1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- /*
- * rational fractions
- *
- * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
- *
- * helper functions when coping with rational numbers
- */
- #include <linux/rational.h>
- #include <linux/compiler.h>
- #include <linux/export.h>
- /*
- * calculate best rational approximation for a given fraction
- * taking into account restricted register size, e.g. to find
- * appropriate values for a pll with 5 bit denominator and
- * 8 bit numerator register fields, trying to set up with a
- * frequency ratio of 3.1415, one would say:
- *
- * rational_best_approximation(31415, 10000,
- * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
- *
- * you may look at given_numerator as a fixed point number,
- * with the fractional part size described in given_denominator.
- *
- * for theoretical background, see:
- * http://en.wikipedia.org/wiki/Continued_fraction
- */
- void rational_best_approximation(
- unsigned long given_numerator, unsigned long given_denominator,
- unsigned long max_numerator, unsigned long max_denominator,
- unsigned long *best_numerator, unsigned long *best_denominator)
- {
- unsigned long n, d, n0, d0, n1, d1;
- n = given_numerator;
- d = given_denominator;
- n0 = d1 = 0;
- n1 = d0 = 1;
- for (;;) {
- unsigned long t, a;
- if ((n1 > max_numerator) || (d1 > max_denominator)) {
- n1 = n0;
- d1 = d0;
- break;
- }
- if (d == 0)
- break;
- t = d;
- a = n / d;
- d = n % d;
- n = t;
- t = n0 + a * n1;
- n0 = n1;
- n1 = t;
- t = d0 + a * d1;
- d0 = d1;
- d1 = t;
- }
- *best_numerator = n1;
- *best_denominator = d1;
- }
- EXPORT_SYMBOL(rational_best_approximation);
|