memory-failure.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * It can be very tempting to add handling for obscure cases here.
  25. * In general any code for handling new cases should only be added iff:
  26. * - You know how to test it.
  27. * - You have a test that can be added to mce-test
  28. * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29. * - The case actually shows up as a frequent (top 10) page state in
  30. * tools/vm/page-types when running a real workload.
  31. *
  32. * There are several operations here with exponential complexity because
  33. * of unsuitable VM data structures. For example the operation to map back
  34. * from RMAP chains to processes has to walk the complete process list and
  35. * has non linear complexity with the number. But since memory corruptions
  36. * are rare we hope to get away with this. This avoids impacting the core
  37. * VM.
  38. */
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/page-flags.h>
  42. #include <linux/kernel-page-flags.h>
  43. #include <linux/sched.h>
  44. #include <linux/ksm.h>
  45. #include <linux/rmap.h>
  46. #include <linux/export.h>
  47. #include <linux/pagemap.h>
  48. #include <linux/swap.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/migrate.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/suspend.h>
  53. #include <linux/slab.h>
  54. #include <linux/swapops.h>
  55. #include <linux/hugetlb.h>
  56. #include <linux/memory_hotplug.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/kfifo.h>
  59. #include <linux/ratelimit.h>
  60. #include "internal.h"
  61. #include "ras/ras_event.h"
  62. int sysctl_memory_failure_early_kill __read_mostly = 0;
  63. int sysctl_memory_failure_recovery __read_mostly = 1;
  64. atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  65. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66. u32 hwpoison_filter_enable = 0;
  67. u32 hwpoison_filter_dev_major = ~0U;
  68. u32 hwpoison_filter_dev_minor = ~0U;
  69. u64 hwpoison_filter_flags_mask;
  70. u64 hwpoison_filter_flags_value;
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  72. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  73. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  74. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  75. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  76. static int hwpoison_filter_dev(struct page *p)
  77. {
  78. struct address_space *mapping;
  79. dev_t dev;
  80. if (hwpoison_filter_dev_major == ~0U &&
  81. hwpoison_filter_dev_minor == ~0U)
  82. return 0;
  83. /*
  84. * page_mapping() does not accept slab pages.
  85. */
  86. if (PageSlab(p))
  87. return -EINVAL;
  88. mapping = page_mapping(p);
  89. if (mapping == NULL || mapping->host == NULL)
  90. return -EINVAL;
  91. dev = mapping->host->i_sb->s_dev;
  92. if (hwpoison_filter_dev_major != ~0U &&
  93. hwpoison_filter_dev_major != MAJOR(dev))
  94. return -EINVAL;
  95. if (hwpoison_filter_dev_minor != ~0U &&
  96. hwpoison_filter_dev_minor != MINOR(dev))
  97. return -EINVAL;
  98. return 0;
  99. }
  100. static int hwpoison_filter_flags(struct page *p)
  101. {
  102. if (!hwpoison_filter_flags_mask)
  103. return 0;
  104. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  105. hwpoison_filter_flags_value)
  106. return 0;
  107. else
  108. return -EINVAL;
  109. }
  110. /*
  111. * This allows stress tests to limit test scope to a collection of tasks
  112. * by putting them under some memcg. This prevents killing unrelated/important
  113. * processes such as /sbin/init. Note that the target task may share clean
  114. * pages with init (eg. libc text), which is harmless. If the target task
  115. * share _dirty_ pages with another task B, the test scheme must make sure B
  116. * is also included in the memcg. At last, due to race conditions this filter
  117. * can only guarantee that the page either belongs to the memcg tasks, or is
  118. * a freed page.
  119. */
  120. #ifdef CONFIG_MEMCG
  121. u64 hwpoison_filter_memcg;
  122. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  123. static int hwpoison_filter_task(struct page *p)
  124. {
  125. if (!hwpoison_filter_memcg)
  126. return 0;
  127. if (page_cgroup_ino(p) != hwpoison_filter_memcg)
  128. return -EINVAL;
  129. return 0;
  130. }
  131. #else
  132. static int hwpoison_filter_task(struct page *p) { return 0; }
  133. #endif
  134. int hwpoison_filter(struct page *p)
  135. {
  136. if (!hwpoison_filter_enable)
  137. return 0;
  138. if (hwpoison_filter_dev(p))
  139. return -EINVAL;
  140. if (hwpoison_filter_flags(p))
  141. return -EINVAL;
  142. if (hwpoison_filter_task(p))
  143. return -EINVAL;
  144. return 0;
  145. }
  146. #else
  147. int hwpoison_filter(struct page *p)
  148. {
  149. return 0;
  150. }
  151. #endif
  152. EXPORT_SYMBOL_GPL(hwpoison_filter);
  153. /*
  154. * Send all the processes who have the page mapped a signal.
  155. * ``action optional'' if they are not immediately affected by the error
  156. * ``action required'' if error happened in current execution context
  157. */
  158. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  159. unsigned long pfn, struct page *page, int flags)
  160. {
  161. struct siginfo si;
  162. int ret;
  163. pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
  164. pfn, t->comm, t->pid);
  165. si.si_signo = SIGBUS;
  166. si.si_errno = 0;
  167. si.si_addr = (void *)addr;
  168. #ifdef __ARCH_SI_TRAPNO
  169. si.si_trapno = trapno;
  170. #endif
  171. si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
  172. if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
  173. si.si_code = BUS_MCEERR_AR;
  174. ret = force_sig_info(SIGBUS, &si, current);
  175. } else {
  176. /*
  177. * Don't use force here, it's convenient if the signal
  178. * can be temporarily blocked.
  179. * This could cause a loop when the user sets SIGBUS
  180. * to SIG_IGN, but hopefully no one will do that?
  181. */
  182. si.si_code = BUS_MCEERR_AO;
  183. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  184. }
  185. if (ret < 0)
  186. pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
  187. t->comm, t->pid, ret);
  188. return ret;
  189. }
  190. /*
  191. * When a unknown page type is encountered drain as many buffers as possible
  192. * in the hope to turn the page into a LRU or free page, which we can handle.
  193. */
  194. void shake_page(struct page *p, int access)
  195. {
  196. if (!PageSlab(p)) {
  197. lru_add_drain_all();
  198. if (PageLRU(p))
  199. return;
  200. drain_all_pages(page_zone(p));
  201. if (PageLRU(p) || is_free_buddy_page(p))
  202. return;
  203. }
  204. /*
  205. * Only call shrink_node_slabs here (which would also shrink
  206. * other caches) if access is not potentially fatal.
  207. */
  208. if (access)
  209. drop_slab_node(page_to_nid(p));
  210. }
  211. EXPORT_SYMBOL_GPL(shake_page);
  212. /*
  213. * Kill all processes that have a poisoned page mapped and then isolate
  214. * the page.
  215. *
  216. * General strategy:
  217. * Find all processes having the page mapped and kill them.
  218. * But we keep a page reference around so that the page is not
  219. * actually freed yet.
