4029. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  4030. {
  4031. struct tcp_sock *tp = tcp_sk(sk);
  4032. bool fragstolen = false;
  4033. int eaten = -1;
  4034. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  4035. __kfree_skb(skb);
  4036. return;
  4037. }
  4038. skb_dst_drop(skb);
  4039. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  4040. tcp_ecn_accept_cwr(tp, skb);
  4041. tp->rx_opt.dsack = 0;
  4042. /* Queue data for delivery to the user.
  4043. * Packets in sequence go to the receive queue.
  4044. * Out of sequence packets to the out_of_order_queue.
  4045. */
  4046. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4047. if (tcp_receive_window(tp) == 0)
  4048. goto out_of_window;
  4049. /* Ok. In sequence. In window. */
  4050. if (tp->ucopy.task == current &&
  4051. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4052. sock_owned_by_user(sk) && !tp->urg_data) {
  4053. int chunk = min_t(unsigned int, skb->len,
  4054. tp->ucopy.len);
  4055. __set_current_state(TASK_RUNNING);
  4056. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  4057. tp->ucopy.len -= chunk;
  4058. tp->copied_seq += chunk;
  4059. eaten = (chunk == skb->len);
  4060. tcp_rcv_space_adjust(sk);
  4061. }
  4062. }
  4063. if (eaten <= 0) {
  4064. queue_and_out:
  4065. if (eaten < 0) {
  4066. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4067. sk_forced_mem_schedule(sk, skb->truesize);
  4068. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4069. goto drop;
  4070. }
  4071. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4072. }
  4073. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4074. if (skb->len)
  4075. tcp_event_data_recv(sk, skb);
  4076. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4077. tcp_fin(sk);
  4078. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4079. tcp_ofo_queue(sk);
  4080. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4081. * gap in queue is filled.
  4082. */
  4083. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4084. inet_csk(sk)->icsk_ack.pingpong = 0;
  4085. }
  4086. if (tp->rx_opt.num_sacks)
  4087. tcp_sack_remove(tp);
  4088. tcp_fast_path_check(sk);
  4089. if (eaten > 0)
  4090. kfree_skb_partial(skb, fragstolen);
  4091. if (!sock_flag(sk, SOCK_DEAD))
  4092. sk->sk_data_ready(sk);
  4093. return;
  4094. }
  4095. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4096. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4097. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4098. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4099. out_of_window:
  4100. tcp_enter_quickack_mode(sk);
  4101. inet_csk_schedule_ack(sk);
  4102. drop:
  4103. tcp_drop(sk, skb);
  4104. return;
  4105. }
  4106. /* Out of window. F.e. zero window probe. */
  4107. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4108. goto out_of_window;
  4109. tcp_enter_quickack_mode(sk);
  4110. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4111. /* Partial packet, seq < rcv_next < end_seq */
  4112. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4113. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4114. TCP_SKB_CB(skb)->end_seq);
  4115. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4116. /* If window is closed, drop tail of packet. But after
  4117. * remembering D-SACK for its head made in previous line.
  4118. */
  4119. if (!tcp_receive_window(tp))
  4120. goto out_of_window;
  4121. goto queue_and_out;
  4122. }
  4123. tcp_data_queue_ofo(sk, skb);
  4124. }
  4125. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4126. {
  4127. if (list)
  4128. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4129. return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
  4130. }
  4131. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4132. struct sk_buff_head *list,
  4133. struct rb_root *root)
  4134. {
  4135. struct sk_buff *next = tcp_skb_next(skb, list);
  4136. if (list)
  4137. __skb_unlink(skb, list);
  4138. else
  4139. rb_erase(&skb->rbnode, root);
  4140. __kfree_skb(skb);
  4141. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4142. return next;
  4143. }
  4144. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4145. static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4146. {
  4147. struct rb_node **p = &root->rb_node;
  4148. struct rb_node *parent = NULL;
  4149. struct sk_buff *skb1;
  4150. while (*p) {
  4151. parent = *p;
  4152. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  4153. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4154. p = &parent->rb_left;
  4155. else
  4156. p = &parent->rb_right;
  4157. }
  4158. rb_link_node(&skb->rbnode, parent, p);
  4159. rb_insert_color(&skb->rbnode, root);
  4160. }
  4161. /* Collapse contiguous sequence of skbs head..tail with
  4162. * sequence numbers start..end.
  4163. *
  4164. * If tail is NULL, this means until the end of the queue.
  4165. *
  4166. * Segments with FIN/SYN are not collapsed (only because this
  4167. * simplifies code)
  4168. */
  4169. static void
  4170. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4171. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4172. {
  4173. struct sk_buff *skb = head, *n;
  4174. struct sk_buff_head tmp;
  4175. bool end_of_skbs;
  4176. /* First, check that queue is collapsible and find
  4177. * the point where collapsing can be useful.
  4178. */
  4179. restart:
  4180. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4181. n = tcp_skb_next(skb, list);
  4182. /* No new bits? It is possible on ofo queue. */
  4183. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4184. skb = tcp_collapse_one(sk, skb, list, root);
  4185. if (!skb)
  4186. break;
  4187. goto restart;
  4188. }
  4189. /* The first skb to collapse is:
  4190. * - not SYN/FIN and
  4191. * - bloated or contains data before "start" or
  4192. * overlaps to the next one.
  4193. */
  4194. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4195. (tcp_win_from_space(skb->truesize) > skb->len ||
  4196. before(TCP_SKB_CB(skb)->seq, start))) {
  4197. end_of_skbs = false;
  4198. break;
  4199. }
  4200. if (n && n != tail &&
  4201. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4202. end_of_skbs = false;
  4203. break;
  4204. }
  4205. /* Decided to skip this, advance start seq. */
  4206. start = TCP_SKB_CB(skb)->end_seq;
  4207. }
  4208. if (end_of_skbs ||
  4209. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4210. return;
  4211. __skb_queue_head_init(&tmp);
  4212. while (before(start, end)) {
  4213. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4214. struct sk_buff *nskb;
  4215. nskb = alloc_skb(copy, GFP_ATOMIC);
  4216. if (!nskb)
  4217. break;
  4218. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4219. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4220. if (list)
  4221. __skb_queue_before(list, skb, nskb);
  4222. else
  4223. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4224. skb_set_owner_r(nskb, sk);
  4225. /* Copy data, releasing collapsed skbs. */
  4226. while (copy > 0) {
  4227. int offset = start - TCP_SKB_CB(skb)->seq;
  4228. int size = TCP_SKB_CB(skb)->end_seq - start;
  4229. BUG_ON(offset < 0);
  4230. if (size > 0) {
  4231. size = min(copy, size);
  4232. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4233. BUG();
  4234. TCP_SKB_CB(nskb)->end_seq += size;
  4235. copy -= size;
  4236. start += size;
  4237. }
  4238. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4239. skb = tcp_collapse_one(sk, skb, list, root);
  4240. if (!skb ||
  4241. skb == tail ||
  4242. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4243. goto end;
  4244. }
  4245. }
  4246. }
  4247. end:
  4248. skb_queue_walk_safe(&tmp, skb, n)
  4249. tcp_rbtree_insert(root, skb);
  4250. }
  4251. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4252. * and tcp_collapse() them until all the queue is collapsed.
