1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836 |
- /*
- * mm/page-writeback.c
- *
- * Copyright (C) 2002, Linus Torvalds.
- * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
- *
- * Contains functions related to writing back dirty pages at the
- * address_space level.
- *
- * 10Apr2002 Andrew Morton
- * Initial version
- */
- #include <linux/kernel.h>
- #include <linux/export.h>
- #include <linux/spinlock.h>
- #include <linux/fs.h>
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/slab.h>
- #include <linux/pagemap.h>
- #include <linux/writeback.h>
- #include <linux/init.h>
- #include <linux/backing-dev.h>
- #include <linux/task_io_accounting_ops.h>
- #include <linux/blkdev.h>
- #include <linux/mpage.h>
- #include <linux/rmap.h>
- #include <linux/percpu.h>
- #include <linux/notifier.h>
- #include <linux/smp.h>
- #include <linux/sysctl.h>
- #include <linux/cpu.h>
- #include <linux/syscalls.h>
- #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
- #include <linux/pagevec.h>
- #include <linux/timer.h>
- #include <linux/sched/rt.h>
- #include <linux/mm_inline.h>
- #include <trace/events/writeback.h>
- #include "internal.h"
- /*
- * Sleep at most 200ms at a time in balance_dirty_pages().
- */
- #define MAX_PAUSE max(HZ/5, 1)
- /*
- * Try to keep balance_dirty_pages() call intervals higher than this many pages
- * by raising pause time to max_pause when falls below it.
- */
- #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
- /*
- * Estimate write bandwidth at 200ms intervals.
- */
- #define BANDWIDTH_INTERVAL max(HZ/5, 1)
- #define RATELIMIT_CALC_SHIFT 10
- /*
- * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
- * will look to see if it needs to force writeback or throttling.
- */
- static long ratelimit_pages = 32;
- /* The following parameters are exported via /proc/sys/vm */
- /*
- * Start background writeback (via writeback threads) at this percentage
- */
- int dirty_background_ratio = 10;
- /*
- * dirty_background_bytes starts at 0 (disabled) so that it is a function of
- * dirty_background_ratio * the amount of dirtyable memory
- */
- unsigned long dirty_background_bytes;
- /*
- * free highmem will not be subtracted from the total free memory
- * for calculating free ratios if vm_highmem_is_dirtyable is true
- */
- int vm_highmem_is_dirtyable;
- /*
- * The generator of dirty data starts writeback at this percentage
- */
- int vm_dirty_ratio = 20;
- /*
- * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
- * vm_dirty_ratio * the amount of dirtyable memory
- */
- unsigned long vm_dirty_bytes;
- /*
- * The interval between `kupdate'-style writebacks
- */
- unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
- EXPORT_SYMBOL_GPL(dirty_writeback_interval);
- /*
- * The longest time for which data is allowed to remain dirty
- */
- unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
- /*
- * Flag that makes the machine dump writes/reads and block dirtyings.
- */
- int block_dump;
- /*
- * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
- * a full sync is triggered after this time elapses without any disk activity.
- */
- int laptop_mode;
- EXPORT_SYMBOL(laptop_mode);
- /* End of sysctl-exported parameters */
- struct wb_domain global_wb_domain;
- /* consolidated parameters for balance_dirty_pages() and its subroutines */
- struct dirty_throttle_control {
- #ifdef CONFIG_CGROUP_WRITEBACK
- struct wb_domain *dom;
- struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
- #endif
- struct bdi_writeback *wb;
- struct fprop_local_percpu *wb_completions;
- unsigned long avail; /* dirtyable */
- unsigned long dirty; /* file_dirty + write + nfs */
- unsigned long thresh; /* dirty threshold */
- unsigned long bg_thresh; /* dirty background threshold */
- unsigned long wb_dirty; /* per-wb counterparts */
- unsigned long wb_thresh;
- unsigned long wb_bg_thresh;
- unsigned long pos_ratio;
- };
- /*
- * Length of period for aging writeout fractions of bdis. This is an
- * arbitrarily chosen number. The longer the period, the slower fractions will
- * reflect changes in current writeout rate.
- */
- #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
- #ifdef CONFIG_CGROUP_WRITEBACK
- #define GDTC_INIT(__wb) .wb = (__wb), \
- .dom = &global_wb_domain, \
- .wb_completions = &(__wb)->completions
- #define GDTC_INIT_NO_WB .dom = &global_wb_domain
- #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
- .dom = mem_cgroup_wb_domain(__wb), \
- .wb_completions = &(__wb)->memcg_completions, \
- .gdtc = __gdtc
- static bool mdtc_valid(struct dirty_throttle_control *dtc)
- {
- return dtc->dom;
- }
- static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
- {
- return dtc->dom;
- }
- static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
- {
- return mdtc->gdtc;
- }
- static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
- {
- return &wb->memcg_completions;
- }
- static void wb_min_max_ratio(struct bdi_writeback *wb,
- unsigned long *minp, unsigned long *maxp)
- {
- unsigned long this_bw = wb->avg_write_bandwidth;
- unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
- unsigned long long min = wb->bdi->min_ratio;
- unsigned long long max = wb->bdi->max_ratio;
- /*
- * @wb may already be clean by the time control reaches here and
- * the total may not include its bw.
- */
- if (this_bw < tot_bw) {
- if (min) {
- min *= this_bw;
- do_div(min, tot_bw);
- }
- if (max < 100) {
- max *= this_bw;
- do_div(max, tot_bw);
- }
- }
- *minp = min;
- *maxp = max;
- }
- #else /* CONFIG_CGROUP_WRITEBACK */
- #define GDTC_INIT(__wb) .wb = (__wb), \
- .wb_completions = &(__wb)->completions
- #define GDTC_INIT_NO_WB
- #define MDTC_INIT(__wb, __gdtc)
- static bool mdtc_valid(struct dirty_throttle_control *dtc)
- {
- return false;
- }
- static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
- {
- return &global_wb_domain;
- }
- static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
- {
- return NULL;
- }
- static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
- {
- return NULL;
- }
- static void wb_min_max_ratio(struct bdi_writeback *wb,
- unsigned long *minp, unsigned long *maxp)
- {
- *minp = wb->bdi->min_ratio;
- *maxp = wb->bdi->max_ratio;
- }
- #endif /* CONFIG_CGROUP_WRITEBACK */
- /*
- * In a memory zone, there is a certain amount of pages we consider
- * available for the page cache, which is essentially the number of
- * free and reclaimable pages, minus some zone reserves to protect
- * lowmem and the ability to uphold the zone's watermarks without
- * requiring writeback.
- *
- * This number of dirtyable pages is the base value of which the
- * user-configurable dirty ratio is the effictive number of pages that
- * are allowed to be actually dirtied. Per individual zone, or
- * globally by using the sum of dirtyable pages over all zones.
- *
- * Because the user is allowed to specify the dirty limit globally as
- * absolute number of bytes, calculating the per-zone dirty limit can
- * require translating the configured limit into a percentage of
- * global dirtyable memory first.
- */
- /**
- * node_dirtyable_memory - number of dirtyable pages in a node
- * @pgdat: the node
- *
- * Returns the node's number of pages potentially available for dirty
- * page cache. This is the base value for the per-node dirty limits.
- */
- static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
- {
- unsigned long nr_pages = 0;
- int z;
- for (z = 0; z < MAX_NR_ZONES; z++) {
- struct zone *zone = pgdat->node_zones + z;
- if (!populated_zone(zone))
- continue;
- nr_pages += zone_page_state(zone, NR_FREE_PAGES);
- }
- /*
- * Pages reserved for the kernel should not be considered
- * dirtyable, to prevent a situation where reclaim has to
- * clean pages in order to balance the zones.
- */
- nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
- nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
- nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
- return nr_pages;
- }
- static unsigned long highmem_dirtyable_memory(unsigned long total)
- {
- #ifdef CONFIG_HIGHMEM
- int node;
- unsigned long x = 0;
- int i;
- for_each_node_state(node, N_HIGH_MEMORY) {
- for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
- struct zone *z;
- unsigned long nr_pages;
- if (!is_highmem_idx(i))
- continue;
- z = &NODE_DATA(node)->node_zones[i];
- if (!populated_zone(z))
- continue;
- nr_pages = zone_page_state(z, NR_FREE_PAGES);
- /* watch for underflows */
- nr_pages -= min(nr_pages, high_wmark_pages(z));
- nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
- nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
- x += nr_pages;
- }
- }
- /*
- * Unreclaimable memory (kernel memory or anonymous memory
- * without swap) can bring down the dirtyable pages below
- * the zone's dirty balance reserve and the above calculation
- * will underflow. However we still want to add in nodes
- * which are below threshold (negative values) to get a more
- * accurate calculation but make sure that the total never
- * underflows.
- */
- if ((long)x < 0)
- x = 0;
- /*
- * Make sure that the number of highmem pages is never larger
- * than the number of the total dirtyable memory. This can only
- * occur in very strange VM situations but we want to make sure
- * that this does not occur.
- */
- return min(x, total);
- #else
- return 0;
- #endif
- }
- /**
- * global_dirtyable_memory - number of globally dirtyable pages
- *
- * Returns the global number of pages potentially available for dirty
- * page cache. This is the base value for the global dirty limits.
- */
- static unsigned long global_dirtyable_memory(void)
- {
- unsigned long x;
- x = global_page_state(NR_FREE_PAGES);
- /*
- * Pages reserved for the kernel should not be considered
- * dirtyable, to prevent a situation where reclaim has to
- * clean pages in order to balance the zones.
- */
- x -= min(x, totalreserve_pages);
- x += global_node_page_state(NR_INACTIVE_FILE);
- x += global_node_page_state(NR_ACTIVE_FILE);
- if (!vm_highmem_is_dirtyable)
- x -= highmem_dirtyable_memory(x);
- return x + 1; /* Ensure that we never return 0 */
- }
- /**
- * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
- * @dtc: dirty_throttle_control of interest
- *
- * Calculate @dtc->thresh and ->bg_thresh considering
- * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
- * must ensure that @dtc->avail is set before calling this function. The
- * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
- * real-time tasks.