  220. * Then stash the page away
  221. *
  222. * There's no convenient way to get back to mapped processes
  223. * from the VMAs. So do a brute-force search over all
  224. * running processes.
  225. *
  226. * Remember that machine checks are not common (or rather
  227. * if they are common you have other problems), so this shouldn't
  228. * be a performance issue.
  229. *
  230. * Also there are some races possible while we get from the
  231. * error detection to actually handle it.
  232. */
  233. struct to_kill {
  234. struct list_head nd;
  235. struct task_struct *tsk;
  236. unsigned long addr;
  237. char addr_valid;
  238. };
  239. /*
  240. * Failure handling: if we can't find or can't kill a process there's
  241. * not much we can do. We just print a message and ignore otherwise.
  242. */
  243. /*
  244. * Schedule a process for later kill.
  245. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  246. * TBD would GFP_NOIO be enough?
  247. */
  248. static void add_to_kill(struct task_struct *tsk, struct page *p,
  249. struct vm_area_struct *vma,
  250. struct list_head *to_kill,
  251. struct to_kill **tkc)
  252. {
  253. struct to_kill *tk;
  254. if (*tkc) {
  255. tk = *tkc;
  256. *tkc = NULL;
  257. } else {
  258. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  259. if (!tk) {
  260. pr_err("Memory failure: Out of memory while machine check handling\n");
  261. return;
  262. }
  263. }
  264. tk->addr = page_address_in_vma(p, vma);
  265. tk->addr_valid = 1;
  266. /*
  267. * In theory we don't have to kill when the page was
  268. * munmaped. But it could be also a mremap. Since that's
  269. * likely very rare kill anyways just out of paranoia, but use
  270. * a SIGKILL because the error is not contained anymore.
  271. */
  272. if (tk->addr == -EFAULT) {
  273. pr_info("Memory failure: Unable to find user space address %lx in %s\n",
  274. page_to_pfn(p), tsk->comm);
  275. tk->addr_valid = 0;
  276. }
  277. get_task_struct(tsk);
  278. tk->tsk = tsk;
  279. list_add_tail(&tk->nd, to_kill);
  280. }
  281. /*
  282. * Kill the processes that have been collected earlier.
  283. *
  284. * Only do anything when DOIT is set, otherwise just free the list
  285. * (this is used for clean pages which do not need killing)
  286. * Also when FAIL is set do a force kill because something went
  287. * wrong earlier.
  288. */
  289. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  290. int fail, struct page *page, unsigned long pfn,
  291. int flags)
  292. {
  293. struct to_kill *tk, *next;
  294. list_for_each_entry_safe (tk, next, to_kill, nd) {
  295. if (forcekill) {
  296. /*
  297. * In case something went wrong with munmapping
  298. * make sure the process doesn't catch the
  299. * signal and then access the memory. Just kill it.
  300. */
  301. if (fail || tk->addr_valid == 0) {
  302. pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  303. pfn, tk->tsk->comm, tk->tsk->pid);
  304. force_sig(SIGKILL, tk->tsk);
  305. }
  306. /*
  307. * In theory the process could have mapped
  308. * something else on the address in-between. We could
  309. * check for that, but we need to tell the
  310. * process anyways.
  311. */
  312. else if (kill_proc(tk->tsk, tk->addr, trapno,
  313. pfn, page, flags) < 0)
  314. pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
  315. pfn, tk->tsk->comm, tk->tsk->pid);
  316. }
  317. put_task_struct(tk->tsk);
  318. kfree(tk);
  319. }
  320. }
  321. /*
  322. * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
  323. * on behalf of the thread group. Return task_struct of the (first found)
  324. * dedicated thread if found, and return NULL otherwise.
  325. *
  326. * We already hold read_lock(&tasklist_lock) in the caller, so we don't
  327. * have to call rcu_read_lock/unlock() in this function.
  328. */
  329. static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
  330. {
  331. struct task_struct *t;
  332. for_each_thread(tsk, t)
  333. if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
  334. return t;
  335. return NULL;
  336. }
  337. /*
  338. * Determine whether a given process is "early kill" process which expects
  339. * to be signaled when some page under the process is hwpoisoned.
  340. * Return task_struct of the dedicated thread (main thread unless explicitly
  341. * specified) if the process is "early kill," and otherwise returns NULL.
  342. */
  343. static struct task_struct *task_early_kill(struct task_struct *tsk,
  344. int force_early)
  345. {
  346. struct task_struct *t;
  347. if (!tsk->mm)
  348. return NULL;
  349. if (force_early)
  350. return tsk;
  351. t = find_early_kill_thread(tsk);
  352. if (t)
  353. return t;
  354. if (sysctl_memory_failure_early_kill)
  355. return tsk;
  356. return NULL;
  357. }
  358. /*
  359. * Collect processes when the error hit an anonymous page.
  360. */
  361. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  362. struct to_kill **tkc, int force_early)
  363. {
  364. struct vm_area_struct *vma;
  365. struct task_struct *tsk;
  366. struct anon_vma *av;
  367. pgoff_t pgoff;
  368. av = page_lock_anon_vma_read(page);
  369. if (av == NULL) /* Not actually mapped anymore */
  370. return;
  371. pgoff = page_to_pgoff(page);
  372. read_lock(&tasklist_lock);
  373. for_each_process (tsk) {
  374. struct anon_vma_chain *vmac;
  375. struct task_struct *t = task_early_kill(tsk, force_early);
  376. if (!t)
  377. continue;
  378. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  379. pgoff, pgoff) {
  380. vma = vmac->vma;
  381. if (!page_mapped_in_vma(page, vma))
  382. continue;
  383. if (vma->vm_mm == t->mm)
  384. add_to_kill(t, page, vma, to_kill, tkc);
  385. }
  386. }
  387. read_unlock(&tasklist_lock);
  388. page_unlock_anon_vma_read(av);
  389. }
  390. /*
  391. * Collect processes when the error hit a file mapped page.
  392. */
  393. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  394. struct to_kill **tkc, int force_early)
  395. {
  396. struct vm_area_struct *vma;
  397. struct task_struct *tsk;
  398. struct address_space *mapping = page->mapping;
  399. i_mmap_lock_read(mapping);
  400. read_lock(&tasklist_lock);
  401. for_each_process(tsk) {
  402. pgoff_t pgoff = page_to_pgoff(page);
  403. struct task_struct *t = task_early_kill(tsk, force_early);
  404. if (!t)
  405. continue;
  406. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  407. pgoff) {
  408. /*
  409. * Send early kill signal to tasks where a vma covers
  410. * the page but the corrupted page is not necessarily
  411. * mapped it in its pte.
  412. * Assume applications who requested early kill want
  413. * to be informed of all such data corruptions.
  414. */
  415. if (vma->vm_mm == t->mm)
  416. add_to_kill(t, page, vma, to_kill, tkc);
  417. }
  418. }
  419. read_unlock(&tasklist_lock);
  420. i_mmap_unlock_read(mapping);
  421. }
  422. /*
  423. * Collect the processes who have the corrupted page mapped to kill.