  4253. */
  4254. static void tcp_collapse_ofo_queue(struct sock *sk)
  4255. {
  4256. struct tcp_sock *tp = tcp_sk(sk);
  4257. u32 range_truesize, sum_tiny = 0;
  4258. struct sk_buff *skb, *head;
  4259. struct rb_node *p;
  4260. u32 start, end;
  4261. p = rb_first(&tp->out_of_order_queue);
  4262. skb = rb_entry_safe(p, struct sk_buff, rbnode);
  4263. new_range:
  4264. if (!skb) {
  4265. p = rb_last(&tp->out_of_order_queue);
  4266. /* Note: This is possible p is NULL here. We do not
  4267. * use rb_entry_safe(), as ooo_last_skb is valid only
  4268. * if rbtree is not empty.
  4269. */
  4270. tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
  4271. return;
  4272. }
  4273. start = TCP_SKB_CB(skb)->seq;
  4274. end = TCP_SKB_CB(skb)->end_seq;
  4275. range_truesize = skb->truesize;
  4276. for (head = skb;;) {
  4277. skb = tcp_skb_next(skb, NULL);
  4278. /* Range is terminated when we see a gap or when
  4279. * we are at the queue end.
  4280. */
  4281. if (!skb ||
  4282. after(TCP_SKB_CB(skb)->seq, end) ||
  4283. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4284. /* Do not attempt collapsing tiny skbs */
  4285. if (range_truesize != head->truesize ||
  4286. end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
  4287. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4288. head, skb, start, end);
  4289. } else {
  4290. sum_tiny += range_truesize;
  4291. if (sum_tiny > sk->sk_rcvbuf >> 3)
  4292. return;
  4293. }
  4294. goto new_range;
  4295. }
  4296. range_truesize += skb->truesize;
  4297. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4298. start = TCP_SKB_CB(skb)->seq;
  4299. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4300. end = TCP_SKB_CB(skb)->end_seq;
  4301. }
  4302. }
  4303. /*
  4304. * Clean the out-of-order queue to make room.
  4305. * We drop high sequences packets to :
  4306. * 1) Let a chance for holes to be filled.
  4307. * 2) not add too big latencies if thousands of packets sit there.
  4308. * (But if application shrinks SO_RCVBUF, we could still end up
  4309. * freeing whole queue here)
  4310. * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
  4311. *
  4312. * Return true if queue has shrunk.
  4313. */
  4314. static bool tcp_prune_ofo_queue(struct sock *sk)
  4315. {
  4316. struct tcp_sock *tp = tcp_sk(sk);
  4317. struct rb_node *node, *prev;
  4318. int goal;
  4319. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4320. return false;
  4321. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4322. goal = sk->sk_rcvbuf >> 3;
  4323. node = &tp->ooo_last_skb->rbnode;
  4324. do {
  4325. prev = rb_prev(node);
  4326. rb_erase(node, &tp->out_of_order_queue);
  4327. goal -= rb_to_skb(node)->truesize;
  4328. tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
  4329. if (!prev || goal <= 0) {
  4330. sk_mem_reclaim(sk);
  4331. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4332. !tcp_under_memory_pressure(sk))
  4333. break;
  4334. goal = sk->sk_rcvbuf >> 3;
  4335. }
  4336. node = prev;
  4337. } while (node);
  4338. tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
  4339. /* Reset SACK state. A conforming SACK implementation will
  4340. * do the same at a timeout based retransmit. When a connection
  4341. * is in a sad state like this, we care only about integrity
  4342. * of the connection not performance.
  4343. */
  4344. if (tp->rx_opt.sack_ok)
  4345. tcp_sack_reset(&tp->rx_opt);
  4346. return true;
  4347. }
  4348. /* Reduce allocated memory if we can, trying to get
  4349. * the socket within its memory limits again.
  4350. *
  4351. * Return less than zero if we should start dropping frames
  4352. * until the socket owning process reads some of the data
  4353. * to stabilize the situation.
  4354. */
  4355. static int tcp_prune_queue(struct sock *sk)
  4356. {
  4357. struct tcp_sock *tp = tcp_sk(sk);
  4358. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4359. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4360. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4361. tcp_clamp_window(sk);
  4362. else if (tcp_under_memory_pressure(sk))
  4363. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4364. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4365. return 0;
  4366. tcp_collapse_ofo_queue(sk);
  4367. if (!skb_queue_empty(&sk->sk_receive_queue))
  4368. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4369. skb_peek(&sk->sk_receive_queue),
  4370. NULL,
  4371. tp->copied_seq, tp->rcv_nxt);
  4372. sk_mem_reclaim(sk);
  4373. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4374. return 0;
  4375. /* Collapsing did not help, destructive actions follow.
  4376. * This must not ever occur. */
  4377. tcp_prune_ofo_queue(sk);
  4378. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4379. return 0;
  4380. /* If we are really being abused, tell the caller to silently
  4381. * drop receive data on the floor. It will get retransmitted
  4382. * and hopefully then we'll have sufficient space.
  4383. */
  4384. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4385. /* Massive buffer overcommit. */
  4386. tp->pred_flags = 0;
  4387. return -1;
  4388. }
  4389. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4390. {
  4391. const struct tcp_sock *tp = tcp_sk(sk);
  4392. /* If the user specified a specific send buffer setting, do
  4393. * not modify it.
  4394. */
  4395. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4396. return false;
  4397. /* If we are under global TCP memory pressure, do not expand. */
  4398. if (tcp_under_memory_pressure(sk))
  4399. return false;
  4400. /* If we are under soft global TCP memory pressure, do not expand. */
  4401. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4402. return false;
  4403. /* If we filled the congestion window, do not expand. */
  4404. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4405. return false;
  4406. return true;
  4407. }
  4408. /* When incoming ACK allowed to free some skb from write_queue,
  4409. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4410. * on the exit from tcp input handler.
  4411. *
  4412. * PROBLEM: sndbuf expansion does not work well with largesend.
  4413. */
  4414. static void tcp_new_space(struct sock *sk)
  4415. {
  4416. struct tcp_sock *tp = tcp_sk(sk);
  4417. if (tcp_should_expand_sndbuf(sk)) {
  4418. tcp_sndbuf_expand(sk);
  4419. tp->snd_cwnd_stamp = tcp_time_stamp;
  4420. }
  4421. sk->sk_write_space(sk);
  4422. }
  4423. static void tcp_check_space(struct sock *sk)
  4424. {
  4425. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4426. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4427. /* pairs with tcp_poll() */
  4428. smp_mb();
  4429. if (sk->sk_socket &&
  4430. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4431. tcp_new_space(sk);
  4432. }
  4433. }
  4434. static inline void tcp_data_snd_check(struct sock *sk)
  4435. {
  4436. tcp_push_pending_frames(sk);
  4437. tcp_check_space(sk);
  4438. }
  4439. /*
  4440. * Check if sending an ack is needed.
  4441. */
  4442. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4443. {
  4444. struct tcp_sock *tp = tcp_sk(sk);
  4445. /* More than one full frame received... */
  4446. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4447. /* ... and right edge of window advances far enough.