- */
- static void domain_dirty_limits(struct dirty_throttle_control *dtc)
- {
- const unsigned long available_memory = dtc->avail;
- struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
- unsigned long bytes = vm_dirty_bytes;
- unsigned long bg_bytes = dirty_background_bytes;
- /* convert ratios to per-PAGE_SIZE for higher precision */
- unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
- unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
- unsigned long thresh;
- unsigned long bg_thresh;
- struct task_struct *tsk;
- /* gdtc is !NULL iff @dtc is for memcg domain */
- if (gdtc) {
- unsigned long global_avail = gdtc->avail;
- /*
- * The byte settings can't be applied directly to memcg
- * domains. Convert them to ratios by scaling against
- * globally available memory. As the ratios are in
- * per-PAGE_SIZE, they can be obtained by dividing bytes by
- * number of pages.
- */
- if (bytes)
- ratio = min(DIV_ROUND_UP(bytes, global_avail),
- PAGE_SIZE);
- if (bg_bytes)
- bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
- PAGE_SIZE);
- bytes = bg_bytes = 0;
- }
- if (bytes)
- thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
- else
- thresh = (ratio * available_memory) / PAGE_SIZE;
- if (bg_bytes)
- bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
- else
- bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
- if (bg_thresh >= thresh)
- bg_thresh = thresh / 2;
- tsk = current;
- if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
- bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
- thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
- }
- dtc->thresh = thresh;
- dtc->bg_thresh = bg_thresh;
- /* we should eventually report the domain in the TP */
- if (!gdtc)
- trace_global_dirty_state(bg_thresh, thresh);
- }
- /**
- * global_dirty_limits - background-writeback and dirty-throttling thresholds
- * @pbackground: out parameter for bg_thresh
- * @pdirty: out parameter for thresh
- *
- * Calculate bg_thresh and thresh for global_wb_domain. See
- * domain_dirty_limits() for details.
- */
- void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
- {
- struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
- gdtc.avail = global_dirtyable_memory();
- domain_dirty_limits(&gdtc);
- *pbackground = gdtc.bg_thresh;
- *pdirty = gdtc.thresh;
- }
- /**
- * node_dirty_limit - maximum number of dirty pages allowed in a node
- * @pgdat: the node
- *
- * Returns the maximum number of dirty pages allowed in a node, based
- * on the node's dirtyable memory.
- */
- static unsigned long node_dirty_limit(struct pglist_data *pgdat)
- {
- unsigned long node_memory = node_dirtyable_memory(pgdat);
- struct task_struct *tsk = current;
- unsigned long dirty;
- if (vm_dirty_bytes)
- dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
- node_memory / global_dirtyable_memory();
- else
- dirty = vm_dirty_ratio * node_memory / 100;
- if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
- dirty += dirty / 4;
- return dirty;
- }
- /**
- * node_dirty_ok - tells whether a node is within its dirty limits
- * @pgdat: the node to check
- *
- * Returns %true when the dirty pages in @pgdat are within the node's
- * dirty limit, %false if the limit is exceeded.
- */
- bool node_dirty_ok(struct pglist_data *pgdat)
- {
- unsigned long limit = node_dirty_limit(pgdat);
- unsigned long nr_pages = 0;
- nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
- nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
- nr_pages += node_page_state(pgdat, NR_WRITEBACK);
- return nr_pages <= limit;
- }
- int dirty_background_ratio_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret;
- ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
- if (ret == 0 && write)
- dirty_background_bytes = 0;
- return ret;
- }
- int dirty_background_bytes_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret;
- ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
- if (ret == 0 && write)
- dirty_background_ratio = 0;
- return ret;
- }
- int dirty_ratio_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int old_ratio = vm_dirty_ratio;
- int ret;
- ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
- if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
- writeback_set_ratelimit();
- vm_dirty_bytes = 0;
- }
- return ret;
- }
- int dirty_bytes_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- unsigned long old_bytes = vm_dirty_bytes;
- int ret;
- ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
- if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
- writeback_set_ratelimit();
- vm_dirty_ratio = 0;
- }
- return ret;
- }
- static unsigned long wp_next_time(unsigned long cur_time)
- {
- cur_time += VM_COMPLETIONS_PERIOD_LEN;
- /* 0 has a special meaning... */
- if (!cur_time)
- return 1;
- return cur_time;
- }
- static void wb_domain_writeout_inc(struct wb_domain *dom,
- struct fprop_local_percpu *completions,
- unsigned int max_prop_frac)
- {
- __fprop_inc_percpu_max(&dom->completions, completions,
- max_prop_frac);
- /* First event after period switching was turned off? */
- if (!unlikely(dom->period_time)) {
- /*
- * We can race with other __bdi_writeout_inc calls here but
- * it does not cause any harm since the resulting time when
- * timer will fire and what is in writeout_period_time will be
- * roughly the same.
- */
- dom->period_time = wp_next_time(jiffies);
- mod_timer(&dom->period_timer, dom->period_time);
- }
- }
- /*
- * Increment @wb's writeout completion count and the global writeout
- * completion count. Called from test_clear_page_writeback().
- */
- static inline void __wb_writeout_inc(struct bdi_writeback *wb)
- {
- struct wb_domain *cgdom;
- __inc_wb_stat(wb, WB_WRITTEN);
- wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
- wb->bdi->max_prop_frac);
- cgdom = mem_cgroup_wb_domain(wb);
- if (cgdom)
- wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
- wb->bdi->max_prop_frac);
- }
- void wb_writeout_inc(struct bdi_writeback *wb)
- {
- unsigned long flags;
- local_irq_save(flags);
- __wb_writeout_inc(wb);
- local_irq_restore(flags);
- }
- EXPORT_SYMBOL_GPL(wb_writeout_inc);
- /*
- * On idle system, we can be called long after we scheduled because we use
- * deferred timers so count with missed periods.
- */
- static void writeout_period(unsigned long t)
- {
- struct wb_domain *dom = (void *)t;
- int miss_periods = (jiffies - dom->period_time) /
- VM_COMPLETIONS_PERIOD_LEN;
- if (fprop_new_period(&dom->completions, miss_periods + 1)) {
- dom->period_time = wp_next_time(dom->period_time +
- miss_periods * VM_COMPLETIONS_PERIOD_LEN);
- mod_timer(&dom->period_timer, dom->period_time);
- } else {
- /*
- * Aging has zeroed all fractions. Stop wasting CPU on period
- * updates.
- */
- dom->period_time = 0;
- }
- }
- int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
- {
- memset(dom, 0, sizeof(*dom));
- spin_lock_init(&dom->lock);
- init_timer_deferrable(&dom->period_timer);
- dom->period_timer.function = writeout_period;
- dom->period_timer.data = (unsigned long)dom;
- dom->dirty_limit_tstamp = jiffies;
- return fprop_global_init(&dom->completions, gfp);
- }
- #ifdef CONFIG_CGROUP_WRITEBACK
- void wb_domain_exit(struct wb_domain *dom)
- {
- del_timer_sync(&dom->period_timer);
- fprop_global_destroy(&dom->completions);
- }
- #endif
- /*
- * bdi_min_ratio keeps the sum of the minimum dirty shares of all
- * registered backing devices, which, for obvious reasons, can not
- * exceed 100%.
- */
- static unsigned int bdi_min_ratio;
- int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
- {
- int ret = 0;
- spin_lock_bh(&bdi_lock);
- if (min_ratio > bdi->max_ratio) {
- ret = -EINVAL;
- } else {
- min_ratio -= bdi->min_ratio;
- if (bdi_min_ratio + min_ratio < 100) {
- bdi_min_ratio += min_ratio;
- bdi->min_ratio += min_ratio;
- } else {
- ret = -EINVAL;
- }
- }
- spin_unlock_bh(&bdi_lock);
- return ret;
- }
- int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
- {
- int ret = 0;
- if (max_ratio > 100)
- return -EINVAL;
- spin_lock_bh(&bdi_lock);
- if (bdi->min_ratio > max_ratio) {
- ret = -EINVAL;
- } else {
- bdi->max_ratio = max_ratio;
- bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
- }
- spin_unlock_bh(&bdi_lock);
- return ret;
- }
- EXPORT_SYMBOL(bdi_set_max_ratio);
- static unsigned long dirty_freerun_ceiling(unsigned long thresh,
- unsigned long bg_thresh)
- {
- return (thresh + bg_thresh) / 2;
- }
- static unsigned long hard_dirty_limit(struct wb_domain *dom,
- unsigned long thresh)
- {
- return max(thresh, dom->dirty_limit);
- }
- /*
- * Memory which can be further allocated to a memcg domain is capped by
- * system-wide clean memory excluding the amount being used in the domain.
- */
- static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
- unsigned long filepages, unsigned long headroom)
- {
- struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
- unsigned long clean = filepages - min(filepages, mdtc->dirty);
- unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
- unsigned long other_clean = global_clean - min(global_clean, clean);
- mdtc->avail = filepages + min(headroom, other_clean);
- }
- /**
- * __wb_calc_thresh - @wb's share of dirty throttling threshold
- * @dtc: dirty_throttle_context of interest
- *
- * Returns @wb's dirty limit in pages. The term "dirty" in the context of
- * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
- *
- * Note that balance_dirty_pages() will only seriously take it as a hard limit
- * when sleeping max_pause per page is not enough to keep the dirty pages under
- * control. For example, when the device is completely stalled due to some error
- * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
- * In the other normal situations, it acts more gently by throttling the tasks
- * more (rather than completely block them) when the wb dirty pages go high.
- *
- * It allocates high/low dirty limits to fast/slow devices, in order to prevent
- * - starving fast devices
- * - piling up dirty pages (that will take long time to sync) on slow devices
- *
- * The wb's share of dirty limit will be adapting to its throughput and
- * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
- */
- static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
- {
- struct wb_domain *dom = dtc_dom(dtc);
- unsigned long thresh = dtc->thresh;
- u64 wb_thresh;
- long numerator, denominator;
- unsigned long wb_min_ratio, wb_max_ratio;
- /*
- * Calculate this BDI's share of the thresh ratio.