  424. * This is done in two steps for locking reasons.
  425. * First preallocate one tokill structure outside the spin locks,
  426. * so that we can kill at least one process reasonably reliable.
  427. */
  428. static void collect_procs(struct page *page, struct list_head *tokill,
  429. int force_early)
  430. {
  431. struct to_kill *tk;
  432. if (!page->mapping)
  433. return;
  434. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  435. if (!tk)
  436. return;
  437. if (PageAnon(page))
  438. collect_procs_anon(page, tokill, &tk, force_early);
  439. else
  440. collect_procs_file(page, tokill, &tk, force_early);
  441. kfree(tk);
  442. }
  443. static const char *action_name[] = {
  444. [MF_IGNORED] = "Ignored",
  445. [MF_FAILED] = "Failed",
  446. [MF_DELAYED] = "Delayed",
  447. [MF_RECOVERED] = "Recovered",
  448. };
  449. static const char * const action_page_types[] = {
  450. [MF_MSG_KERNEL] = "reserved kernel page",
  451. [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
  452. [MF_MSG_SLAB] = "kernel slab page",
  453. [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
  454. [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
  455. [MF_MSG_HUGE] = "huge page",
  456. [MF_MSG_FREE_HUGE] = "free huge page",
  457. [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
  458. [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
  459. [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
  460. [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
  461. [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
  462. [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
  463. [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
  464. [MF_MSG_DIRTY_LRU] = "dirty LRU page",
  465. [MF_MSG_CLEAN_LRU] = "clean LRU page",
  466. [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
  467. [MF_MSG_BUDDY] = "free buddy page",
  468. [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
  469. [MF_MSG_UNKNOWN] = "unknown page",
  470. };
  471. /*
  472. * XXX: It is possible that a page is isolated from LRU cache,
  473. * and then kept in swap cache or failed to remove from page cache.
  474. * The page count will stop it from being freed by unpoison.
  475. * Stress tests should be aware of this memory leak problem.
  476. */
  477. static int delete_from_lru_cache(struct page *p)
  478. {
  479. if (!isolate_lru_page(p)) {
  480. /*
  481. * Clear sensible page flags, so that the buddy system won't
  482. * complain when the page is unpoison-and-freed.
  483. */
  484. ClearPageActive(p);
  485. ClearPageUnevictable(p);
  486. /*
  487. * Poisoned page might never drop its ref count to 0 so we have
  488. * to uncharge it manually from its memcg.
  489. */
  490. mem_cgroup_uncharge(p);
  491. /*
  492. * drop the page count elevated by isolate_lru_page()
  493. */
  494. put_page(p);
  495. return 0;
  496. }
  497. return -EIO;
  498. }
  499. /*
  500. * Error hit kernel page.
  501. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  502. * could be more sophisticated.
  503. */
  504. static int me_kernel(struct page *p, unsigned long pfn)
  505. {
  506. return MF_IGNORED;
  507. }
  508. /*
  509. * Page in unknown state. Do nothing.
  510. */
  511. static int me_unknown(struct page *p, unsigned long pfn)
  512. {
  513. pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
  514. return MF_FAILED;
  515. }
  516. /*
  517. * Clean (or cleaned) page cache page.
  518. */
  519. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  520. {
  521. int err;
  522. int ret = MF_FAILED;
  523. struct address_space *mapping;
  524. delete_from_lru_cache(p);
  525. /*
  526. * For anonymous pages we're done the only reference left
  527. * should be the one m_f() holds.
  528. */
  529. if (PageAnon(p))
  530. return MF_RECOVERED;
  531. /*
  532. * Now truncate the page in the page cache. This is really
  533. * more like a "temporary hole punch"
  534. * Don't do this for block devices when someone else
  535. * has a reference, because it could be file system metadata
  536. * and that's not safe to truncate.
  537. */
  538. mapping = page_mapping(p);
  539. if (!mapping) {
  540. /*
  541. * Page has been teared down in the meanwhile
  542. */
  543. return MF_FAILED;
  544. }
  545. /*
  546. * Truncation is a bit tricky. Enable it per file system for now.
  547. *
  548. * Open: to take i_mutex or not for this? Right now we don't.
  549. */
  550. if (mapping->a_ops->error_remove_page) {
  551. err = mapping->a_ops->error_remove_page(mapping, p);
  552. if (err != 0) {
  553. pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
  554. pfn, err);
  555. } else if (page_has_private(p) &&
  556. !try_to_release_page(p, GFP_NOIO)) {
  557. pr_info("Memory failure: %#lx: failed to release buffers\n",
  558. pfn);
  559. } else {
  560. ret = MF_RECOVERED;
  561. }
  562. } else {
  563. /*
  564. * If the file system doesn't support it just invalidate
  565. * This fails on dirty or anything with private pages
  566. */
  567. if (invalidate_inode_page(p))
  568. ret = MF_RECOVERED;
  569. else
  570. pr_info("Memory failure: %#lx: Failed to invalidate\n",
  571. pfn);
  572. }
  573. return ret;
  574. }
  575. /*
  576. * Dirty pagecache page
  577. * Issues: when the error hit a hole page the error is not properly
  578. * propagated.
  579. */
  580. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  581. {
  582. struct address_space *mapping = page_mapping(p);
  583. SetPageError(p);
  584. /* TBD: print more information about the file. */
  585. if (mapping) {
  586. /*
  587. * IO error will be reported by write(), fsync(), etc.
  588. * who check the mapping.
  589. * This way the application knows that something went
  590. * wrong with its dirty file data.
  591. *
  592. * There's one open issue:
  593. *
  594. * The EIO will be only reported on the next IO
  595. * operation and then cleared through the IO map.
  596. * Normally Linux has two mechanisms to pass IO error
  597. * first through the AS_EIO flag in the address space
  598. * and then through the PageError flag in the page.
  599. * Since we drop pages on memory failure handling the
  600. * only mechanism open to use is through AS_AIO.
  601. *
  602. * This has the disadvantage that it gets cleared on
  603. * the first operation that returns an error, while
  604. * the PageError bit is more sticky and only cleared
  605. * when the page is reread or dropped. If an
  606. * application assumes it will always get error on
  607. * fsync, but does other operations on the fd before
  608. * and the page is dropped between then the error
  609. * will not be properly reported.
  610. *
  611. * This can already happen even without hwpoisoned
  612. * pages: first on metadata IO errors (which only
  613. * report through AS_EIO) or when the page is dropped
  614. * at the wrong time.
  615. *
  616. * So right now we assume that the application DTRT on
  617. * the first EIO, but we're not worse than other parts
  618. * of the kernel.
  619. */
  620. mapping_set_error(mapping, EIO);
  621. }
  622. return me_pagecache_clean(p, pfn);
  623. }
  624. /*
  625. * Clean and dirty swap cache.