  4448. * (tcp_recvmsg() will send ACK otherwise). Or...
  4449. */
  4450. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4451. /* We ACK each frame or... */
  4452. tcp_in_quickack_mode(sk) ||
  4453. /* We have out of order data. */
  4454. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4455. /* Then ack it now */
  4456. tcp_send_ack(sk);
  4457. } else {
  4458. /* Else, send delayed ack. */
  4459. tcp_send_delayed_ack(sk);
  4460. }
  4461. }
  4462. static inline void tcp_ack_snd_check(struct sock *sk)
  4463. {
  4464. if (!inet_csk_ack_scheduled(sk)) {
  4465. /* We sent a data segment already. */
  4466. return;
  4467. }
  4468. __tcp_ack_snd_check(sk, 1);
  4469. }
  4470. /*
  4471. * This routine is only called when we have urgent data
  4472. * signaled. Its the 'slow' part of tcp_urg. It could be
  4473. * moved inline now as tcp_urg is only called from one
  4474. * place. We handle URGent data wrong. We have to - as
  4475. * BSD still doesn't use the correction from RFC961.
  4476. * For 1003.1g we should support a new option TCP_STDURG to permit
  4477. * either form (or just set the sysctl tcp_stdurg).
  4478. */
  4479. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4480. {
  4481. struct tcp_sock *tp = tcp_sk(sk);
  4482. u32 ptr = ntohs(th->urg_ptr);
  4483. if (ptr && !sysctl_tcp_stdurg)
  4484. ptr--;
  4485. ptr += ntohl(th->seq);
  4486. /* Ignore urgent data that we've already seen and read. */
  4487. if (after(tp->copied_seq, ptr))
  4488. return;
  4489. /* Do not replay urg ptr.
  4490. *
  4491. * NOTE: interesting situation not covered by specs.
  4492. * Misbehaving sender may send urg ptr, pointing to segment,
  4493. * which we already have in ofo queue. We are not able to fetch
  4494. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4495. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4496. * situations. But it is worth to think about possibility of some
  4497. * DoSes using some hypothetical application level deadlock.
  4498. */
  4499. if (before(ptr, tp->rcv_nxt))
  4500. return;
  4501. /* Do we already have a newer (or duplicate) urgent pointer? */
  4502. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4503. return;
  4504. /* Tell the world about our new urgent pointer. */
  4505. sk_send_sigurg(sk);
  4506. /* We may be adding urgent data when the last byte read was
  4507. * urgent. To do this requires some care. We cannot just ignore
  4508. * tp->copied_seq since we would read the last urgent byte again
  4509. * as data, nor can we alter copied_seq until this data arrives
  4510. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4511. *
  4512. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4513. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4514. * and expect that both A and B disappear from stream. This is _wrong_.
  4515. * Though this happens in BSD with high probability, this is occasional.
  4516. * Any application relying on this is buggy. Note also, that fix "works"
  4517. * only in this artificial test. Insert some normal data between A and B and we will
  4518. * decline of BSD again. Verdict: it is better to remove to trap
  4519. * buggy users.
  4520. */
  4521. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4522. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4523. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4524. tp->copied_seq++;
  4525. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4526. __skb_unlink(skb, &sk->sk_receive_queue);
  4527. __kfree_skb(skb);
  4528. }
  4529. }
  4530. tp->urg_data = TCP_URG_NOTYET;
  4531. tp->urg_seq = ptr;
  4532. /* Disable header prediction. */
  4533. tp->pred_flags = 0;
  4534. }
  4535. /* This is the 'fast' part of urgent handling. */
  4536. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4537. {
  4538. struct tcp_sock *tp = tcp_sk(sk);
  4539. /* Check if we get a new urgent pointer - normally not. */
  4540. if (th->urg)
  4541. tcp_check_urg(sk, th);
  4542. /* Do we wait for any urgent data? - normally not... */
  4543. if (tp->urg_data == TCP_URG_NOTYET) {
  4544. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4545. th->syn;
  4546. /* Is the urgent pointer pointing into this packet? */
  4547. if (ptr < skb->len) {
  4548. u8 tmp;
  4549. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4550. BUG();
  4551. tp->urg_data = TCP_URG_VALID | tmp;
  4552. if (!sock_flag(sk, SOCK_DEAD))
  4553. sk->sk_data_ready(sk);
  4554. }
  4555. }
  4556. }
  4557. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4558. {
  4559. struct tcp_sock *tp = tcp_sk(sk);
  4560. int chunk = skb->len - hlen;
  4561. int err;
  4562. if (skb_csum_unnecessary(skb))
  4563. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4564. else
  4565. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4566. if (!err) {
  4567. tp->ucopy.len -= chunk;
  4568. tp->copied_seq += chunk;
  4569. tcp_rcv_space_adjust(sk);
  4570. }
  4571. return err;
  4572. }
  4573. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4574. * play significant role here.
  4575. */
  4576. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4577. const struct tcphdr *th, int syn_inerr)
  4578. {
  4579. struct tcp_sock *tp = tcp_sk(sk);
  4580. bool rst_seq_match = false;
  4581. /* RFC1323: H1. Apply PAWS check first. */
  4582. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4583. tcp_paws_discard(sk, skb)) {
  4584. if (!th->rst) {
  4585. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4586. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4587. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4588. &tp->last_oow_ack_time))
  4589. tcp_send_dupack(sk, skb);
  4590. goto discard;
  4591. }
  4592. /* Reset is accepted even if it did not pass PAWS. */
  4593. }
  4594. /* Step 1: check sequence number */
  4595. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4596. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4597. * (RST) segments are validated by checking their SEQ-fields."
  4598. * And page 69: "If an incoming segment is not acceptable,
  4599. * an acknowledgment should be sent in reply (unless the RST
  4600. * bit is set, if so drop the segment and return)".
  4601. */
  4602. if (!th->rst) {
  4603. if (th->syn)
  4604. goto syn_challenge;
  4605. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4606. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4607. &tp->last_oow_ack_time))
  4608. tcp_send_dupack(sk, skb);
  4609. }
  4610. goto discard;
  4611. }
  4612. /* Step 2: check RST bit */
  4613. if (th->rst) {
  4614. /* RFC 5961 3.2 (extend to match against SACK too if available):
  4615. * If seq num matches RCV.NXT or the right-most SACK block,
  4616. * then
  4617. * RESET the connection
  4618. * else
  4619. * Send a challenge ACK
  4620. */
  4621. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4622. rst_seq_match = true;
  4623. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4624. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4625. int max_sack = sp[0].end_seq;
  4626. int this_sack;
  4627. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4628. ++this_sack) {
  4629. max_sack = after(sp[this_sack].end_seq,
  4630. max_sack) ?