- */
- fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
- &numerator, &denominator);
- wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
- wb_thresh *= numerator;
- do_div(wb_thresh, denominator);
- wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
- wb_thresh += (thresh * wb_min_ratio) / 100;
- if (wb_thresh > (thresh * wb_max_ratio) / 100)
- wb_thresh = thresh * wb_max_ratio / 100;
- return wb_thresh;
- }
- unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
- {
- struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
- .thresh = thresh };
- return __wb_calc_thresh(&gdtc);
- }
- /*
- * setpoint - dirty 3
- * f(dirty) := 1.0 + (----------------)
- * limit - setpoint
- *
- * it's a 3rd order polynomial that subjects to
- *
- * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
- * (2) f(setpoint) = 1.0 => the balance point
- * (3) f(limit) = 0 => the hard limit
- * (4) df/dx <= 0 => negative feedback control
- * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
- * => fast response on large errors; small oscillation near setpoint
- */
- static long long pos_ratio_polynom(unsigned long setpoint,
- unsigned long dirty,
- unsigned long limit)
- {
- long long pos_ratio;
- long x;
- x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
- (limit - setpoint) | 1);
- pos_ratio = x;
- pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
- pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
- pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
- return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
- }
- /*
- * Dirty position control.
- *
- * (o) global/bdi setpoints
- *
- * We want the dirty pages be balanced around the global/wb setpoints.
- * When the number of dirty pages is higher/lower than the setpoint, the
- * dirty position control ratio (and hence task dirty ratelimit) will be
- * decreased/increased to bring the dirty pages back to the setpoint.
- *
- * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
- *
- * if (dirty < setpoint) scale up pos_ratio
- * if (dirty > setpoint) scale down pos_ratio
- *
- * if (wb_dirty < wb_setpoint) scale up pos_ratio
- * if (wb_dirty > wb_setpoint) scale down pos_ratio
- *
- * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
- *
- * (o) global control line
- *
- * ^ pos_ratio
- * |
- * | |<===== global dirty control scope ======>|
- * 2.0 .............*
- * | .*
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * 1.0 ................................*
- * | . . *
- * | . . *
- * | . . *
- * | . . *
- * | . . *
- * 0 +------------.------------------.----------------------*------------->
- * freerun^ setpoint^ limit^ dirty pages
- *
- * (o) wb control line
- *
- * ^ pos_ratio
- * |
- * | *
- * | *
- * | *
- * | *
- * | * |<=========== span ============>|
- * 1.0 .......................*
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * 1/4 ...............................................* * * * * * * * * * * *
- * | . .
- * | . .
- * | . .
- * 0 +----------------------.-------------------------------.------------->
- * wb_setpoint^ x_intercept^
- *
- * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
- * be smoothly throttled down to normal if it starts high in situations like
- * - start writing to a slow SD card and a fast disk at the same time. The SD
- * card's wb_dirty may rush to many times higher than wb_setpoint.
- * - the wb dirty thresh drops quickly due to change of JBOD workload
- */
- static void wb_position_ratio(struct dirty_throttle_control *dtc)
- {
- struct bdi_writeback *wb = dtc->wb;
- unsigned long write_bw = wb->avg_write_bandwidth;
- unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
- unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
- unsigned long wb_thresh = dtc->wb_thresh;
- unsigned long x_intercept;
- unsigned long setpoint; /* dirty pages' target balance point */
- unsigned long wb_setpoint;
- unsigned long span;
- long long pos_ratio; /* for scaling up/down the rate limit */
- long x;
- dtc->pos_ratio = 0;
- if (unlikely(dtc->dirty >= limit))
- return;
- /*
- * global setpoint
- *
- * See comment for pos_ratio_polynom().
- */
- setpoint = (freerun + limit) / 2;
- pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
- /*
- * The strictlimit feature is a tool preventing mistrusted filesystems
- * from growing a large number of dirty pages before throttling. For
- * such filesystems balance_dirty_pages always checks wb counters
- * against wb limits. Even if global "nr_dirty" is under "freerun".
- * This is especially important for fuse which sets bdi->max_ratio to
- * 1% by default. Without strictlimit feature, fuse writeback may
- * consume arbitrary amount of RAM because it is accounted in
- * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
- *
- * Here, in wb_position_ratio(), we calculate pos_ratio based on
- * two values: wb_dirty and wb_thresh. Let's consider an example:
- * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
- * limits are set by default to 10% and 20% (background and throttle).
- * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
- * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
- * about ~6K pages (as the average of background and throttle wb
- * limits). The 3rd order polynomial will provide positive feedback if
- * wb_dirty is under wb_setpoint and vice versa.
- *
- * Note, that we cannot use global counters in these calculations
- * because we want to throttle process writing to a strictlimit wb
- * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
- * in the example above).
- */
- if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
- long long wb_pos_ratio;
- if (dtc->wb_dirty < 8) {
- dtc->pos_ratio = min_t(long long, pos_ratio * 2,
- 2 << RATELIMIT_CALC_SHIFT);
- return;
- }
- if (dtc->wb_dirty >= wb_thresh)
- return;
- wb_setpoint = dirty_freerun_ceiling(wb_thresh,
- dtc->wb_bg_thresh);
- if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
- return;
- wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
- wb_thresh);
- /*
- * Typically, for strictlimit case, wb_setpoint << setpoint
- * and pos_ratio >> wb_pos_ratio. In the other words global
- * state ("dirty") is not limiting factor and we have to
- * make decision based on wb counters. But there is an
- * important case when global pos_ratio should get precedence:
- * global limits are exceeded (e.g. due to activities on other
- * wb's) while given strictlimit wb is below limit.
- *
- * "pos_ratio * wb_pos_ratio" would work for the case above,
- * but it would look too non-natural for the case of all
- * activity in the system coming from a single strictlimit wb
- * with bdi->max_ratio == 100%.
- *
- * Note that min() below somewhat changes the dynamics of the
- * control system. Normally, pos_ratio value can be well over 3
- * (when globally we are at freerun and wb is well below wb
- * setpoint). Now the maximum pos_ratio in the same situation
- * is 2. We might want to tweak this if we observe the control
- * system is too slow to adapt.
- */
- dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
- return;
- }
- /*
- * We have computed basic pos_ratio above based on global situation. If
- * the wb is over/under its share of dirty pages, we want to scale
- * pos_ratio further down/up. That is done by the following mechanism.
- */
- /*
- * wb setpoint
- *
- * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
- *
- * x_intercept - wb_dirty
- * := --------------------------
- * x_intercept - wb_setpoint
- *
- * The main wb control line is a linear function that subjects to
- *
- * (1) f(wb_setpoint) = 1.0
- * (2) k = - 1 / (8 * write_bw) (in single wb case)
- * or equally: x_intercept = wb_setpoint + 8 * write_bw
- *
- * For single wb case, the dirty pages are observed to fluctuate
- * regularly within range
- * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
- * for various filesystems, where (2) can yield in a reasonable 12.5%
- * fluctuation range for pos_ratio.
- *
- * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
- * own size, so move the slope over accordingly and choose a slope that
- * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
- */
- if (unlikely(wb_thresh > dtc->thresh))
- wb_thresh = dtc->thresh;
- /*
- * It's very possible that wb_thresh is close to 0 not because the
- * device is slow, but that it has remained inactive for long time.
- * Honour such devices a reasonable good (hopefully IO efficient)
- * threshold, so that the occasional writes won't be blocked and active
- * writes can rampup the threshold quickly.
- */
- wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
- /*
- * scale global setpoint to wb's:
- * wb_setpoint = setpoint * wb_thresh / thresh
- */
- x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
- wb_setpoint = setpoint * (u64)x >> 16;
- /*
- * Use span=(8*write_bw) in single wb case as indicated by
- * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
- *
- * wb_thresh thresh - wb_thresh
- * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
- * thresh thresh
- */
- span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
- x_intercept = wb_setpoint + span;
- if (dtc->wb_dirty < x_intercept - span / 4) {
- pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
- (x_intercept - wb_setpoint) | 1);
- } else
- pos_ratio /= 4;
- /*
- * wb reserve area, safeguard against dirty pool underrun and disk idle
- * It may push the desired control point of global dirty pages higher
- * than setpoint.
- */
- x_intercept = wb_thresh / 2;
- if (dtc->wb_dirty < x_intercept) {
- if (dtc->wb_dirty > x_intercept / 8)
- pos_ratio = div_u64(pos_ratio * x_intercept,
- dtc->wb_dirty);
- else
- pos_ratio *= 8;
- }
- dtc->pos_ratio = pos_ratio;
- }
- static void wb_update_write_bandwidth(struct bdi_writeback *wb,
- unsigned long elapsed,
- unsigned long written)
- {
- const unsigned long period = roundup_pow_of_two(3 * HZ);
- unsigned long avg = wb->avg_write_bandwidth;
- unsigned long old = wb->write_bandwidth;
- u64 bw;
- /*
- * bw = written * HZ / elapsed
- *
- * bw * elapsed + write_bandwidth * (period - elapsed)
- * write_bandwidth = ---------------------------------------------------
- * period
- *
- * @written may have decreased due to account_page_redirty().
- * Avoid underflowing @bw calculation.
- */
- bw = written - min(written, wb->written_stamp);
- bw *= HZ;
- if (unlikely(elapsed > period)) {
- do_div(bw, elapsed);
- avg = bw;
- goto out;
- }
- bw += (u64)wb->write_bandwidth * (period - elapsed);
- bw >>= ilog2(period);
- /*
- * one more level of smoothing, for filtering out sudden spikes
- */
- if (avg > old && old >= (unsigned long)bw)
- avg -= (avg - old) >> 3;
- if (avg < old && old <= (unsigned long)bw)
- avg += (old - avg) >> 3;
- out:
- /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
- avg = max(avg, 1LU);
- if (wb_has_dirty_io(wb)) {
- long delta = avg - wb->avg_write_bandwidth;
- WARN_ON_ONCE(atomic_long_add_return(delta,
- &wb->bdi->tot_write_bandwidth) <= 0);
- }
- wb->write_bandwidth = bw;
- wb->avg_write_bandwidth = avg;
- }
- static void update_dirty_limit(struct dirty_throttle_control *dtc)
- {
- struct wb_domain *dom = dtc_dom(dtc);
- unsigned long thresh = dtc->thresh;
- unsigned long limit = dom->dirty_limit;
- /*
- * Follow up in one step.