  626. *
  627. * Dirty swap cache page is tricky to handle. The page could live both in page
  628. * cache and swap cache(ie. page is freshly swapped in). So it could be
  629. * referenced concurrently by 2 types of PTEs:
  630. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  631. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  632. * and then
  633. * - clear dirty bit to prevent IO
  634. * - remove from LRU
  635. * - but keep in the swap cache, so that when we return to it on
  636. * a later page fault, we know the application is accessing
  637. * corrupted data and shall be killed (we installed simple
  638. * interception code in do_swap_page to catch it).
  639. *
  640. * Clean swap cache pages can be directly isolated. A later page fault will
  641. * bring in the known good data from disk.
  642. */
  643. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  644. {
  645. ClearPageDirty(p);
  646. /* Trigger EIO in shmem: */
  647. ClearPageUptodate(p);
  648. if (!delete_from_lru_cache(p))
  649. return MF_DELAYED;
  650. else
  651. return MF_FAILED;
  652. }
  653. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  654. {
  655. delete_from_swap_cache(p);
  656. if (!delete_from_lru_cache(p))
  657. return MF_RECOVERED;
  658. else
  659. return MF_FAILED;
  660. }
  661. /*
  662. * Huge pages. Needs work.
  663. * Issues:
  664. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  665. * To narrow down kill region to one page, we need to break up pmd.
  666. */
  667. static int me_huge_page(struct page *p, unsigned long pfn)
  668. {
  669. int res = 0;
  670. struct page *hpage = compound_head(p);
  671. if (!PageHuge(hpage))
  672. return MF_DELAYED;
  673. /*
  674. * We can safely recover from error on free or reserved (i.e.
  675. * not in-use) hugepage by dequeuing it from freelist.
  676. * To check whether a hugepage is in-use or not, we can't use
  677. * page->lru because it can be used in other hugepage operations,
  678. * such as __unmap_hugepage_range() and gather_surplus_pages().
  679. * So instead we use page_mapping() and PageAnon().
  680. */
  681. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  682. res = dequeue_hwpoisoned_huge_page(hpage);
  683. if (!res)
  684. return MF_RECOVERED;
  685. }
  686. return MF_DELAYED;
  687. }
  688. /*
  689. * Various page states we can handle.
  690. *
  691. * A page state is defined by its current page->flags bits.
  692. * The table matches them in order and calls the right handler.
  693. *
  694. * This is quite tricky because we can access page at any time
  695. * in its live cycle, so all accesses have to be extremely careful.
  696. *
  697. * This is not complete. More states could be added.
  698. * For any missing state don't attempt recovery.
  699. */
  700. #define dirty (1UL << PG_dirty)
  701. #define sc (1UL << PG_swapcache)
  702. #define unevict (1UL << PG_unevictable)
  703. #define mlock (1UL << PG_mlocked)
  704. #define writeback (1UL << PG_writeback)
  705. #define lru (1UL << PG_lru)
  706. #define swapbacked (1UL << PG_swapbacked)
  707. #define head (1UL << PG_head)
  708. #define slab (1UL << PG_slab)
  709. #define reserved (1UL << PG_reserved)
  710. static struct page_state {
  711. unsigned long mask;
  712. unsigned long res;
  713. enum mf_action_page_type type;
  714. int (*action)(struct page *p, unsigned long pfn);
  715. } error_states[] = {
  716. { reserved, reserved, MF_MSG_KERNEL, me_kernel },
  717. /*
  718. * free pages are specially detected outside this table:
  719. * PG_buddy pages only make a small fraction of all free pages.
  720. */
  721. /*
  722. * Could in theory check if slab page is free or if we can drop
  723. * currently unused objects without touching them. But just
  724. * treat it as standard kernel for now.
  725. */
  726. { slab, slab, MF_MSG_SLAB, me_kernel },
  727. { head, head, MF_MSG_HUGE, me_huge_page },
  728. { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
  729. { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
  730. { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
  731. { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
  732. { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
  733. { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
  734. { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
  735. { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
  736. /*
  737. * Catchall entry: must be at end.
  738. */
  739. { 0, 0, MF_MSG_UNKNOWN, me_unknown },
  740. };
  741. #undef dirty
  742. #undef sc
  743. #undef unevict
  744. #undef mlock
  745. #undef writeback
  746. #undef lru
  747. #undef swapbacked
  748. #undef head
  749. #undef slab
  750. #undef reserved
  751. /*
  752. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  753. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  754. */
  755. static void action_result(unsigned long pfn, enum mf_action_page_type type,
  756. enum mf_result result)
  757. {
  758. trace_memory_failure_event(pfn, type, result);
  759. pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
  760. pfn, action_page_types[type], action_name[result]);
  761. }
  762. static int page_action(struct page_state *ps, struct page *p,
  763. unsigned long pfn)
  764. {
  765. int result;
  766. int count;
  767. result = ps->action(p, pfn);
  768. count = page_count(p) - 1;
  769. if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
  770. count--;
  771. if (count != 0) {
  772. pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
  773. pfn, action_page_types[ps->type], count);
  774. result = MF_FAILED;
  775. }
  776. action_result(pfn, ps->type, result);
  777. /* Could do more checks here if page looks ok */
  778. /*
  779. * Could adjust zone counters here to correct for the missing page.
  780. */
  781. return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
  782. }
  783. /**
  784. * get_hwpoison_page() - Get refcount for memory error handling:
  785. * @page: raw error page (hit by memory error)
  786. *
  787. * Return: return 0 if failed to grab the refcount, otherwise true (some
  788. * non-zero value.)
  789. */
  790. int get_hwpoison_page(struct page *page)
  791. {
  792. struct page *head = compound_head(page);
  793. if (!PageHuge(head) && PageTransHuge(head)) {
  794. /*
  795. * Non anonymous thp exists only in allocation/free time. We
  796. * can't handle such a case correctly, so let's give it up.
  797. * This should be better than triggering BUG_ON when kernel
  798. * tries to touch the "partially handled" page.
  799. */
  800. if (!PageAnon(head)) {
  801. pr_err("Memory failure: %#lx: non anonymous thp\n",
  802. page_to_pfn(page));
  803. return 0;
  804. }
  805. }
  806. if (get_page_unless_zero(head)) {
  807. if (head == compound_head(page))
  808. return 1;
  809. pr_info("Memory failure: %#lx cannot catch tail\n",
  810. page_to_pfn(page));
  811. put_page(head);
  812. }
  813. return 0;
  814. }
  815. EXPORT_SYMBOL_GPL(get_hwpoison_page);
  816. /*
  817. * Do all that is necessary to remove user space mappings. Unmap
  818. * the pages and send SIGBUS to the processes if the data was dirty.
  819. */
  820. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  821. int trapno, int flags, struct page **hpagep)
  822. {
  823. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  824. struct address_space *mapping;
  825. LIST_HEAD(tokill);
  826. int ret;
  827. int kill = 1, forcekill;
  828. struct page *hpage = *hpagep;
  829. bool mlocked = PageMlocked(hpage);
  830. /*
  831. * Here we are interested only in user-mapped pages, so skip any
  832. * other types of pages.