  4631. sp[this_sack].end_seq : max_sack;
  4632. }
  4633. if (TCP_SKB_CB(skb)->seq == max_sack)
  4634. rst_seq_match = true;
  4635. }
  4636. if (rst_seq_match)
  4637. tcp_reset(sk);
  4638. else
  4639. tcp_send_challenge_ack(sk, skb);
  4640. goto discard;
  4641. }
  4642. /* step 3: check security and precedence [ignored] */
  4643. /* step 4: Check for a SYN
  4644. * RFC 5961 4.2 : Send a challenge ack
  4645. */
  4646. if (th->syn) {
  4647. syn_challenge:
  4648. if (syn_inerr)
  4649. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4650. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4651. tcp_send_challenge_ack(sk, skb);
  4652. goto discard;
  4653. }
  4654. return true;
  4655. discard:
  4656. tcp_drop(sk, skb);
  4657. return false;
  4658. }
  4659. /*
  4660. * TCP receive function for the ESTABLISHED state.
  4661. *
  4662. * It is split into a fast path and a slow path. The fast path is
  4663. * disabled when:
  4664. * - A zero window was announced from us - zero window probing
  4665. * is only handled properly in the slow path.
  4666. * - Out of order segments arrived.
  4667. * - Urgent data is expected.
  4668. * - There is no buffer space left
  4669. * - Unexpected TCP flags/window values/header lengths are received
  4670. * (detected by checking the TCP header against pred_flags)
  4671. * - Data is sent in both directions. Fast path only supports pure senders
  4672. * or pure receivers (this means either the sequence number or the ack
  4673. * value must stay constant)
  4674. * - Unexpected TCP option.
  4675. *
  4676. * When these conditions are not satisfied it drops into a standard
  4677. * receive procedure patterned after RFC793 to handle all cases.
  4678. * The first three cases are guaranteed by proper pred_flags setting,
  4679. * the rest is checked inline. Fast processing is turned on in
  4680. * tcp_data_queue when everything is OK.
  4681. */
  4682. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4683. const struct tcphdr *th, unsigned int len)
  4684. {
  4685. struct tcp_sock *tp = tcp_sk(sk);
  4686. if (unlikely(!sk->sk_rx_dst))
  4687. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4688. /*
  4689. * Header prediction.
  4690. * The code loosely follows the one in the famous
  4691. * "30 instruction TCP receive" Van Jacobson mail.
  4692. *
  4693. * Van's trick is to deposit buffers into socket queue
  4694. * on a device interrupt, to call tcp_recv function
  4695. * on the receive process context and checksum and copy
  4696. * the buffer to user space. smart...
  4697. *
  4698. * Our current scheme is not silly either but we take the
  4699. * extra cost of the net_bh soft interrupt processing...
  4700. * We do checksum and copy also but from device to kernel.
  4701. */
  4702. tp->rx_opt.saw_tstamp = 0;
  4703. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4704. * if header_prediction is to be made
  4705. * 'S' will always be tp->tcp_header_len >> 2
  4706. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4707. * turn it off (when there are holes in the receive
  4708. * space for instance)
  4709. * PSH flag is ignored.
  4710. */
  4711. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4712. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4713. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4714. int tcp_header_len = tp->tcp_header_len;
  4715. /* Timestamp header prediction: tcp_header_len
  4716. * is automatically equal to th->doff*4 due to pred_flags
  4717. * match.
  4718. */
  4719. /* Check timestamp */
  4720. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4721. /* No? Slow path! */
  4722. if (!tcp_parse_aligned_timestamp(tp, th))
  4723. goto slow_path;
  4724. /* If PAWS failed, check it more carefully in slow path */
  4725. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4726. goto slow_path;
  4727. /* DO NOT update ts_recent here, if checksum fails
  4728. * and timestamp was corrupted part, it will result
  4729. * in a hung connection since we will drop all
  4730. * future packets due to the PAWS test.
  4731. */
  4732. }
  4733. if (len <= tcp_header_len) {
  4734. /* Bulk data transfer: sender */
  4735. if (len == tcp_header_len) {
  4736. /* Predicted packet is in window by definition.
  4737. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4738. * Hence, check seq<=rcv_wup reduces to:
  4739. */
  4740. if (tcp_header_len ==
  4741. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4742. tp->rcv_nxt == tp->rcv_wup)
  4743. tcp_store_ts_recent(tp);
  4744. /* We know that such packets are checksummed
  4745. * on entry.
  4746. */
  4747. tcp_ack(sk, skb, 0);
  4748. __kfree_skb(skb);
  4749. tcp_data_snd_check(sk);
  4750. return;
  4751. } else { /* Header too small */
  4752. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4753. goto discard;
  4754. }
  4755. } else {
  4756. int eaten = 0;
  4757. bool fragstolen = false;
  4758. if (tp->ucopy.task == current &&
  4759. tp->copied_seq == tp->rcv_nxt &&
  4760. len - tcp_header_len <= tp->ucopy.len &&
  4761. sock_owned_by_user(sk)) {
  4762. __set_current_state(TASK_RUNNING);
  4763. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4764. /* Predicted packet is in window by definition.
  4765. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4766. * Hence, check seq<=rcv_wup reduces to:
  4767. */
  4768. if (tcp_header_len ==
  4769. (sizeof(struct tcphdr) +
  4770. TCPOLEN_TSTAMP_ALIGNED) &&
  4771. tp->rcv_nxt == tp->rcv_wup)
  4772. tcp_store_ts_recent(tp);
  4773. tcp_rcv_rtt_measure_ts(sk, skb);
  4774. __skb_pull(skb, tcp_header_len);
  4775. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4776. NET_INC_STATS(sock_net(sk),
  4777. LINUX_MIB_TCPHPHITSTOUSER);
  4778. eaten = 1;
  4779. }
  4780. }
  4781. if (!eaten) {
  4782. if (tcp_checksum_complete(skb))
  4783. goto csum_error;
  4784. if ((int)skb->truesize > sk->sk_forward_alloc)
  4785. goto step5;
  4786. /* Predicted packet is in window by definition.
  4787. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4788. * Hence, check seq<=rcv_wup reduces to:
  4789. */
  4790. if (tcp_header_len ==
  4791. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4792. tp->rcv_nxt == tp->rcv_wup)
  4793. tcp_store_ts_recent(tp);
  4794. tcp_rcv_rtt_measure_ts(sk, skb);
  4795. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4796. /* Bulk data transfer: receiver */
  4797. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4798. &fragstolen);
  4799. }
  4800. tcp_event_data_recv(sk, skb);
  4801. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4802. /* Well, only one small jumplet in fast path... */
  4803. tcp_ack(sk, skb, FLAG_DATA);
  4804. tcp_data_snd_check(sk);
  4805. if (!inet_csk_ack_scheduled(sk))
  4806. goto no_ack;
  4807. }
  4808. __tcp_ack_snd_check(sk, 0);
  4809. no_ack:
  4810. if (eaten)
  4811. kfree_skb_partial(skb, fragstolen);
  4812. sk->sk_data_ready(sk);
  4813. return;
  4814. }
  4815. }
  4816. slow_path:
  4817. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4818. goto csum_error;
  4819. if (!th->ack && !th->rst && !th->syn)
  4820. goto discard;
  4821. /*
  4822. * Standard slow path.