- */
- if (limit < thresh) {
- limit = thresh;
- goto update;
- }
- /*
- * Follow down slowly. Use the higher one as the target, because thresh
- * may drop below dirty. This is exactly the reason to introduce
- * dom->dirty_limit which is guaranteed to lie above the dirty pages.
- */
- thresh = max(thresh, dtc->dirty);
- if (limit > thresh) {
- limit -= (limit - thresh) >> 5;
- goto update;
- }
- return;
- update:
- dom->dirty_limit = limit;
- }
- static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
- unsigned long now)
- {
- struct wb_domain *dom = dtc_dom(dtc);
- /*
- * check locklessly first to optimize away locking for the most time
- */
- if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
- return;
- spin_lock(&dom->lock);
- if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
- update_dirty_limit(dtc);
- dom->dirty_limit_tstamp = now;
- }
- spin_unlock(&dom->lock);
- }
- /*
- * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
- *
- * Normal wb tasks will be curbed at or below it in long term.
- * Obviously it should be around (write_bw / N) when there are N dd tasks.
- */
- static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
- unsigned long dirtied,
- unsigned long elapsed)
- {
- struct bdi_writeback *wb = dtc->wb;
- unsigned long dirty = dtc->dirty;
- unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
- unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
- unsigned long setpoint = (freerun + limit) / 2;
- unsigned long write_bw = wb->avg_write_bandwidth;
- unsigned long dirty_ratelimit = wb->dirty_ratelimit;
- unsigned long dirty_rate;
- unsigned long task_ratelimit;
- unsigned long balanced_dirty_ratelimit;
- unsigned long step;
- unsigned long x;
- unsigned long shift;
- /*
- * The dirty rate will match the writeout rate in long term, except
- * when dirty pages are truncated by userspace or re-dirtied by FS.
- */
- dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
- /*
- * task_ratelimit reflects each dd's dirty rate for the past 200ms.
- */
- task_ratelimit = (u64)dirty_ratelimit *
- dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
- task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
- /*
- * A linear estimation of the "balanced" throttle rate. The theory is,
- * if there are N dd tasks, each throttled at task_ratelimit, the wb's
- * dirty_rate will be measured to be (N * task_ratelimit). So the below
- * formula will yield the balanced rate limit (write_bw / N).
- *
- * Note that the expanded form is not a pure rate feedback:
- * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
- * but also takes pos_ratio into account:
- * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
- *
- * (1) is not realistic because pos_ratio also takes part in balancing
- * the dirty rate. Consider the state
- * pos_ratio = 0.5 (3)
- * rate = 2 * (write_bw / N) (4)
- * If (1) is used, it will stuck in that state! Because each dd will
- * be throttled at
- * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
- * yielding
- * dirty_rate = N * task_ratelimit = write_bw (6)
- * put (6) into (1) we get
- * rate_(i+1) = rate_(i) (7)
- *
- * So we end up using (2) to always keep
- * rate_(i+1) ~= (write_bw / N) (8)
- * regardless of the value of pos_ratio. As long as (8) is satisfied,
- * pos_ratio is able to drive itself to 1.0, which is not only where
- * the dirty count meet the setpoint, but also where the slope of
- * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
- */
- balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
- dirty_rate | 1);
- /*
- * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
- */
- if (unlikely(balanced_dirty_ratelimit > write_bw))
- balanced_dirty_ratelimit = write_bw;
- /*
- * We could safely do this and return immediately:
- *
- * wb->dirty_ratelimit = balanced_dirty_ratelimit;
- *
- * However to get a more stable dirty_ratelimit, the below elaborated
- * code makes use of task_ratelimit to filter out singular points and
- * limit the step size.
- *
- * The below code essentially only uses the relative value of
- *
- * task_ratelimit - dirty_ratelimit
- * = (pos_ratio - 1) * dirty_ratelimit
- *
- * which reflects the direction and size of dirty position error.
- */
- /*
- * dirty_ratelimit will follow balanced_dirty_ratelimit iff
- * task_ratelimit is on the same side of dirty_ratelimit, too.
- * For example, when
- * - dirty_ratelimit > balanced_dirty_ratelimit
- * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
- * lowering dirty_ratelimit will help meet both the position and rate
- * control targets. Otherwise, don't update dirty_ratelimit if it will
- * only help meet the rate target. After all, what the users ultimately
- * feel and care are stable dirty rate and small position error.
- *
- * |task_ratelimit - dirty_ratelimit| is used to limit the step size
- * and filter out the singular points of balanced_dirty_ratelimit. Which
- * keeps jumping around randomly and can even leap far away at times
- * due to the small 200ms estimation period of dirty_rate (we want to
- * keep that period small to reduce time lags).
- */
- step = 0;
- /*
- * For strictlimit case, calculations above were based on wb counters
- * and limits (starting from pos_ratio = wb_position_ratio() and up to
- * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
- * Hence, to calculate "step" properly, we have to use wb_dirty as
- * "dirty" and wb_setpoint as "setpoint".
- *
- * We rampup dirty_ratelimit forcibly if wb_dirty is low because
- * it's possible that wb_thresh is close to zero due to inactivity
- * of backing device.
- */
- if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
- dirty = dtc->wb_dirty;
- if (dtc->wb_dirty < 8)
- setpoint = dtc->wb_dirty + 1;
- else
- setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
- }
- if (dirty < setpoint) {
- x = min3(wb->balanced_dirty_ratelimit,
- balanced_dirty_ratelimit, task_ratelimit);
- if (dirty_ratelimit < x)
- step = x - dirty_ratelimit;
- } else {
- x = max3(wb->balanced_dirty_ratelimit,
- balanced_dirty_ratelimit, task_ratelimit);
- if (dirty_ratelimit > x)
- step = dirty_ratelimit - x;
- }
- /*
- * Don't pursue 100% rate matching. It's impossible since the balanced
- * rate itself is constantly fluctuating. So decrease the track speed
- * when it gets close to the target. Helps eliminate pointless tremors.
- */
- shift = dirty_ratelimit / (2 * step + 1);
- if (shift < BITS_PER_LONG)
- step = DIV_ROUND_UP(step >> shift, 8);
- else
- step = 0;
- if (dirty_ratelimit < balanced_dirty_ratelimit)
- dirty_ratelimit += step;
- else
- dirty_ratelimit -= step;
- wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
- wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
- trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
- }
- static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
- struct dirty_throttle_control *mdtc,
- unsigned long start_time,
- bool update_ratelimit)
- {
- struct bdi_writeback *wb = gdtc->wb;
- unsigned long now = jiffies;
- unsigned long elapsed = now - wb->bw_time_stamp;
- unsigned long dirtied;
- unsigned long written;
- lockdep_assert_held(&wb->list_lock);
- /*
- * rate-limit, only update once every 200ms.
- */
- if (elapsed < BANDWIDTH_INTERVAL)
- return;
- dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
- written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
- /*
- * Skip quiet periods when disk bandwidth is under-utilized.
- * (at least 1s idle time between two flusher runs)
- */
- if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
- goto snapshot;
- if (update_ratelimit) {
- domain_update_bandwidth(gdtc, now);
- wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
- /*
- * @mdtc is always NULL if !CGROUP_WRITEBACK but the
- * compiler has no way to figure that out. Help it.
- */
- if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
- domain_update_bandwidth(mdtc, now);
- wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
- }
- }
- wb_update_write_bandwidth(wb, elapsed, written);
- snapshot:
- wb->dirtied_stamp = dirtied;
- wb->written_stamp = written;
- wb->bw_time_stamp = now;
- }
- void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
- {
- struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
- __wb_update_bandwidth(&gdtc, NULL, start_time, false);
- }
- /*
- * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
- * will look to see if it needs to start dirty throttling.
- *
- * If dirty_poll_interval is too low, big NUMA machines will call the expensive
- * global_page_state() too often. So scale it near-sqrt to the safety margin
- * (the number of pages we may dirty without exceeding the dirty limits).
- */
- static unsigned long dirty_poll_interval(unsigned long dirty,
- unsigned long thresh)
- {
- if (thresh > dirty)
- return 1UL << (ilog2(thresh - dirty) >> 1);
- return 1;
- }
- static unsigned long wb_max_pause(struct bdi_writeback *wb,
- unsigned long wb_dirty)
- {
- unsigned long bw = wb->avg_write_bandwidth;
- unsigned long t;
- /*
- * Limit pause time for small memory systems. If sleeping for too long
- * time, a small pool of dirty/writeback pages may go empty and disk go
- * idle.
- *
- * 8 serves as the safety ratio.
- */
- t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
- t++;
- return min_t(unsigned long, t, MAX_PAUSE);
- }
- static long wb_min_pause(struct bdi_writeback *wb,
- long max_pause,
- unsigned long task_ratelimit,
- unsigned long dirty_ratelimit,
- int *nr_dirtied_pause)
- {
- long hi = ilog2(wb->avg_write_bandwidth);
- long lo = ilog2(wb->dirty_ratelimit);
- long t; /* target pause */
- long pause; /* estimated next pause */
- int pages; /* target nr_dirtied_pause */
- /* target for 10ms pause on 1-dd case */
- t = max(1, HZ / 100);
- /*
- * Scale up pause time for concurrent dirtiers in order to reduce CPU
- * overheads.
- *
- * (N * 10ms) on 2^N concurrent tasks.
- */
- if (hi > lo)
- t += (hi - lo) * (10 * HZ) / 1024;
- /*
- * This is a bit convoluted. We try to base the next nr_dirtied_pause
- * on the much more stable dirty_ratelimit. However the next pause time
- * will be computed based on task_ratelimit and the two rate limits may
- * depart considerably at some time. Especially if task_ratelimit goes
- * below dirty_ratelimit/2 and the target pause is max_pause, the next
- * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
- * result task_ratelimit won't be executed faithfully, which could
- * eventually bring down dirty_ratelimit.