  833. */
  834. if (PageReserved(p) || PageSlab(p))
  835. return SWAP_SUCCESS;
  836. if (!(PageLRU(hpage) || PageHuge(p)))
  837. return SWAP_SUCCESS;
  838. /*
  839. * This check implies we don't kill processes if their pages
  840. * are in the swap cache early. Those are always late kills.
  841. */
  842. if (!page_mapped(hpage))
  843. return SWAP_SUCCESS;
  844. if (PageKsm(p)) {
  845. pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
  846. return SWAP_FAIL;
  847. }
  848. if (PageSwapCache(p)) {
  849. pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
  850. pfn);
  851. ttu |= TTU_IGNORE_HWPOISON;
  852. }
  853. /*
  854. * Propagate the dirty bit from PTEs to struct page first, because we
  855. * need this to decide if we should kill or just drop the page.
  856. * XXX: the dirty test could be racy: set_page_dirty() may not always
  857. * be called inside page lock (it's recommended but not enforced).
  858. */
  859. mapping = page_mapping(hpage);
  860. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  861. mapping_cap_writeback_dirty(mapping)) {
  862. if (page_mkclean(hpage)) {
  863. SetPageDirty(hpage);
  864. } else {
  865. kill = 0;
  866. ttu |= TTU_IGNORE_HWPOISON;
  867. pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
  868. pfn);
  869. }
  870. }
  871. /*
  872. * First collect all the processes that have the page
  873. * mapped in dirty form. This has to be done before try_to_unmap,
  874. * because ttu takes the rmap data structures down.
  875. *
  876. * Error handling: We ignore errors here because
  877. * there's nothing that can be done.
  878. */
  879. if (kill)
  880. collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
  881. ret = try_to_unmap(hpage, ttu);
  882. if (ret != SWAP_SUCCESS)
  883. pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
  884. pfn, page_mapcount(hpage));
  885. /*
  886. * try_to_unmap() might put mlocked page in lru cache, so call
  887. * shake_page() again to ensure that it's flushed.
  888. */
  889. if (mlocked)
  890. shake_page(hpage, 0);
  891. /*
  892. * Now that the dirty bit has been propagated to the
  893. * struct page and all unmaps done we can decide if
  894. * killing is needed or not. Only kill when the page
  895. * was dirty or the process is not restartable,
  896. * otherwise the tokill list is merely
  897. * freed. When there was a problem unmapping earlier
  898. * use a more force-full uncatchable kill to prevent
  899. * any accesses to the poisoned memory.
  900. */
  901. forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
  902. kill_procs(&tokill, forcekill, trapno,
  903. ret != SWAP_SUCCESS, p, pfn, flags);
  904. return ret;
  905. }
  906. static void set_page_hwpoison_huge_page(struct page *hpage)
  907. {
  908. int i;
  909. int nr_pages = 1 << compound_order(hpage);
  910. for (i = 0; i < nr_pages; i++)
  911. SetPageHWPoison(hpage + i);
  912. }
  913. static void clear_page_hwpoison_huge_page(struct page *hpage)
  914. {
  915. int i;
  916. int nr_pages = 1 << compound_order(hpage);
  917. for (i = 0; i < nr_pages; i++)
  918. ClearPageHWPoison(hpage + i);
  919. }
  920. /**
  921. * memory_failure - Handle memory failure of a page.
  922. * @pfn: Page Number of the corrupted page
  923. * @trapno: Trap number reported in the signal to user space.
  924. * @flags: fine tune action taken
  925. *
  926. * This function is called by the low level machine check code
  927. * of an architecture when it detects hardware memory corruption
  928. * of a page. It tries its best to recover, which includes
  929. * dropping pages, killing processes etc.
  930. *
  931. * The function is primarily of use for corruptions that
  932. * happen outside the current execution context (e.g. when
  933. * detected by a background scrubber)
  934. *
  935. * Must run in process context (e.g. a work queue) with interrupts
  936. * enabled and no spinlocks hold.
  937. */
  938. int memory_failure(unsigned long pfn, int trapno, int flags)
  939. {
  940. struct page_state *ps;
  941. struct page *p;
  942. struct page *hpage;
  943. struct page *orig_head;
  944. int res;
  945. unsigned int nr_pages;
  946. unsigned long page_flags;
  947. if (!sysctl_memory_failure_recovery)
  948. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  949. if (!pfn_valid(pfn)) {
  950. pr_err("Memory failure: %#lx: memory outside kernel control\n",
  951. pfn);
  952. return -ENXIO;
  953. }
  954. p = pfn_to_page(pfn);
  955. orig_head = hpage = compound_head(p);
  956. if (TestSetPageHWPoison(p)) {
  957. pr_err("Memory failure: %#lx: already hardware poisoned\n",
  958. pfn);
  959. return 0;
  960. }
  961. /*
  962. * Currently errors on hugetlbfs pages are measured in hugepage units,
  963. * so nr_pages should be 1 << compound_order. OTOH when errors are on
  964. * transparent hugepages, they are supposed to be split and error
  965. * measurement is done in normal page units. So nr_pages should be one
  966. * in this case.
  967. */
  968. if (PageHuge(p))
  969. nr_pages = 1 << compound_order(hpage);
  970. else /* normal page or thp */
  971. nr_pages = 1;
  972. num_poisoned_pages_add(nr_pages);
  973. /*
  974. * We need/can do nothing about count=0 pages.
  975. * 1) it's a free page, and therefore in safe hand:
  976. * prep_new_page() will be the gate keeper.
  977. * 2) it's a free hugepage, which is also safe:
  978. * an affected hugepage will be dequeued from hugepage freelist,
  979. * so there's no concern about reusing it ever after.
  980. * 3) it's part of a non-compound high order page.
  981. * Implies some kernel user: cannot stop them from
  982. * R/W the page; let's pray that the page has been
  983. * used and will be freed some time later.
  984. * In fact it's dangerous to directly bump up page count from 0,
  985. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  986. */
  987. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  988. if (is_free_buddy_page(p)) {
  989. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  990. return 0;
  991. } else if (PageHuge(hpage)) {
  992. /*
  993. * Check "filter hit" and "race with other subpage."
  994. */
  995. lock_page(hpage);
  996. if (PageHWPoison(hpage)) {
  997. if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
  998. || (p != hpage && TestSetPageHWPoison(hpage))) {
  999. num_poisoned_pages_sub(nr_pages);
  1000. unlock_page(hpage);
  1001. return 0;
  1002. }
  1003. }
  1004. set_page_hwpoison_huge_page(hpage);
  1005. res = dequeue_hwpoisoned_huge_page(hpage);
  1006. action_result(pfn, MF_MSG_FREE_HUGE,
  1007. res ? MF_IGNORED : MF_DELAYED);
  1008. unlock_page(hpage);
  1009. return res;
  1010. } else {
  1011. action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
  1012. return -EBUSY;
  1013. }
  1014. }
  1015. if (!PageHuge(p) && PageTransHuge(hpage)) {
  1016. lock_page(p);
  1017. if (!PageAnon(p) || unlikely(split_huge_page(p))) {
  1018. unlock_page(p);
  1019. if (!PageAnon(p))
  1020. pr_err("Memory failure: %#lx: non anonymous thp\n",
  1021. pfn);
  1022. else
  1023. pr_err("Memory failure: %#lx: thp split failed\n",
  1024. pfn);
  1025. if (TestClearPageHWPoison(p))
  1026. num_poisoned_pages_sub(nr_pages);
  1027. put_hwpoison_page(p);
  1028. return -EBUSY;
  1029. }
  1030. unlock_page(p);
  1031. VM_BUG_ON_PAGE(!page_count(p), p);
  1032. hpage = compound_head(p);
  1033. }
  1034. /*
  1035. * We ignore non-LRU pages for good reasons.