  4823. */
  4824. if (!tcp_validate_incoming(sk, skb, th, 1))
  4825. return;
  4826. step5:
  4827. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4828. goto discard;
  4829. tcp_rcv_rtt_measure_ts(sk, skb);
  4830. /* Process urgent data. */
  4831. tcp_urg(sk, skb, th);
  4832. /* step 7: process the segment text */
  4833. tcp_data_queue(sk, skb);
  4834. tcp_data_snd_check(sk);
  4835. tcp_ack_snd_check(sk);
  4836. return;
  4837. csum_error:
  4838. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4839. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4840. discard:
  4841. tcp_drop(sk, skb);
  4842. }
  4843. EXPORT_SYMBOL(tcp_rcv_established);
  4844. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4845. {
  4846. struct tcp_sock *tp = tcp_sk(sk);
  4847. struct inet_connection_sock *icsk = inet_csk(sk);
  4848. tcp_set_state(sk, TCP_ESTABLISHED);
  4849. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4850. if (skb) {
  4851. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4852. security_inet_conn_established(sk, skb);
  4853. }
  4854. /* Make sure socket is routed, for correct metrics. */
  4855. icsk->icsk_af_ops->rebuild_header(sk);
  4856. tcp_init_metrics(sk);
  4857. tcp_init_congestion_control(sk);
  4858. /* Prevent spurious tcp_cwnd_restart() on first data
  4859. * packet.
  4860. */
  4861. tp->lsndtime = tcp_time_stamp;
  4862. tcp_init_buffer_space(sk);
  4863. if (sock_flag(sk, SOCK_KEEPOPEN))
  4864. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4865. if (!tp->rx_opt.snd_wscale)
  4866. __tcp_fast_path_on(tp, tp->snd_wnd);
  4867. else
  4868. tp->pred_flags = 0;
  4869. }
  4870. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4871. struct tcp_fastopen_cookie *cookie)
  4872. {
  4873. struct tcp_sock *tp = tcp_sk(sk);
  4874. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4875. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4876. bool syn_drop = false;
  4877. if (mss == tp->rx_opt.user_mss) {
  4878. struct tcp_options_received opt;
  4879. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4880. tcp_clear_options(&opt);
  4881. opt.user_mss = opt.mss_clamp = 0;
  4882. tcp_parse_options(synack, &opt, 0, NULL);
  4883. mss = opt.mss_clamp;
  4884. }
  4885. if (!tp->syn_fastopen) {
  4886. /* Ignore an unsolicited cookie */
  4887. cookie->len = -1;
  4888. } else if (tp->total_retrans) {
  4889. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4890. * acknowledges data. Presumably the remote received only
  4891. * the retransmitted (regular) SYNs: either the original
  4892. * SYN-data or the corresponding SYN-ACK was dropped.
  4893. */
  4894. syn_drop = (cookie->len < 0 && data);
  4895. } else if (cookie->len < 0 && !tp->syn_data) {
  4896. /* We requested a cookie but didn't get it. If we did not use
  4897. * the (old) exp opt format then try so next time (try_exp=1).
  4898. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4899. */
  4900. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4901. }
  4902. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4903. if (data) { /* Retransmit unacked data in SYN */
  4904. tcp_for_write_queue_from(data, sk) {
  4905. if (data == tcp_send_head(sk) ||
  4906. __tcp_retransmit_skb(sk, data, 1))
  4907. break;
  4908. }
  4909. tcp_rearm_rto(sk);
  4910. NET_INC_STATS(sock_net(sk),
  4911. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4912. return true;
  4913. }
  4914. tp->syn_data_acked = tp->syn_data;
  4915. if (tp->syn_data_acked)
  4916. NET_INC_STATS(sock_net(sk),
  4917. LINUX_MIB_TCPFASTOPENACTIVE);
  4918. tcp_fastopen_add_skb(sk, synack);
  4919. return false;
  4920. }
  4921. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4922. const struct tcphdr *th)
  4923. {
  4924. struct inet_connection_sock *icsk = inet_csk(sk);
  4925. struct tcp_sock *tp = tcp_sk(sk);
  4926. struct tcp_fastopen_cookie foc = { .len = -1 };
  4927. int saved_clamp = tp->rx_opt.mss_clamp;
  4928. bool fastopen_fail;
  4929. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4930. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4931. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4932. if (th->ack) {
  4933. /* rfc793:
  4934. * "If the state is SYN-SENT then
  4935. * first check the ACK bit
  4936. * If the ACK bit is set
  4937. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4938. * a reset (unless the RST bit is set, if so drop
  4939. * the segment and return)"
  4940. */
  4941. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4942. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4943. goto reset_and_undo;
  4944. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4945. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4946. tcp_time_stamp)) {
  4947. NET_INC_STATS(sock_net(sk),
  4948. LINUX_MIB_PAWSACTIVEREJECTED);
  4949. goto reset_and_undo;
  4950. }
  4951. /* Now ACK is acceptable.
  4952. *
  4953. * "If the RST bit is set
  4954. * If the ACK was acceptable then signal the user "error:
  4955. * connection reset", drop the segment, enter CLOSED state,
  4956. * delete TCB, and return."
  4957. */
  4958. if (th->rst) {
  4959. tcp_reset(sk);
  4960. goto discard;
  4961. }
  4962. /* rfc793:
  4963. * "fifth, if neither of the SYN or RST bits is set then
  4964. * drop the segment and return."
  4965. *
  4966. * See note below!
  4967. * --ANK(990513)
  4968. */
  4969. if (!th->syn)
  4970. goto discard_and_undo;
  4971. /* rfc793:
  4972. * "If the SYN bit is on ...
  4973. * are acceptable then ...
  4974. * (our SYN has been ACKed), change the connection
  4975. * state to ESTABLISHED..."
  4976. */
  4977. tcp_ecn_rcv_synack(tp, th);
  4978. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4979. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4980. /* Ok.. it's good. Set up sequence numbers and
  4981. * move to established.
  4982. */
  4983. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4984. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4985. /* RFC1323: The window in SYN & SYN/ACK segments is
  4986. * never scaled.
  4987. */
  4988. tp->snd_wnd = ntohs(th->window);
  4989. if (!tp->rx_opt.wscale_ok) {
  4990. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4991. tp->window_clamp = min(tp->window_clamp, 65535U);
  4992. }
  4993. if (tp->rx_opt.saw_tstamp) {
  4994. tp->rx_opt.tstamp_ok = 1;
  4995. tp->tcp_header_len =
  4996. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4997. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4998. tcp_store_ts_recent(tp);
  4999. } else {
  5000. tp->tcp_header_len = sizeof(struct tcphdr);
  5001. }
  5002. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  5003. tcp_enable_fack(tp);
  5004. tcp_mtup_init(sk);
  5005. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5006. tcp_initialize_rcv_mss(sk);
  5007. /* Remember, tcp_poll() does not lock socket!
  5008. * Change state from SYN-SENT only after copied_seq
  5009. * is initialized. */
  5010. tp->copied_seq = tp->rcv_nxt;
  5011. smp_mb();
  5012. tcp_finish_connect(sk, skb);
  5013. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  5014. tcp_rcv_fastopen_synack(sk, skb, &foc);
  5015. if (!sock_flag(sk, SOCK_DEAD)) {
  5016. sk->sk_state_change(sk);
  5017. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5018. }
  5019. if (fastopen_fail)
  5020. return -1;
  5021. if (sk->sk_write_pending ||
  5022. icsk->icsk_accept_queue.rskq_defer_accept ||
  5023. icsk->icsk_ack.pingpong) {
  5024. /* Save one ACK. Data will be ready after
  5025. * several ticks, if write_pending is set.