- *
- * We apply two rules to fix it up:
- * 1) try to estimate the next pause time and if necessary, use a lower
- * nr_dirtied_pause so as not to exceed max_pause. When this happens,
- * nr_dirtied_pause will be "dancing" with task_ratelimit.
- * 2) limit the target pause time to max_pause/2, so that the normal
- * small fluctuations of task_ratelimit won't trigger rule (1) and
- * nr_dirtied_pause will remain as stable as dirty_ratelimit.
- */
- t = min(t, 1 + max_pause / 2);
- pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
- /*
- * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
- * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
- * When the 16 consecutive reads are often interrupted by some dirty
- * throttling pause during the async writes, cfq will go into idles
- * (deadline is fine). So push nr_dirtied_pause as high as possible
- * until reaches DIRTY_POLL_THRESH=32 pages.
- */
- if (pages < DIRTY_POLL_THRESH) {
- t = max_pause;
- pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
- if (pages > DIRTY_POLL_THRESH) {
- pages = DIRTY_POLL_THRESH;
- t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
- }
- }
- pause = HZ * pages / (task_ratelimit + 1);
- if (pause > max_pause) {
- t = max_pause;
- pages = task_ratelimit * t / roundup_pow_of_two(HZ);
- }
- *nr_dirtied_pause = pages;
- /*
- * The minimal pause time will normally be half the target pause time.
- */
- return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
- }
- static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
- {
- struct bdi_writeback *wb = dtc->wb;
- unsigned long wb_reclaimable;
- /*
- * wb_thresh is not treated as some limiting factor as
- * dirty_thresh, due to reasons
- * - in JBOD setup, wb_thresh can fluctuate a lot
- * - in a system with HDD and USB key, the USB key may somehow
- * go into state (wb_dirty >> wb_thresh) either because
- * wb_dirty starts high, or because wb_thresh drops low.
- * In this case we don't want to hard throttle the USB key
- * dirtiers for 100 seconds until wb_dirty drops under
- * wb_thresh. Instead the auxiliary wb control line in
- * wb_position_ratio() will let the dirtier task progress
- * at some rate <= (write_bw / 2) for bringing down wb_dirty.
- */
- dtc->wb_thresh = __wb_calc_thresh(dtc);
- dtc->wb_bg_thresh = dtc->thresh ?
- div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
- /*
- * In order to avoid the stacked BDI deadlock we need
- * to ensure we accurately count the 'dirty' pages when
- * the threshold is low.
- *
- * Otherwise it would be possible to get thresh+n pages
- * reported dirty, even though there are thresh-m pages
- * actually dirty; with m+n sitting in the percpu
- * deltas.
- */
- if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
- wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
- dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
- } else {
- wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
- dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
- }
- }
- /*
- * balance_dirty_pages() must be called by processes which are generating dirty
- * data. It looks at the number of dirty pages in the machine and will force
- * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
- * If we're over `background_thresh' then the writeback threads are woken to
- * perform some writeout.
- */
- static void balance_dirty_pages(struct address_space *mapping,
- struct bdi_writeback *wb,
- unsigned long pages_dirtied)
- {
- struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
- struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
- struct dirty_throttle_control * const gdtc = &gdtc_stor;
- struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
- &mdtc_stor : NULL;
- struct dirty_throttle_control *sdtc;
- unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
- long period;
- long pause;
- long max_pause;
- long min_pause;
- int nr_dirtied_pause;
- bool dirty_exceeded = false;
- unsigned long task_ratelimit;
- unsigned long dirty_ratelimit;
- struct backing_dev_info *bdi = wb->bdi;
- bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
- unsigned long start_time = jiffies;
- for (;;) {
- unsigned long now = jiffies;
- unsigned long dirty, thresh, bg_thresh;
- unsigned long m_dirty = 0; /* stop bogus uninit warnings */
- unsigned long m_thresh = 0;
- unsigned long m_bg_thresh = 0;
- /*
- * Unstable writes are a feature of certain networked
- * filesystems (i.e. NFS) in which data may have been
- * written to the server's write cache, but has not yet
- * been flushed to permanent storage.
- */
- nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
- global_node_page_state(NR_UNSTABLE_NFS);
- gdtc->avail = global_dirtyable_memory();
- gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
- domain_dirty_limits(gdtc);
- if (unlikely(strictlimit)) {
- wb_dirty_limits(gdtc);
- dirty = gdtc->wb_dirty;
- thresh = gdtc->wb_thresh;
- bg_thresh = gdtc->wb_bg_thresh;
- } else {
- dirty = gdtc->dirty;
- thresh = gdtc->thresh;
- bg_thresh = gdtc->bg_thresh;
- }
- if (mdtc) {
- unsigned long filepages, headroom, writeback;
- /*
- * If @wb belongs to !root memcg, repeat the same
- * basic calculations for the memcg domain.
- */
- mem_cgroup_wb_stats(wb, &filepages, &headroom,
- &mdtc->dirty, &writeback);
- mdtc->dirty += writeback;
- mdtc_calc_avail(mdtc, filepages, headroom);
- domain_dirty_limits(mdtc);
- if (unlikely(strictlimit)) {
- wb_dirty_limits(mdtc);
- m_dirty = mdtc->wb_dirty;
- m_thresh = mdtc->wb_thresh;
- m_bg_thresh = mdtc->wb_bg_thresh;
- } else {
- m_dirty = mdtc->dirty;
- m_thresh = mdtc->thresh;
- m_bg_thresh = mdtc->bg_thresh;
- }
- }
- /*
- * Throttle it only when the background writeback cannot
- * catch-up. This avoids (excessively) small writeouts
- * when the wb limits are ramping up in case of !strictlimit.
- *
- * In strictlimit case make decision based on the wb counters
- * and limits. Small writeouts when the wb limits are ramping
- * up are the price we consciously pay for strictlimit-ing.
- *
- * If memcg domain is in effect, @dirty should be under
- * both global and memcg freerun ceilings.
- */
- if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
- (!mdtc ||
- m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
- unsigned long intv = dirty_poll_interval(dirty, thresh);
- unsigned long m_intv = ULONG_MAX;
- current->dirty_paused_when = now;
- current->nr_dirtied = 0;
- if (mdtc)
- m_intv = dirty_poll_interval(m_dirty, m_thresh);
- current->nr_dirtied_pause = min(intv, m_intv);
- break;
- }
- if (unlikely(!writeback_in_progress(wb)))
- wb_start_background_writeback(wb);
- /*
- * Calculate global domain's pos_ratio and select the
- * global dtc by default.
- */
- if (!strictlimit)
- wb_dirty_limits(gdtc);
- dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
- ((gdtc->dirty > gdtc->thresh) || strictlimit);
- wb_position_ratio(gdtc);
- sdtc = gdtc;
- if (mdtc) {
- /*
- * If memcg domain is in effect, calculate its
- * pos_ratio. @wb should satisfy constraints from
- * both global and memcg domains. Choose the one
- * w/ lower pos_ratio.
- */
- if (!strictlimit)
- wb_dirty_limits(mdtc);
- dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
- ((mdtc->dirty > mdtc->thresh) || strictlimit);
- wb_position_ratio(mdtc);
- if (mdtc->pos_ratio < gdtc->pos_ratio)
- sdtc = mdtc;
- }
- if (dirty_exceeded && !wb->dirty_exceeded)
- wb->dirty_exceeded = 1;
- if (time_is_before_jiffies(wb->bw_time_stamp +
- BANDWIDTH_INTERVAL)) {
- spin_lock(&wb->list_lock);
- __wb_update_bandwidth(gdtc, mdtc, start_time, true);
- spin_unlock(&wb->list_lock);
- }
- /* throttle according to the chosen dtc */
- dirty_ratelimit = wb->dirty_ratelimit;
- task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
- RATELIMIT_CALC_SHIFT;
- max_pause = wb_max_pause(wb, sdtc->wb_dirty);
- min_pause = wb_min_pause(wb, max_pause,
- task_ratelimit, dirty_ratelimit,
- &nr_dirtied_pause);
- if (unlikely(task_ratelimit == 0)) {
- period = max_pause;
- pause = max_pause;
- goto pause;
- }
- period = HZ * pages_dirtied / task_ratelimit;
- pause = period;
- if (current->dirty_paused_when)
- pause -= now - current->dirty_paused_when;
- /*
- * For less than 1s think time (ext3/4 may block the dirtier
- * for up to 800ms from time to time on 1-HDD; so does xfs,
- * however at much less frequency), try to compensate it in
- * future periods by updating the virtual time; otherwise just
- * do a reset, as it may be a light dirtier.
- */
- if (pause < min_pause) {
- trace_balance_dirty_pages(wb,
- sdtc->thresh,
- sdtc->bg_thresh,
- sdtc->dirty,
- sdtc->wb_thresh,
- sdtc->wb_dirty,
- dirty_ratelimit,
- task_ratelimit,
- pages_dirtied,
- period,
- min(pause, 0L),
- start_time);
- if (pause < -HZ) {
- current->dirty_paused_when = now;
- current->nr_dirtied = 0;
- } else if (period) {
- current->dirty_paused_when += period;
- current->nr_dirtied = 0;
- } else if (current->nr_dirtied_pause <= pages_dirtied)
- current->nr_dirtied_pause += pages_dirtied;
- break;
- }
- if (unlikely(pause > max_pause)) {
- /* for occasional dropped task_ratelimit */
- now += min(pause - max_pause, max_pause);
- pause = max_pause;
- }
- pause:
- trace_balance_dirty_pages(wb,
- sdtc->thresh,
- sdtc->bg_thresh,
- sdtc->dirty,
- sdtc->wb_thresh,
- sdtc->wb_dirty,
- dirty_ratelimit,
- task_ratelimit,
- pages_dirtied,
- period,
- pause,
- start_time);
- __set_current_state(TASK_KILLABLE);
- io_schedule_timeout(pause);
- current->dirty_paused_when = now + pause;
- current->nr_dirtied = 0;
- current->nr_dirtied_pause = nr_dirtied_pause;
- /*
- * This is typically equal to (dirty < thresh) and can also
- * keep "1000+ dd on a slow USB stick" under control.