  1036. * - PG_locked is only well defined for LRU pages and a few others
  1037. * - to avoid races with __SetPageLocked()
  1038. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  1039. * The check (unnecessarily) ignores LRU pages being isolated and
  1040. * walked by the page reclaim code, however that's not a big loss.
  1041. */
  1042. if (!PageHuge(p)) {
  1043. if (!PageLRU(p))
  1044. shake_page(p, 0);
  1045. if (!PageLRU(p)) {
  1046. /*
  1047. * shake_page could have turned it free.
  1048. */
  1049. if (is_free_buddy_page(p)) {
  1050. if (flags & MF_COUNT_INCREASED)
  1051. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1052. else
  1053. action_result(pfn, MF_MSG_BUDDY_2ND,
  1054. MF_DELAYED);
  1055. return 0;
  1056. }
  1057. }
  1058. }
  1059. lock_page(hpage);
  1060. /*
  1061. * The page could have changed compound pages during the locking.
  1062. * If this happens just bail out.
  1063. */
  1064. if (PageCompound(p) && compound_head(p) != orig_head) {
  1065. action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
  1066. res = -EBUSY;
  1067. goto out;
  1068. }
  1069. /*
  1070. * We use page flags to determine what action should be taken, but
  1071. * the flags can be modified by the error containment action. One
  1072. * example is an mlocked page, where PG_mlocked is cleared by
  1073. * page_remove_rmap() in try_to_unmap_one(). So to determine page status
  1074. * correctly, we save a copy of the page flags at this time.
  1075. */
  1076. if (PageHuge(p))
  1077. page_flags = hpage->flags;
  1078. else
  1079. page_flags = p->flags;
  1080. /*
  1081. * unpoison always clear PG_hwpoison inside page lock
  1082. */
  1083. if (!PageHWPoison(p)) {
  1084. pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
  1085. num_poisoned_pages_sub(nr_pages);
  1086. unlock_page(hpage);
  1087. put_hwpoison_page(hpage);
  1088. return 0;
  1089. }
  1090. if (hwpoison_filter(p)) {
  1091. if (TestClearPageHWPoison(p))
  1092. num_poisoned_pages_sub(nr_pages);
  1093. unlock_page(hpage);
  1094. put_hwpoison_page(hpage);
  1095. return 0;
  1096. }
  1097. if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
  1098. goto identify_page_state;
  1099. /*
  1100. * For error on the tail page, we should set PG_hwpoison
  1101. * on the head page to show that the hugepage is hwpoisoned
  1102. */
  1103. if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
  1104. action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
  1105. unlock_page(hpage);
  1106. put_hwpoison_page(hpage);
  1107. return 0;
  1108. }
  1109. /*
  1110. * Set PG_hwpoison on all pages in an error hugepage,
  1111. * because containment is done in hugepage unit for now.
  1112. * Since we have done TestSetPageHWPoison() for the head page with
  1113. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  1114. */
  1115. if (PageHuge(p))
  1116. set_page_hwpoison_huge_page(hpage);
  1117. /*
  1118. * It's very difficult to mess with pages currently under IO
  1119. * and in many cases impossible, so we just avoid it here.
  1120. */
  1121. wait_on_page_writeback(p);
  1122. /*
  1123. * Now take care of user space mappings.
  1124. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1125. *
  1126. * When the raw error page is thp tail page, hpage points to the raw
  1127. * page after thp split.
  1128. */
  1129. if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
  1130. != SWAP_SUCCESS) {
  1131. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  1132. res = -EBUSY;
  1133. goto out;
  1134. }
  1135. /*
  1136. * Torn down by someone else?
  1137. */
  1138. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1139. action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
  1140. res = -EBUSY;
  1141. goto out;
  1142. }
  1143. identify_page_state:
  1144. res = -EBUSY;
  1145. /*
  1146. * The first check uses the current page flags which may not have any
  1147. * relevant information. The second check with the saved page flagss is
  1148. * carried out only if the first check can't determine the page status.
  1149. */
  1150. for (ps = error_states;; ps++)
  1151. if ((p->flags & ps->mask) == ps->res)
  1152. break;
  1153. page_flags |= (p->flags & (1UL << PG_dirty));
  1154. if (!ps->mask)
  1155. for (ps = error_states;; ps++)
  1156. if ((page_flags & ps->mask) == ps->res)
  1157. break;
  1158. res = page_action(ps, p, pfn);
  1159. out:
  1160. unlock_page(hpage);
  1161. return res;
  1162. }
  1163. EXPORT_SYMBOL_GPL(memory_failure);
  1164. #define MEMORY_FAILURE_FIFO_ORDER 4
  1165. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1166. struct memory_failure_entry {
  1167. unsigned long pfn;
  1168. int trapno;
  1169. int flags;
  1170. };
  1171. struct memory_failure_cpu {
  1172. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1173. MEMORY_FAILURE_FIFO_SIZE);
  1174. spinlock_t lock;
  1175. struct work_struct work;
  1176. };
  1177. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1178. /**
  1179. * memory_failure_queue - Schedule handling memory failure of a page.
  1180. * @pfn: Page Number of the corrupted page
  1181. * @trapno: Trap number reported in the signal to user space.
  1182. * @flags: Flags for memory failure handling
  1183. *
  1184. * This function is called by the low level hardware error handler
  1185. * when it detects hardware memory corruption of a page. It schedules
  1186. * the recovering of error page, including dropping pages, killing
  1187. * processes etc.
  1188. *
  1189. * The function is primarily of use for corruptions that
  1190. * happen outside the current execution context (e.g. when
  1191. * detected by a background scrubber)
  1192. *
  1193. * Can run in IRQ context.