  5026. *
  5027. * It may be deleted, but with this feature tcpdumps
  5028. * look so _wonderfully_ clever, that I was not able
  5029. * to stand against the temptation 8) --ANK
  5030. */
  5031. inet_csk_schedule_ack(sk);
  5032. tcp_enter_quickack_mode(sk);
  5033. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5034. TCP_DELACK_MAX, TCP_RTO_MAX);
  5035. discard:
  5036. tcp_drop(sk, skb);
  5037. return 0;
  5038. } else {
  5039. tcp_send_ack(sk);
  5040. }
  5041. return -1;
  5042. }
  5043. /* No ACK in the segment */
  5044. if (th->rst) {
  5045. /* rfc793:
  5046. * "If the RST bit is set
  5047. *
  5048. * Otherwise (no ACK) drop the segment and return."
  5049. */
  5050. goto discard_and_undo;
  5051. }
  5052. /* PAWS check. */
  5053. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5054. tcp_paws_reject(&tp->rx_opt, 0))
  5055. goto discard_and_undo;
  5056. if (th->syn) {
  5057. /* We see SYN without ACK. It is attempt of
  5058. * simultaneous connect with crossed SYNs.
  5059. * Particularly, it can be connect to self.
  5060. */
  5061. tcp_set_state(sk, TCP_SYN_RECV);
  5062. if (tp->rx_opt.saw_tstamp) {
  5063. tp->rx_opt.tstamp_ok = 1;
  5064. tcp_store_ts_recent(tp);
  5065. tp->tcp_header_len =
  5066. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5067. } else {
  5068. tp->tcp_header_len = sizeof(struct tcphdr);
  5069. }
  5070. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5071. tp->copied_seq = tp->rcv_nxt;
  5072. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5073. /* RFC1323: The window in SYN & SYN/ACK segments is
  5074. * never scaled.
  5075. */
  5076. tp->snd_wnd = ntohs(th->window);
  5077. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5078. tp->max_window = tp->snd_wnd;
  5079. tcp_ecn_rcv_syn(tp, th);
  5080. tcp_mtup_init(sk);
  5081. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5082. tcp_initialize_rcv_mss(sk);
  5083. tcp_send_synack(sk);
  5084. #if 0
  5085. /* Note, we could accept data and URG from this segment.
  5086. * There are no obstacles to make this (except that we must
  5087. * either change tcp_recvmsg() to prevent it from returning data
  5088. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5089. *
  5090. * However, if we ignore data in ACKless segments sometimes,
  5091. * we have no reasons to accept it sometimes.
  5092. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5093. * is not flawless. So, discard packet for sanity.
  5094. * Uncomment this return to process the data.
  5095. */
  5096. return -1;
  5097. #else
  5098. goto discard;
  5099. #endif
  5100. }
  5101. /* "fifth, if neither of the SYN or RST bits is set then
  5102. * drop the segment and return."
  5103. */
  5104. discard_and_undo:
  5105. tcp_clear_options(&tp->rx_opt);
  5106. tp->rx_opt.mss_clamp = saved_clamp;
  5107. goto discard;
  5108. reset_and_undo:
  5109. tcp_clear_options(&tp->rx_opt);
  5110. tp->rx_opt.mss_clamp = saved_clamp;
  5111. return 1;
  5112. }
  5113. /*
  5114. * This function implements the receiving procedure of RFC 793 for
  5115. * all states except ESTABLISHED and TIME_WAIT.
  5116. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5117. * address independent.
  5118. */
  5119. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5120. {
  5121. struct tcp_sock *tp = tcp_sk(sk);
  5122. struct inet_connection_sock *icsk = inet_csk(sk);
  5123. const struct tcphdr *th = tcp_hdr(skb);
  5124. struct request_sock *req;
  5125. int queued = 0;
  5126. bool acceptable;
  5127. switch (sk->sk_state) {
  5128. case TCP_CLOSE:
  5129. goto discard;
  5130. case TCP_LISTEN:
  5131. if (th->ack)
  5132. return 1;
  5133. if (th->rst)
  5134. goto discard;
  5135. if (th->syn) {
  5136. if (th->fin)
  5137. goto discard;
  5138. /* It is possible that we process SYN packets from backlog,
  5139. * so we need to make sure to disable BH right there.
  5140. */
  5141. local_bh_disable();
  5142. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5143. local_bh_enable();
  5144. if (!acceptable)
  5145. return 1;
  5146. consume_skb(skb);
  5147. return 0;
  5148. }
  5149. goto discard;
  5150. case TCP_SYN_SENT:
  5151. tp->rx_opt.saw_tstamp = 0;
  5152. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5153. if (queued >= 0)
  5154. return queued;
  5155. /* Do step6 onward by hand. */
  5156. tcp_urg(sk, skb, th);
  5157. __kfree_skb(skb);
  5158. tcp_data_snd_check(sk);
  5159. return 0;
  5160. }
  5161. tp->rx_opt.saw_tstamp = 0;
  5162. req = tp->fastopen_rsk;
  5163. if (req) {
  5164. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5165. sk->sk_state != TCP_FIN_WAIT1);
  5166. if (!tcp_check_req(sk, skb, req, true))
  5167. goto discard;
  5168. }
  5169. if (!th->ack && !th->rst && !th->syn)
  5170. goto discard;
  5171. if (!tcp_validate_incoming(sk, skb, th, 0))
  5172. return 0;
  5173. /* step 5: check the ACK field */
  5174. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5175. FLAG_UPDATE_TS_RECENT |
  5176. FLAG_NO_CHALLENGE_ACK) > 0;
  5177. if (!acceptable) {
  5178. if (sk->sk_state == TCP_SYN_RECV)
  5179. return 1; /* send one RST */
  5180. tcp_send_challenge_ack(sk, skb);
  5181. goto discard;
  5182. }
  5183. switch (sk->sk_state) {
  5184. case TCP_SYN_RECV:
  5185. if (!tp->srtt_us)
  5186. tcp_synack_rtt_meas(sk, req);
  5187. /* Once we leave TCP_SYN_RECV, we no longer need req
  5188. * so release it.
  5189. */
  5190. if (req) {
  5191. inet_csk(sk)->icsk_retransmits = 0;
  5192. reqsk_fastopen_remove(sk, req, false);
  5193. } else {
  5194. /* Make sure socket is routed, for correct metrics. */
  5195. icsk->icsk_af_ops->rebuild_header(sk);
  5196. tcp_init_congestion_control(sk);
  5197. tcp_mtup_init(sk);
  5198. tp->copied_seq = tp->rcv_nxt;
  5199. tcp_init_buffer_space(sk);
  5200. }
  5201. smp_mb();
  5202. tcp_set_state(sk, TCP_ESTABLISHED);
  5203. sk->sk_state_change(sk);
  5204. /* Note, that this wakeup is only for marginal crossed SYN case.