- */
- if (task_ratelimit)
- break;
- /*
- * In the case of an unresponding NFS server and the NFS dirty
- * pages exceeds dirty_thresh, give the other good wb's a pipe
- * to go through, so that tasks on them still remain responsive.
- *
- * In theory 1 page is enough to keep the comsumer-producer
- * pipe going: the flusher cleans 1 page => the task dirties 1
- * more page. However wb_dirty has accounting errors. So use
- * the larger and more IO friendly wb_stat_error.
- */
- if (sdtc->wb_dirty <= wb_stat_error(wb))
- break;
- if (fatal_signal_pending(current))
- break;
- }
- if (!dirty_exceeded && wb->dirty_exceeded)
- wb->dirty_exceeded = 0;
- if (writeback_in_progress(wb))
- return;
- /*
- * In laptop mode, we wait until hitting the higher threshold before
- * starting background writeout, and then write out all the way down
- * to the lower threshold. So slow writers cause minimal disk activity.
- *
- * In normal mode, we start background writeout at the lower
- * background_thresh, to keep the amount of dirty memory low.
- */
- if (laptop_mode)
- return;
- if (nr_reclaimable > gdtc->bg_thresh)
- wb_start_background_writeback(wb);
- }
- static DEFINE_PER_CPU(int, bdp_ratelimits);
- /*
- * Normal tasks are throttled by
- * loop {
- * dirty tsk->nr_dirtied_pause pages;
- * take a snap in balance_dirty_pages();
- * }
- * However there is a worst case. If every task exit immediately when dirtied
- * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
- * called to throttle the page dirties. The solution is to save the not yet
- * throttled page dirties in dirty_throttle_leaks on task exit and charge them
- * randomly into the running tasks. This works well for the above worst case,
- * as the new task will pick up and accumulate the old task's leaked dirty
- * count and eventually get throttled.
- */
- DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
- /**
- * balance_dirty_pages_ratelimited - balance dirty memory state
- * @mapping: address_space which was dirtied
- *
- * Processes which are dirtying memory should call in here once for each page
- * which was newly dirtied. The function will periodically check the system's
- * dirty state and will initiate writeback if needed.
- *
- * On really big machines, get_writeback_state is expensive, so try to avoid
- * calling it too often (ratelimiting). But once we're over the dirty memory
- * limit we decrease the ratelimiting by a lot, to prevent individual processes
- * from overshooting the limit by (ratelimit_pages) each.
- */
- void balance_dirty_pages_ratelimited(struct address_space *mapping)
- {
- struct inode *inode = mapping->host;
- struct backing_dev_info *bdi = inode_to_bdi(inode);
- struct bdi_writeback *wb = NULL;
- int ratelimit;
- int *p;
- if (!bdi_cap_account_dirty(bdi))
- return;
- if (inode_cgwb_enabled(inode))
- wb = wb_get_create_current(bdi, GFP_KERNEL);
- if (!wb)
- wb = &bdi->wb;
- ratelimit = current->nr_dirtied_pause;
- if (wb->dirty_exceeded)
- ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
- preempt_disable();
- /*
- * This prevents one CPU to accumulate too many dirtied pages without
- * calling into balance_dirty_pages(), which can happen when there are
- * 1000+ tasks, all of them start dirtying pages at exactly the same
- * time, hence all honoured too large initial task->nr_dirtied_pause.
- */
- p = this_cpu_ptr(&bdp_ratelimits);
- if (unlikely(current->nr_dirtied >= ratelimit))
- *p = 0;
- else if (unlikely(*p >= ratelimit_pages)) {
- *p = 0;
- ratelimit = 0;
- }
- /*
- * Pick up the dirtied pages by the exited tasks. This avoids lots of
- * short-lived tasks (eg. gcc invocations in a kernel build) escaping
- * the dirty throttling and livelock other long-run dirtiers.
- */
- p = this_cpu_ptr(&dirty_throttle_leaks);
- if (*p > 0 && current->nr_dirtied < ratelimit) {
- unsigned long nr_pages_dirtied;
- nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
- *p -= nr_pages_dirtied;
- current->nr_dirtied += nr_pages_dirtied;
- }
- preempt_enable();
- if (unlikely(current->nr_dirtied >= ratelimit))
- balance_dirty_pages(mapping, wb, current->nr_dirtied);
- wb_put(wb);
- }
- EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
- /**
- * wb_over_bg_thresh - does @wb need to be written back?
- * @wb: bdi_writeback of interest
- *
- * Determines whether background writeback should keep writing @wb or it's
- * clean enough. Returns %true if writeback should continue.
- */
- bool wb_over_bg_thresh(struct bdi_writeback *wb)
- {
- struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
- struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
- struct dirty_throttle_control * const gdtc = &gdtc_stor;
- struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
- &mdtc_stor : NULL;
- /*
- * Similar to balance_dirty_pages() but ignores pages being written
- * as we're trying to decide whether to put more under writeback.
- */
- gdtc->avail = global_dirtyable_memory();
- gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
- global_node_page_state(NR_UNSTABLE_NFS);
- domain_dirty_limits(gdtc);
- if (gdtc->dirty > gdtc->bg_thresh)
- return true;
- if (wb_stat(wb, WB_RECLAIMABLE) >
- wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
- return true;
- if (mdtc) {
- unsigned long filepages, headroom, writeback;
- mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
- &writeback);
- mdtc_calc_avail(mdtc, filepages, headroom);
- domain_dirty_limits(mdtc); /* ditto, ignore writeback */
- if (mdtc->dirty > mdtc->bg_thresh)
- return true;
- if (wb_stat(wb, WB_RECLAIMABLE) >
- wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
- return true;
- }
- return false;
- }
- /*
- * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
- */
- int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
- {
- proc_dointvec(table, write, buffer, length, ppos);
- return 0;
- }
- #ifdef CONFIG_BLOCK
- void laptop_mode_timer_fn(unsigned long data)
- {
- struct request_queue *q = (struct request_queue *)data;
- int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
- global_node_page_state(NR_UNSTABLE_NFS);
- struct bdi_writeback *wb;
- /*
- * We want to write everything out, not just down to the dirty
- * threshold
- */
- if (!bdi_has_dirty_io(&q->backing_dev_info))
- return;
- rcu_read_lock();
- list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
- if (wb_has_dirty_io(wb))
- wb_start_writeback(wb, nr_pages, true,
- WB_REASON_LAPTOP_TIMER);
- rcu_read_unlock();
- }
- /*
- * We've spun up the disk and we're in laptop mode: schedule writeback
- * of all dirty data a few seconds from now. If the flush is already scheduled
- * then push it back - the user is still using the disk.
- */
- void laptop_io_completion(struct backing_dev_info *info)
- {
- mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
- }
- /*
- * We're in laptop mode and we've just synced. The sync's writes will have
- * caused another writeback to be scheduled by laptop_io_completion.
- * Nothing needs to be written back anymore, so we unschedule the writeback.
- */
- void laptop_sync_completion(void)
- {
- struct backing_dev_info *bdi;
- rcu_read_lock();
- list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
- del_timer(&bdi->laptop_mode_wb_timer);
- rcu_read_unlock();
- }
- #endif
- /*
- * If ratelimit_pages is too high then we can get into dirty-data overload
- * if a large number of processes all perform writes at the same time.
- * If it is too low then SMP machines will call the (expensive)
- * get_writeback_state too often.
- *
- * Here we set ratelimit_pages to a level which ensures that when all CPUs are
- * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
- * thresholds.
- */
- void writeback_set_ratelimit(void)
- {
- struct wb_domain *dom = &global_wb_domain;
- unsigned long background_thresh;
- unsigned long dirty_thresh;
- global_dirty_limits(&background_thresh, &dirty_thresh);
- dom->dirty_limit = dirty_thresh;
- ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
- if (ratelimit_pages < 16)
- ratelimit_pages = 16;
- }
- static int page_writeback_cpu_online(unsigned int cpu)
- {
- writeback_set_ratelimit();
- return 0;
- }
- /*
- * Called early on to tune the page writeback dirty limits.
- *
- * We used to scale dirty pages according to how total memory
- * related to pages that could be allocated for buffers (by
- * comparing nr_free_buffer_pages() to vm_total_pages.
- *
- * However, that was when we used "dirty_ratio" to scale with
- * all memory, and we don't do that any more. "dirty_ratio"
- * is now applied to total non-HIGHPAGE memory (by subtracting
- * totalhigh_pages from vm_total_pages), and as such we can't
- * get into the old insane situation any more where we had
- * large amounts of dirty pages compared to a small amount of
- * non-HIGHMEM memory.
- *
- * But we might still want to scale the dirty_ratio by how
- * much memory the box has..
- */
- void __init page_writeback_init(void)
- {
- BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
- cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
- page_writeback_cpu_online, NULL);
- cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
- page_writeback_cpu_online);
- }
- /**
- * tag_pages_for_writeback - tag pages to be written by write_cache_pages
- * @mapping: address space structure to write
- * @start: starting page index
- * @end: ending page index (inclusive)
- *
- * This function scans the page range from @start to @end (inclusive) and tags
- * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
- * that write_cache_pages (or whoever calls this function) will then use
- * TOWRITE tag to identify pages eligible for writeback. This mechanism is
- * used to avoid livelocking of writeback by a process steadily creating new
- * dirty pages in the file (thus it is important for this function to be quick
- * so that it can tag pages faster than a dirtying process can create them).
- */
- /*
- * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
- */
- void tag_pages_for_writeback(struct address_space *mapping,
- pgoff_t start, pgoff_t end)
- {
- #define WRITEBACK_TAG_BATCH 4096
- unsigned long tagged;
- do {
- spin_lock_irq(&mapping->tree_lock);
- tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
- &start, end, WRITEBACK_TAG_BATCH,
- PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
- spin_unlock_irq(&mapping->tree_lock);
- WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
- cond_resched();
- /* We check 'start' to handle wrapping when end == ~0UL */
- } while (tagged >= WRITEBACK_TAG_BATCH && start);
- }
- EXPORT_SYMBOL(tag_pages_for_writeback);
- /**
- * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
- * @mapping: address space structure to write
- * @wbc: subtract the number of written pages from *@wbc->nr_to_write
- * @writepage: function called for each page
- * @data: data passed to writepage function
- *
- * If a page is already under I/O, write_cache_pages() skips it, even
- * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
- * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
- * and msync() need to guarantee that all the data which was dirty at the time
- * the call was made get new I/O started against them. If wbc->sync_mode is
- * WB_SYNC_ALL then we were called for data integrity and we must wait for
- * existing IO to complete.