  1194. */
  1195. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1196. {
  1197. struct memory_failure_cpu *mf_cpu;
  1198. unsigned long proc_flags;
  1199. struct memory_failure_entry entry = {
  1200. .pfn = pfn,
  1201. .trapno = trapno,
  1202. .flags = flags,
  1203. };
  1204. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1205. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1206. if (kfifo_put(&mf_cpu->fifo, entry))
  1207. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1208. else
  1209. pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
  1210. pfn);
  1211. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1212. put_cpu_var(memory_failure_cpu);
  1213. }
  1214. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1215. static void memory_failure_work_func(struct work_struct *work)
  1216. {
  1217. struct memory_failure_cpu *mf_cpu;
  1218. struct memory_failure_entry entry = { 0, };
  1219. unsigned long proc_flags;
  1220. int gotten;
  1221. mf_cpu = this_cpu_ptr(&memory_failure_cpu);
  1222. for (;;) {
  1223. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1224. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1225. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1226. if (!gotten)
  1227. break;
  1228. if (entry.flags & MF_SOFT_OFFLINE)
  1229. soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
  1230. else
  1231. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1232. }
  1233. }
  1234. static int __init memory_failure_init(void)
  1235. {
  1236. struct memory_failure_cpu *mf_cpu;
  1237. int cpu;
  1238. for_each_possible_cpu(cpu) {
  1239. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1240. spin_lock_init(&mf_cpu->lock);
  1241. INIT_KFIFO(mf_cpu->fifo);
  1242. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1243. }
  1244. return 0;
  1245. }
  1246. core_initcall(memory_failure_init);
  1247. #define unpoison_pr_info(fmt, pfn, rs) \
  1248. ({ \
  1249. if (__ratelimit(rs)) \
  1250. pr_info(fmt, pfn); \
  1251. })
  1252. /**
  1253. * unpoison_memory - Unpoison a previously poisoned page
  1254. * @pfn: Page number of the to be unpoisoned page
  1255. *
  1256. * Software-unpoison a page that has been poisoned by
  1257. * memory_failure() earlier.
  1258. *
  1259. * This is only done on the software-level, so it only works
  1260. * for linux injected failures, not real hardware failures
  1261. *
  1262. * Returns 0 for success, otherwise -errno.
  1263. */
  1264. int unpoison_memory(unsigned long pfn)
  1265. {
  1266. struct page *page;
  1267. struct page *p;
  1268. int freeit = 0;
  1269. unsigned int nr_pages;
  1270. static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
  1271. DEFAULT_RATELIMIT_BURST);
  1272. if (!pfn_valid(pfn))
  1273. return -ENXIO;
  1274. p = pfn_to_page(pfn);
  1275. page = compound_head(p);
  1276. if (!PageHWPoison(p)) {
  1277. unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
  1278. pfn, &unpoison_rs);
  1279. return 0;
  1280. }
  1281. if (page_count(page) > 1) {
  1282. unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
  1283. pfn, &unpoison_rs);
  1284. return 0;
  1285. }
  1286. if (page_mapped(page)) {
  1287. unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
  1288. pfn, &unpoison_rs);
  1289. return 0;
  1290. }
  1291. if (page_mapping(page)) {
  1292. unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
  1293. pfn, &unpoison_rs);
  1294. return 0;
  1295. }
  1296. /*
  1297. * unpoison_memory() can encounter thp only when the thp is being
  1298. * worked by memory_failure() and the page lock is not held yet.
  1299. * In such case, we yield to memory_failure() and make unpoison fail.
  1300. */
  1301. if (!PageHuge(page) && PageTransHuge(page)) {
  1302. unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
  1303. pfn, &unpoison_rs);
  1304. return 0;
  1305. }
  1306. nr_pages = 1 << compound_order(page);
  1307. if (!get_hwpoison_page(p)) {
  1308. /*
  1309. * Since HWPoisoned hugepage should have non-zero refcount,
  1310. * race between memory failure and unpoison seems to happen.
  1311. * In such case unpoison fails and memory failure runs
  1312. * to the end.
  1313. */
  1314. if (PageHuge(page)) {
  1315. unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
  1316. pfn, &unpoison_rs);
  1317. return 0;
  1318. }
  1319. if (TestClearPageHWPoison(p))
  1320. num_poisoned_pages_dec();
  1321. unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
  1322. pfn, &unpoison_rs);
  1323. return 0;
  1324. }
  1325. lock_page(page);
  1326. /*
  1327. * This test is racy because PG_hwpoison is set outside of page lock.
  1328. * That's acceptable because that won't trigger kernel panic. Instead,
  1329. * the PG_hwpoison page will be caught and isolated on the entrance to
  1330. * the free buddy page pool.
  1331. */
  1332. if (TestClearPageHWPoison(page)) {
  1333. unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
  1334. pfn, &unpoison_rs);
  1335. num_poisoned_pages_sub(nr_pages);
  1336. freeit = 1;
  1337. if (PageHuge(page))
  1338. clear_page_hwpoison_huge_page(page);
  1339. }
  1340. unlock_page(page);
  1341. put_hwpoison_page(page);
  1342. if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
  1343. put_hwpoison_page(page);
  1344. return 0;
  1345. }
  1346. EXPORT_SYMBOL(unpoison_memory);
  1347. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1348. {
  1349. int nid = page_to_nid(p);
  1350. if (PageHuge(p))
  1351. return alloc_huge_page_node(page_hstate(compound_head(p)),
  1352. nid);
  1353. else
  1354. return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1355. }
  1356. /*
  1357. * Safely get reference count of an arbitrary page.
  1358. * Returns 0 for a free page, -EIO for a zero refcount page
  1359. * that is not free, and 1 for any other page type.
  1360. * For 1 the page is returned with increased page count, otherwise not.
  1361. */
  1362. static int __get_any_page(struct page *p, unsigned long pfn, int flags)
  1363. {
  1364. int ret;
  1365. if (flags & MF_COUNT_INCREASED)
  1366. return 1;
  1367. /*
  1368. * When the target page is a free hugepage, just remove it
  1369. * from free hugepage list.
  1370. */
  1371. if (!get_hwpoison_page(p)) {
  1372. if (PageHuge(p)) {
  1373. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1374. ret = 0;
  1375. } else if (is_free_buddy_page(p)) {
  1376. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1377. ret = 0;
  1378. } else {
  1379. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1380. __func__, pfn, p->flags);
  1381. ret = -EIO;
  1382. }
  1383. } else {
  1384. /* Not a free page */
  1385. ret = 1;
  1386. }
  1387. return ret;
  1388. }
  1389. static int get_any_page(struct page *page, unsigned long pfn, int flags)
  1390. {
  1391. int ret = __get_any_page(page, pfn, flags);
  1392. if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
  1393. /*
  1394. * Try to free it.
  1395. */
  1396. put_hwpoison_page(page);
  1397. shake_page(page, 1);
  1398. /*
  1399. * Did it turn free?
  1400. */
  1401. ret = __get_any_page(page, pfn, 0);
  1402. if (ret == 1 && !PageLRU(page)) {
  1403. /* Drop page reference which is from __get_any_page() */
  1404. put_hwpoison_page(page);
  1405. pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1406. pfn, page->flags);
  1407. return -EIO;
  1408. }
  1409. }
  1410. return ret;
  1411. }
  1412. static int soft_offline_huge_page(struct page *page, int flags)
  1413. {
  1414. int ret;
  1415. unsigned long pfn = page_to_pfn(page);
  1416. struct page *hpage = compound_head(page);
  1417. LIST_HEAD(pagelist);
  1418. /*
  1419. * This double-check of PageHWPoison is to avoid the race with
  1420. * memory_failure(). See also comment in __soft_offline_page().