  5205. * Passively open sockets are not waked up, because
  5206. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5207. */
  5208. if (sk->sk_socket)
  5209. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5210. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5211. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5212. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5213. if (tp->rx_opt.tstamp_ok)
  5214. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5215. if (req) {
  5216. /* Re-arm the timer because data may have been sent out.
  5217. * This is similar to the regular data transmission case
  5218. * when new data has just been ack'ed.
  5219. *
  5220. * (TFO) - we could try to be more aggressive and
  5221. * retransmitting any data sooner based on when they
  5222. * are sent out.
  5223. */
  5224. tcp_rearm_rto(sk);
  5225. } else
  5226. tcp_init_metrics(sk);
  5227. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5228. tcp_update_pacing_rate(sk);
  5229. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5230. tp->lsndtime = tcp_time_stamp;
  5231. tcp_initialize_rcv_mss(sk);
  5232. tcp_fast_path_on(tp);
  5233. break;
  5234. case TCP_FIN_WAIT1: {
  5235. struct dst_entry *dst;
  5236. int tmo;
  5237. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5238. * Fast Open socket and this is the first acceptable
  5239. * ACK we have received, this would have acknowledged
  5240. * our SYNACK so stop the SYNACK timer.
  5241. */
  5242. if (req) {
  5243. /* We no longer need the request sock. */
  5244. reqsk_fastopen_remove(sk, req, false);
  5245. tcp_rearm_rto(sk);
  5246. }
  5247. if (tp->snd_una != tp->write_seq)
  5248. break;
  5249. tcp_set_state(sk, TCP_FIN_WAIT2);
  5250. sk->sk_shutdown |= SEND_SHUTDOWN;
  5251. dst = __sk_dst_get(sk);
  5252. if (dst)
  5253. dst_confirm(dst);
  5254. if (!sock_flag(sk, SOCK_DEAD)) {
  5255. /* Wake up lingering close() */
  5256. sk->sk_state_change(sk);
  5257. break;
  5258. }
  5259. if (tp->linger2 < 0 ||
  5260. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5261. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5262. tcp_done(sk);
  5263. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5264. return 1;
  5265. }
  5266. tmo = tcp_fin_time(sk);
  5267. if (tmo > TCP_TIMEWAIT_LEN) {
  5268. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5269. } else if (th->fin || sock_owned_by_user(sk)) {
  5270. /* Bad case. We could lose such FIN otherwise.
  5271. * It is not a big problem, but it looks confusing
  5272. * and not so rare event. We still can lose it now,
  5273. * if it spins in bh_lock_sock(), but it is really
  5274. * marginal case.
  5275. */
  5276. inet_csk_reset_keepalive_timer(sk, tmo);
  5277. } else {
  5278. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5279. goto discard;
  5280. }
  5281. break;
  5282. }
  5283. case TCP_CLOSING:
  5284. if (tp->snd_una == tp->write_seq) {
  5285. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5286. goto discard;
  5287. }
  5288. break;
  5289. case TCP_LAST_ACK:
  5290. if (tp->snd_una == tp->write_seq) {
  5291. tcp_update_metrics(sk);
  5292. tcp_done(sk);
  5293. goto discard;
  5294. }
  5295. break;
  5296. }
  5297. /* step 6: check the URG bit */
  5298. tcp_urg(sk, skb, th);
  5299. /* step 7: process the segment text */
  5300. switch (sk->sk_state) {
  5301. case TCP_CLOSE_WAIT:
  5302. case TCP_CLOSING:
  5303. case TCP_LAST_ACK:
  5304. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5305. break;
  5306. case TCP_FIN_WAIT1:
  5307. case TCP_FIN_WAIT2:
  5308. /* RFC 793 says to queue data in these states,
  5309. * RFC 1122 says we MUST send a reset.
  5310. * BSD 4.4 also does reset.
  5311. */
  5312. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5313. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5314. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5315. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5316. tcp_reset(sk);
  5317. return 1;
  5318. }
  5319. }
  5320. /* Fall through */
  5321. case TCP_ESTABLISHED:
  5322. tcp_data_queue(sk, skb);
  5323. queued = 1;
  5324. break;
  5325. }
  5326. /* tcp_data could move socket to TIME-WAIT */
  5327. if (sk->sk_state != TCP_CLOSE) {
  5328. tcp_data_snd_check(sk);
  5329. tcp_ack_snd_check(sk);
  5330. }
  5331. if (!queued) {
  5332. discard:
  5333. tcp_drop(sk, skb);
  5334. }
  5335. return 0;
  5336. }
  5337. EXPORT_SYMBOL(tcp_rcv_state_process);
  5338. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5339. {
  5340. struct inet_request_sock *ireq = inet_rsk(req);
  5341. if (family == AF_INET)
  5342. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5343. &ireq->ir_rmt_addr, port);
  5344. #if IS_ENABLED(CONFIG_IPV6)
  5345. else if (family == AF_INET6)
  5346. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5347. &ireq->ir_v6_rmt_addr, port);
  5348. #endif
  5349. }
  5350. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5351. *
  5352. * If we receive a SYN packet with these bits set, it means a
  5353. * network is playing bad games with TOS bits. In order to
  5354. * avoid possible false congestion notifications, we disable
  5355. * TCP ECN negotiation.
  5356. *
  5357. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5358. * congestion control: Linux DCTCP asserts ECT on all packets,
  5359. * including SYN, which is most optimal solution; however,
  5360. * others, such as FreeBSD do not.