- *
- * To avoid livelocks (when other process dirties new pages), we first tag
- * pages which should be written back with TOWRITE tag and only then start
- * writing them. For data-integrity sync we have to be careful so that we do
- * not miss some pages (e.g., because some other process has cleared TOWRITE
- * tag we set). The rule we follow is that TOWRITE tag can be cleared only
- * by the process clearing the DIRTY tag (and submitting the page for IO).
- */
- int write_cache_pages(struct address_space *mapping,
- struct writeback_control *wbc, writepage_t writepage,
- void *data)
- {
- int ret = 0;
- int done = 0;
- struct pagevec pvec;
- int nr_pages;
- pgoff_t uninitialized_var(writeback_index);
- pgoff_t index;
- pgoff_t end; /* Inclusive */
- pgoff_t done_index;
- int cycled;
- int range_whole = 0;
- int tag;
- pagevec_init(&pvec, 0);
- if (wbc->range_cyclic) {
- writeback_index = mapping->writeback_index; /* prev offset */
- index = writeback_index;
- if (index == 0)
- cycled = 1;
- else
- cycled = 0;
- end = -1;
- } else {
- index = wbc->range_start >> PAGE_SHIFT;
- end = wbc->range_end >> PAGE_SHIFT;
- if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
- range_whole = 1;
- cycled = 1; /* ignore range_cyclic tests */
- }
- if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
- tag = PAGECACHE_TAG_TOWRITE;
- else
- tag = PAGECACHE_TAG_DIRTY;
- retry:
- if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
- tag_pages_for_writeback(mapping, index, end);
- done_index = index;
- while (!done && (index <= end)) {
- int i;
- nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
- min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
- if (nr_pages == 0)
- break;
- for (i = 0; i < nr_pages; i++) {
- struct page *page = pvec.pages[i];
- /*
- * At this point, the page may be truncated or
- * invalidated (changing page->mapping to NULL), or
- * even swizzled back from swapper_space to tmpfs file
- * mapping. However, page->index will not change
- * because we have a reference on the page.
- */
- if (page->index > end) {
- /*
- * can't be range_cyclic (1st pass) because
- * end == -1 in that case.
- */
- done = 1;
- break;
- }
- done_index = page->index;
- lock_page(page);
- /*
- * Page truncated or invalidated. We can freely skip it
- * then, even for data integrity operations: the page
- * has disappeared concurrently, so there could be no
- * real expectation of this data interity operation
- * even if there is now a new, dirty page at the same
- * pagecache address.
- */
- if (unlikely(page->mapping != mapping)) {
- continue_unlock:
- unlock_page(page);
- continue;
- }
- if (!PageDirty(page)) {
- /* someone wrote it for us */
- goto continue_unlock;
- }
- if (PageWriteback(page)) {
- if (wbc->sync_mode != WB_SYNC_NONE)
- wait_on_page_writeback(page);
- else
- goto continue_unlock;
- }
- BUG_ON(PageWriteback(page));
- if (!clear_page_dirty_for_io(page))
- goto continue_unlock;
- trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
- ret = (*writepage)(page, wbc, data);
- if (unlikely(ret)) {
- if (ret == AOP_WRITEPAGE_ACTIVATE) {
- unlock_page(page);
- ret = 0;
- } else {
- /*
- * done_index is set past this page,
- * so media errors will not choke
- * background writeout for the entire
- * file. This has consequences for
- * range_cyclic semantics (ie. it may
- * not be suitable for data integrity
- * writeout).
- */
- done_index = page->index + 1;
- done = 1;
- break;
- }
- }
- /*
- * We stop writing back only if we are not doing
- * integrity sync. In case of integrity sync we have to
- * keep going until we have written all the pages
- * we tagged for writeback prior to entering this loop.
- */
- if (--wbc->nr_to_write <= 0 &&
- wbc->sync_mode == WB_SYNC_NONE) {
- done = 1;
- break;
- }
- }
- pagevec_release(&pvec);
- cond_resched();
- }
- if (!cycled && !done) {
- /*
- * range_cyclic:
- * We hit the last page and there is more work to be done: wrap
- * back to the start of the file
- */
- cycled = 1;
- index = 0;
- end = writeback_index - 1;
- goto retry;
- }
- if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
- mapping->writeback_index = done_index;
- return ret;
- }
- EXPORT_SYMBOL(write_cache_pages);
- /*
- * Function used by generic_writepages to call the real writepage
- * function and set the mapping flags on error
- */
- static int __writepage(struct page *page, struct writeback_control *wbc,
- void *data)
- {
- struct address_space *mapping = data;
- int ret = mapping->a_ops->writepage(page, wbc);
- mapping_set_error(mapping, ret);
- return ret;
- }
- /**
- * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
- * @mapping: address space structure to write
- * @wbc: subtract the number of written pages from *@wbc->nr_to_write
- *
- * This is a library function, which implements the writepages()
- * address_space_operation.
- */
- int generic_writepages(struct address_space *mapping,
- struct writeback_control *wbc)
- {
- struct blk_plug plug;
- int ret;
- /* deal with chardevs and other special file */
- if (!mapping->a_ops->writepage)
- return 0;
- blk_start_plug(&plug);
- ret = write_cache_pages(mapping, wbc, __writepage, mapping);
- blk_finish_plug(&plug);
- return ret;
- }
- EXPORT_SYMBOL(generic_writepages);
- int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
- {
- int ret;
- if (wbc->nr_to_write <= 0)
- return 0;
- if (mapping->a_ops->writepages)
- ret = mapping->a_ops->writepages(mapping, wbc);
- else
- ret = generic_writepages(mapping, wbc);
- return ret;
- }
- /**
- * write_one_page - write out a single page and optionally wait on I/O
- * @page: the page to write
- * @wait: if true, wait on writeout
- *
- * The page must be locked by the caller and will be unlocked upon return.
- *
- * write_one_page() returns a negative error code if I/O failed.
- */
- int write_one_page(struct page *page, int wait)
- {
- struct address_space *mapping = page->mapping;
- int ret = 0;
- struct writeback_control wbc = {
- .sync_mode = WB_SYNC_ALL,
- .nr_to_write = 1,
- };
- BUG_ON(!PageLocked(page));
- if (wait)
- wait_on_page_writeback(page);
- if (clear_page_dirty_for_io(page)) {
- get_page(page);
- ret = mapping->a_ops->writepage(page, &wbc);
- if (ret == 0 && wait) {
- wait_on_page_writeback(page);
- if (PageError(page))
- ret = -EIO;
- }
- put_page(page);
- } else {
- unlock_page(page);
- }
- return ret;
- }
- EXPORT_SYMBOL(write_one_page);
- /*
- * For address_spaces which do not use buffers nor write back.
- */
- int __set_page_dirty_no_writeback(struct page *page)
- {
- if (!PageDirty(page))
- return !TestSetPageDirty(page);
- return 0;
- }
- /*
- * Helper function for set_page_dirty family.
- *
- * Caller must hold lock_page_memcg().
- *
- * NOTE: This relies on being atomic wrt interrupts.
- */
- void account_page_dirtied(struct page *page, struct address_space *mapping)
- {
- struct inode *inode = mapping->host;
- trace_writeback_dirty_page(page, mapping);
- if (mapping_cap_account_dirty(mapping)) {
- struct bdi_writeback *wb;
- inode_attach_wb(inode, page);
- wb = inode_to_wb(inode);
- mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
- __inc_node_page_state(page, NR_FILE_DIRTY);
- __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
- __inc_node_page_state(page, NR_DIRTIED);
- __inc_wb_stat(wb, WB_RECLAIMABLE);
- __inc_wb_stat(wb, WB_DIRTIED);
- task_io_account_write(PAGE_SIZE);
- current->nr_dirtied++;
- this_cpu_inc(bdp_ratelimits);
- }
- }
- EXPORT_SYMBOL(account_page_dirtied);
- /*
- * Helper function for deaccounting dirty page without writeback.
- *
- * Caller must hold lock_page_memcg().
- */
- void account_page_cleaned(struct page *page, struct address_space *mapping,
- struct bdi_writeback *wb)
- {
- if (mapping_cap_account_dirty(mapping)) {
- mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
- dec_node_page_state(page, NR_FILE_DIRTY);
- dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
- dec_wb_stat(wb, WB_RECLAIMABLE);
- task_io_account_cancelled_write(PAGE_SIZE);
- }
- }
- /*
- * For address_spaces which do not use buffers. Just tag the page as dirty in
- * its radix tree.
- *
- * This is also used when a single buffer is being dirtied: we want to set the
- * page dirty in that case, but not all the buffers. This is a "bottom-up"
- * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
- *
- * The caller must ensure this doesn't race with truncation. Most will simply
- * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
- * the pte lock held, which also locks out truncation.
- */
- int __set_page_dirty_nobuffers(struct page *page)
- {
- lock_page_memcg(page);
- if (!TestSetPageDirty(page)) {
- struct address_space *mapping = page_mapping(page);
- unsigned long flags;
- if (!mapping) {
- unlock_page_memcg(page);
- return 1;
- }
- spin_lock_irqsave(&mapping->tree_lock, flags);
- BUG_ON(page_mapping(page) != mapping);
- WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
- account_page_dirtied(page, mapping);
- radix_tree_tag_set(&mapping->page_tree, page_index(page),
- PAGECACHE_TAG_DIRTY);
- spin_unlock_irqrestore(&mapping->tree_lock, flags);
- unlock_page_memcg(page);
- if (mapping->host) {
- /* !PageAnon && !swapper_space */
- __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
- }
- return 1;
- }
- unlock_page_memcg(page);
- return 0;
- }
- EXPORT_SYMBOL(__set_page_dirty_nobuffers);
- /*
- * Call this whenever redirtying a page, to de-account the dirty counters
- * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
- * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
- * systematic errors in balanced_dirty_ratelimit and the dirty pages position
- * control.