  1421. */
  1422. lock_page(hpage);
  1423. if (PageHWPoison(hpage)) {
  1424. unlock_page(hpage);
  1425. put_hwpoison_page(hpage);
  1426. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1427. return -EBUSY;
  1428. }
  1429. unlock_page(hpage);
  1430. ret = isolate_huge_page(hpage, &pagelist);
  1431. /*
  1432. * get_any_page() and isolate_huge_page() takes a refcount each,
  1433. * so need to drop one here.
  1434. */
  1435. put_hwpoison_page(hpage);
  1436. if (!ret) {
  1437. pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
  1438. return -EBUSY;
  1439. }
  1440. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1441. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1442. if (ret) {
  1443. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1444. pfn, ret, page->flags);
  1445. if (!list_empty(&pagelist))
  1446. putback_movable_pages(&pagelist);
  1447. if (ret > 0)
  1448. ret = -EIO;
  1449. } else {
  1450. /* overcommit hugetlb page will be freed to buddy */
  1451. if (PageHuge(page)) {
  1452. set_page_hwpoison_huge_page(hpage);
  1453. dequeue_hwpoisoned_huge_page(hpage);
  1454. num_poisoned_pages_add(1 << compound_order(hpage));
  1455. } else {
  1456. SetPageHWPoison(page);
  1457. num_poisoned_pages_inc();
  1458. }
  1459. }
  1460. return ret;
  1461. }
  1462. static int __soft_offline_page(struct page *page, int flags)
  1463. {
  1464. int ret;
  1465. unsigned long pfn = page_to_pfn(page);
  1466. /*
  1467. * Check PageHWPoison again inside page lock because PageHWPoison
  1468. * is set by memory_failure() outside page lock. Note that
  1469. * memory_failure() also double-checks PageHWPoison inside page lock,
  1470. * so there's no race between soft_offline_page() and memory_failure().
  1471. */
  1472. lock_page(page);
  1473. wait_on_page_writeback(page);
  1474. if (PageHWPoison(page)) {
  1475. unlock_page(page);
  1476. put_hwpoison_page(page);
  1477. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1478. return -EBUSY;
  1479. }
  1480. /*
  1481. * Try to invalidate first. This should work for
  1482. * non dirty unmapped page cache pages.
  1483. */
  1484. ret = invalidate_inode_page(page);
  1485. unlock_page(page);
  1486. /*
  1487. * RED-PEN would be better to keep it isolated here, but we
  1488. * would need to fix isolation locking first.
  1489. */
  1490. if (ret == 1) {
  1491. put_hwpoison_page(page);
  1492. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1493. SetPageHWPoison(page);
  1494. num_poisoned_pages_inc();
  1495. return 0;
  1496. }
  1497. /*
  1498. * Simple invalidation didn't work.
  1499. * Try to migrate to a new page instead. migrate.c
  1500. * handles a large number of cases for us.
  1501. */
  1502. ret = isolate_lru_page(page);
  1503. /*
  1504. * Drop page reference which is came from get_any_page()
  1505. * successful isolate_lru_page() already took another one.
  1506. */
  1507. put_hwpoison_page(page);
  1508. if (!ret) {
  1509. LIST_HEAD(pagelist);
  1510. inc_node_page_state(page, NR_ISOLATED_ANON +
  1511. page_is_file_cache(page));
  1512. list_add(&page->lru, &pagelist);
  1513. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1514. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1515. if (ret) {
  1516. if (!list_empty(&pagelist)) {
  1517. list_del(&page->lru);
  1518. dec_node_page_state(page, NR_ISOLATED_ANON +
  1519. page_is_file_cache(page));
  1520. putback_lru_page(page);
  1521. }
  1522. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1523. pfn, ret, page->flags);
  1524. if (ret > 0)
  1525. ret = -EIO;
  1526. }
  1527. } else {
  1528. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1529. pfn, ret, page_count(page), page->flags);
  1530. }
  1531. return ret;
  1532. }
  1533. static int soft_offline_in_use_page(struct page *page, int flags)
  1534. {
  1535. int ret;
  1536. struct page *hpage = compound_head(page);
  1537. if (!PageHuge(page) && PageTransHuge(hpage)) {
  1538. lock_page(hpage);
  1539. if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
  1540. unlock_page(hpage);
  1541. if (!PageAnon(hpage))
  1542. pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
  1543. else
  1544. pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
  1545. put_hwpoison_page(hpage);
  1546. return -EBUSY;
  1547. }
  1548. unlock_page(hpage);
  1549. get_hwpoison_page(page);
  1550. put_hwpoison_page(hpage);
  1551. }
  1552. if (PageHuge(page))
  1553. ret = soft_offline_huge_page(page, flags);
  1554. else
  1555. ret = __soft_offline_page(page, flags);
  1556. return ret;
  1557. }
  1558. static void soft_offline_free_page(struct page *page)
  1559. {
  1560. if (PageHuge(page)) {
  1561. struct page *hpage = compound_head(page);
  1562. set_page_hwpoison_huge_page(hpage);
  1563. if (!dequeue_hwpoisoned_huge_page(hpage))
  1564. num_poisoned_pages_add(1 << compound_order(hpage));
  1565. } else {
  1566. if (!TestSetPageHWPoison(page))
  1567. num_poisoned_pages_inc();
  1568. }
  1569. }
  1570. /**
  1571. * soft_offline_page - Soft offline a page.
  1572. * @page: page to offline
  1573. * @flags: flags. Same as memory_failure().
  1574. *
  1575. * Returns 0 on success, otherwise negated errno.
  1576. *
  1577. * Soft offline a page, by migration or invalidation,
  1578. * without killing anything. This is for the case when
  1579. * a page is not corrupted yet (so it's still valid to access),
  1580. * but has had a number of corrected errors and is better taken
  1581. * out.
  1582. *
  1583. * The actual policy on when to do that is maintained by
  1584. * user space.
  1585. *
  1586. * This should never impact any application or cause data loss,
  1587. * however it might take some time.
  1588. *
  1589. * This is not a 100% solution for all memory, but tries to be
  1590. * ``good enough'' for the majority of memory.
  1591. */
  1592. int soft_offline_page(struct page *page, int flags)
  1593. {
  1594. int ret;
  1595. unsigned long pfn = page_to_pfn(page);
  1596. if (PageHWPoison(page)) {
  1597. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1598. if (flags & MF_COUNT_INCREASED)
  1599. put_hwpoison_page(page);
  1600. return -EBUSY;
  1601. }
  1602. get_online_mems();
  1603. ret = get_any_page(page, pfn, flags);
  1604. put_online_mems();
  1605. if (ret > 0)
  1606. ret = soft_offline_in_use_page(page, flags);
  1607. else if (ret == 0)
  1608. soft_offline_free_page(page);
  1609. return ret;
  1610. }