  5361. */
  5362. static void tcp_ecn_create_request(struct request_sock *req,
  5363. const struct sk_buff *skb,
  5364. const struct sock *listen_sk,
  5365. const struct dst_entry *dst)
  5366. {
  5367. const struct tcphdr *th = tcp_hdr(skb);
  5368. const struct net *net = sock_net(listen_sk);
  5369. bool th_ecn = th->ece && th->cwr;
  5370. bool ect, ecn_ok;
  5371. u32 ecn_ok_dst;
  5372. if (!th_ecn)
  5373. return;
  5374. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5375. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5376. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5377. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5378. (ecn_ok_dst & DST_FEATURE_ECN_CA))
  5379. inet_rsk(req)->ecn_ok = 1;
  5380. }
  5381. static void tcp_openreq_init(struct request_sock *req,
  5382. const struct tcp_options_received *rx_opt,
  5383. struct sk_buff *skb, const struct sock *sk)
  5384. {
  5385. struct inet_request_sock *ireq = inet_rsk(req);
  5386. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5387. req->cookie_ts = 0;
  5388. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5389. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5390. skb_mstamp_get(&tcp_rsk(req)->snt_synack);
  5391. tcp_rsk(req)->last_oow_ack_time = 0;
  5392. req->mss = rx_opt->mss_clamp;
  5393. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5394. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5395. ireq->sack_ok = rx_opt->sack_ok;
  5396. ireq->snd_wscale = rx_opt->snd_wscale;
  5397. ireq->wscale_ok = rx_opt->wscale_ok;
  5398. ireq->acked = 0;
  5399. ireq->ecn_ok = 0;
  5400. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5401. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5402. ireq->ir_mark = inet_request_mark(sk, skb);
  5403. }
  5404. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5405. struct sock *sk_listener,
  5406. bool attach_listener)
  5407. {
  5408. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5409. attach_listener);
  5410. if (req) {
  5411. struct inet_request_sock *ireq = inet_rsk(req);
  5412. kmemcheck_annotate_bitfield(ireq, flags);
  5413. ireq->ireq_opt = NULL;
  5414. #if IS_ENABLED(CONFIG_IPV6)
  5415. ireq->pktopts = NULL;
  5416. #endif
  5417. atomic64_set(&ireq->ir_cookie, 0);
  5418. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5419. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5420. ireq->ireq_family = sk_listener->sk_family;
  5421. }
  5422. return req;
  5423. }
  5424. EXPORT_SYMBOL(inet_reqsk_alloc);
  5425. /*
  5426. * Return true if a syncookie should be sent
  5427. */
  5428. static bool tcp_syn_flood_action(const struct sock *sk,
  5429. const struct sk_buff *skb,
  5430. const char *proto)
  5431. {
  5432. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5433. const char *msg = "Dropping request";
  5434. bool want_cookie = false;
  5435. struct net *net = sock_net(sk);
  5436. #ifdef CONFIG_SYN_COOKIES
  5437. if (net->ipv4.sysctl_tcp_syncookies) {
  5438. msg = "Sending cookies";
  5439. want_cookie = true;
  5440. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5441. } else
  5442. #endif
  5443. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5444. if (!queue->synflood_warned &&
  5445. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5446. xchg(&queue->synflood_warned, 1) == 0)
  5447. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5448. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5449. return want_cookie;
  5450. }
  5451. static void tcp_reqsk_record_syn(const struct sock *sk,
  5452. struct request_sock *req,
  5453. const struct sk_buff *skb)
  5454. {
  5455. if (tcp_sk(sk)->save_syn) {
  5456. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5457. u32 *copy;
  5458. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5459. if (copy) {
  5460. copy[0] = len;
  5461. memcpy(&copy[1], skb_network_header(skb), len);
  5462. req->saved_syn = copy;
  5463. }
  5464. }
  5465. }
  5466. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5467. const struct tcp_request_sock_ops *af_ops,
  5468. struct sock *sk, struct sk_buff *skb)
  5469. {
  5470. struct tcp_fastopen_cookie foc = { .len = -1 };
  5471. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5472. struct tcp_options_received tmp_opt;
  5473. struct tcp_sock *tp = tcp_sk(sk);
  5474. struct net *net = sock_net(sk);
  5475. struct sock *fastopen_sk = NULL;
  5476. struct dst_entry *dst = NULL;
  5477. struct request_sock *req;
  5478. bool want_cookie = false;
  5479. struct flowi fl;
  5480. /* TW buckets are converted to open requests without
  5481. * limitations, they conserve resources and peer is
  5482. * evidently real one.
  5483. */
  5484. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5485. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5486. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5487. if (!want_cookie)
  5488. goto drop;
  5489. }
  5490. /* Accept backlog is full. If we have already queued enough
  5491. * of warm entries in syn queue, drop request. It is better than
  5492. * clogging syn queue with openreqs with exponentially increasing
  5493. * timeout.
  5494. */
  5495. if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
  5496. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5497. goto drop;
  5498. }
  5499. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5500. if (!req)
  5501. goto drop;
  5502. tcp_rsk(req)->af_specific = af_ops;
  5503. tcp_clear_options(&tmp_opt);
  5504. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5505. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5506. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5507. if (want_cookie && !tmp_opt.saw_tstamp)
  5508. tcp_clear_options(&tmp_opt);
  5509. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5510. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5511. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5512. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5513. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5514. af_ops->init_req(req, sk, skb);
  5515. if (security_inet_conn_request(sk, skb, req))
  5516. goto drop_and_free;
  5517. if (!want_cookie && !isn) {
  5518. /* VJ's idea. We save last timestamp seen
  5519. * from the destination in peer table, when entering
  5520. * state TIME-WAIT, and check against it before
  5521. * accepting new connection request.
  5522. *
  5523. * If "isn" is not zero, this request hit alive
  5524. * timewait bucket, so that all the necessary checks
  5525. * are made in the function processing timewait state.
  5526. */
  5527. if (tcp_death_row.sysctl_tw_recycle) {
  5528. bool strict;
  5529. dst = af_ops->route_req(sk, &fl, req, &strict);
  5530. if (dst && strict &&
  5531. !tcp_peer_is_proven(req, dst, true,
  5532. tmp_opt.saw_tstamp)) {
  5533. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5534. goto drop_and_release;
  5535. }
  5536. }
  5537. /* Kill the following clause, if you dislike this way. */
  5538. else if (!net->ipv4.sysctl_tcp_syncookies &&
  5539. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5540. (sysctl_max_syn_backlog >> 2)) &&
  5541. !tcp_peer_is_proven(req, dst, false,
  5542. tmp_opt.saw_tstamp)) {
  5543. /* Without syncookies last quarter of
  5544. * backlog is filled with destinations,
  5545. * proven to be alive.
  5546. * It means that we continue to communicate
  5547. * to destinations, already remembered
  5548. * to the moment of synflood.
  5549. */
  5550. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5551. rsk_ops->family);
  5552. goto drop_and_release;
  5553. }
  5554. isn = af_ops->init_seq(skb);
  5555. }
  5556. if (!dst) {
  5557. dst = af_ops->route_req(sk, &fl, req, NULL);
  5558. if (!dst)
  5559. goto drop_and_free;
  5560. }
  5561. tcp_ecn_create_request(req, skb, sk, dst);
  5562. if (want_cookie) {
  5563. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5564. req->cookie_ts = tmp_opt.tstamp_ok;
  5565. if (!tmp_opt.tstamp_ok)
  5566. inet_rsk(req)->ecn_ok = 0;
  5567. }
  5568. tcp_rsk(req)->snt_isn = isn;
  5569. tcp_rsk(req)->txhash = net_tx_rndhash();
  5570. tcp_openreq_init_rwin(req, sk, dst);
  5571. if (!want_cookie) {
  5572. tcp_reqsk_record_syn(sk, req, skb);
  5573. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5574. }
  5575. if (fastopen_sk) {
  5576. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5577. &foc, TCP_SYNACK_FASTOPEN);
  5578. /* Add the child socket directly into the accept queue */
  5579. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5580. sk->sk_data_ready(sk);
  5581. bh_unlock_sock(fastopen_sk);
  5582. sock_put(fastopen_sk);
  5583. } else {
  5584. tcp_rsk(req)->tfo_listener = false;
  5585. if (!want_cookie)
  5586. inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5587. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5588. !want_cookie ? TCP_SYNACK_NORMAL :
  5589. TCP_SYNACK_COOKIE);
  5590. if (want_cookie) {
  5591. reqsk_free(req);
  5592. return 0;
  5593. }
  5594. }
  5595. reqsk_put(req);
  5596. return 0;
  5597. drop_and_release:
  5598. dst_release(dst);
  5599. drop_and_free:
  5600. reqsk_free(req);
  5601. drop:
  5602. tcp_listendrop(sk);
  5603. return 0;
  5604. }
  5605. EXPORT_SYMBOL(tcp_conn_request);