- */
- void account_page_redirty(struct page *page)
- {
- struct address_space *mapping = page->mapping;
- if (mapping && mapping_cap_account_dirty(mapping)) {
- struct inode *inode = mapping->host;
- struct bdi_writeback *wb;
- struct wb_lock_cookie cookie = {};
- wb = unlocked_inode_to_wb_begin(inode, &cookie);
- current->nr_dirtied--;
- dec_node_page_state(page, NR_DIRTIED);
- dec_wb_stat(wb, WB_DIRTIED);
- unlocked_inode_to_wb_end(inode, &cookie);
- }
- }
- EXPORT_SYMBOL(account_page_redirty);
- /*
- * When a writepage implementation decides that it doesn't want to write this
- * page for some reason, it should redirty the locked page via
- * redirty_page_for_writepage() and it should then unlock the page and return 0
- */
- int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
- {
- int ret;
- wbc->pages_skipped++;
- ret = __set_page_dirty_nobuffers(page);
- account_page_redirty(page);
- return ret;
- }
- EXPORT_SYMBOL(redirty_page_for_writepage);
- /*
- * Dirty a page.
- *
- * For pages with a mapping this should be done under the page lock
- * for the benefit of asynchronous memory errors who prefer a consistent
- * dirty state. This rule can be broken in some special cases,
- * but should be better not to.
- *
- * If the mapping doesn't provide a set_page_dirty a_op, then
- * just fall through and assume that it wants buffer_heads.
- */
- int set_page_dirty(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- page = compound_head(page);
- if (likely(mapping)) {
- int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
- /*
- * readahead/lru_deactivate_page could remain
- * PG_readahead/PG_reclaim due to race with end_page_writeback
- * About readahead, if the page is written, the flags would be
- * reset. So no problem.
- * About lru_deactivate_page, if the page is redirty, the flag
- * will be reset. So no problem. but if the page is used by readahead
- * it will confuse readahead and make it restart the size rampup
- * process. But it's a trivial problem.
- */
- if (PageReclaim(page))
- ClearPageReclaim(page);
- #ifdef CONFIG_BLOCK
- if (!spd)
- spd = __set_page_dirty_buffers;
- #endif
- return (*spd)(page);
- }
- if (!PageDirty(page)) {
- if (!TestSetPageDirty(page))
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL(set_page_dirty);
- /*
- * set_page_dirty() is racy if the caller has no reference against
- * page->mapping->host, and if the page is unlocked. This is because another
- * CPU could truncate the page off the mapping and then free the mapping.
- *
- * Usually, the page _is_ locked, or the caller is a user-space process which
- * holds a reference on the inode by having an open file.
- *
- * In other cases, the page should be locked before running set_page_dirty().
- */
- int set_page_dirty_lock(struct page *page)
- {
- int ret;
- lock_page(page);
- ret = set_page_dirty(page);
- unlock_page(page);
- return ret;
- }
- EXPORT_SYMBOL(set_page_dirty_lock);
- /*
- * This cancels just the dirty bit on the kernel page itself, it does NOT
- * actually remove dirty bits on any mmap's that may be around. It also
- * leaves the page tagged dirty, so any sync activity will still find it on
- * the dirty lists, and in particular, clear_page_dirty_for_io() will still
- * look at the dirty bits in the VM.
- *
- * Doing this should *normally* only ever be done when a page is truncated,
- * and is not actually mapped anywhere at all. However, fs/buffer.c does
- * this when it notices that somebody has cleaned out all the buffers on a
- * page without actually doing it through the VM. Can you say "ext3 is
- * horribly ugly"? Thought you could.
- */
- void cancel_dirty_page(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- if (mapping_cap_account_dirty(mapping)) {
- struct inode *inode = mapping->host;
- struct bdi_writeback *wb;
- struct wb_lock_cookie cookie = {};
- lock_page_memcg(page);
- wb = unlocked_inode_to_wb_begin(inode, &cookie);
- if (TestClearPageDirty(page))
- account_page_cleaned(page, mapping, wb);
- unlocked_inode_to_wb_end(inode, &cookie);
- unlock_page_memcg(page);
- } else {
- ClearPageDirty(page);
- }
- }
- EXPORT_SYMBOL(cancel_dirty_page);
- /*
- * Clear a page's dirty flag, while caring for dirty memory accounting.
- * Returns true if the page was previously dirty.
- *
- * This is for preparing to put the page under writeout. We leave the page
- * tagged as dirty in the radix tree so that a concurrent write-for-sync
- * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
- * implementation will run either set_page_writeback() or set_page_dirty(),
- * at which stage we bring the page's dirty flag and radix-tree dirty tag
- * back into sync.
- *
- * This incoherency between the page's dirty flag and radix-tree tag is
- * unfortunate, but it only exists while the page is locked.
- */
- int clear_page_dirty_for_io(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- int ret = 0;
- BUG_ON(!PageLocked(page));
- if (mapping && mapping_cap_account_dirty(mapping)) {
- struct inode *inode = mapping->host;
- struct bdi_writeback *wb;
- struct wb_lock_cookie cookie = {};
- /*
- * Yes, Virginia, this is indeed insane.
- *
- * We use this sequence to make sure that
- * (a) we account for dirty stats properly
- * (b) we tell the low-level filesystem to
- * mark the whole page dirty if it was
- * dirty in a pagetable. Only to then
- * (c) clean the page again and return 1 to
- * cause the writeback.
- *
- * This way we avoid all nasty races with the
- * dirty bit in multiple places and clearing
- * them concurrently from different threads.
- *
- * Note! Normally the "set_page_dirty(page)"
- * has no effect on the actual dirty bit - since
- * that will already usually be set. But we
- * need the side effects, and it can help us
- * avoid races.
- *
- * We basically use the page "master dirty bit"
- * as a serialization point for all the different
- * threads doing their things.
- */
- if (page_mkclean(page))
- set_page_dirty(page);
- /*
- * We carefully synchronise fault handlers against
- * installing a dirty pte and marking the page dirty
- * at this point. We do this by having them hold the
- * page lock while dirtying the page, and pages are
- * always locked coming in here, so we get the desired
- * exclusion.
- */
- wb = unlocked_inode_to_wb_begin(inode, &cookie);
- if (TestClearPageDirty(page)) {
- mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
- dec_node_page_state(page, NR_FILE_DIRTY);
- dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
- dec_wb_stat(wb, WB_RECLAIMABLE);
- ret = 1;
- }
- unlocked_inode_to_wb_end(inode, &cookie);
- return ret;
- }
- return TestClearPageDirty(page);
- }
- EXPORT_SYMBOL(clear_page_dirty_for_io);
- int test_clear_page_writeback(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- int ret;
- lock_page_memcg(page);
- if (mapping && mapping_use_writeback_tags(mapping)) {
- struct inode *inode = mapping->host;
- struct backing_dev_info *bdi = inode_to_bdi(inode);
- unsigned long flags;
- spin_lock_irqsave(&mapping->tree_lock, flags);
- ret = TestClearPageWriteback(page);
- if (ret) {
- radix_tree_tag_clear(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_WRITEBACK);
- if (bdi_cap_account_writeback(bdi)) {
- struct bdi_writeback *wb = inode_to_wb(inode);
- __dec_wb_stat(wb, WB_WRITEBACK);
- __wb_writeout_inc(wb);
- }
- }
- if (mapping->host && !mapping_tagged(mapping,
- PAGECACHE_TAG_WRITEBACK))
- sb_clear_inode_writeback(mapping->host);
- spin_unlock_irqrestore(&mapping->tree_lock, flags);
- } else {
- ret = TestClearPageWriteback(page);
- }
- if (ret) {
- mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
- dec_node_page_state(page, NR_WRITEBACK);
- dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
- inc_node_page_state(page, NR_WRITTEN);
- }
- unlock_page_memcg(page);
- return ret;
- }
- int __test_set_page_writeback(struct page *page, bool keep_write)
- {
- struct address_space *mapping = page_mapping(page);
- int ret;
- lock_page_memcg(page);
- if (mapping && mapping_use_writeback_tags(mapping)) {
- struct inode *inode = mapping->host;
- struct backing_dev_info *bdi = inode_to_bdi(inode);
- unsigned long flags;
- spin_lock_irqsave(&mapping->tree_lock, flags);
- ret = TestSetPageWriteback(page);
- if (!ret) {
- bool on_wblist;
- on_wblist = mapping_tagged(mapping,
- PAGECACHE_TAG_WRITEBACK);
- radix_tree_tag_set(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_WRITEBACK);
- if (bdi_cap_account_writeback(bdi))
- __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
- /*
- * We can come through here when swapping anonymous
- * pages, so we don't necessarily have an inode to track
- * for sync.
- */
- if (mapping->host && !on_wblist)
- sb_mark_inode_writeback(mapping->host);
- }
- if (!PageDirty(page))
- radix_tree_tag_clear(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_DIRTY);
- if (!keep_write)
- radix_tree_tag_clear(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_TOWRITE);
- spin_unlock_irqrestore(&mapping->tree_lock, flags);
- } else {
- ret = TestSetPageWriteback(page);
- }
- if (!ret) {
- mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
- inc_node_page_state(page, NR_WRITEBACK);
- inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
- }
- unlock_page_memcg(page);
- return ret;
- }
- EXPORT_SYMBOL(__test_set_page_writeback);
- /*
- * Return true if any of the pages in the mapping are marked with the
- * passed tag.
- */
- int mapping_tagged(struct address_space *mapping, int tag)
- {
- return radix_tree_tagged(&mapping->page_tree, tag);
- }
- EXPORT_SYMBOL(mapping_tagged);
- /**
- * wait_for_stable_page() - wait for writeback to finish, if necessary.
- * @page: The page to wait on.
- *
- * This function determines if the given page is related to a backing device
- * that requires page contents to be held stable during writeback. If so, then
- * it will wait for any pending writeback to complete.
- */
- void wait_for_stable_page(struct page *page)
- {
- if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
- wait_on_page_writeback(page);
- }
- EXPORT_SYMBOL_GPL(wait_for_stable_page);
|