123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379 |
- /*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
- #include "sched.h"
- #include <linux/slab.h>
- #include <linux/irq_work.h>
- int sched_rr_timeslice = RR_TIMESLICE;
- static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
- struct rt_bandwidth def_rt_bandwidth;
- static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
- {
- struct rt_bandwidth *rt_b =
- container_of(timer, struct rt_bandwidth, rt_period_timer);
- int idle = 0;
- int overrun;
- raw_spin_lock(&rt_b->rt_runtime_lock);
- for (;;) {
- overrun = hrtimer_forward_now(timer, rt_b->rt_period);
- if (!overrun)
- break;
- raw_spin_unlock(&rt_b->rt_runtime_lock);
- idle = do_sched_rt_period_timer(rt_b, overrun);
- raw_spin_lock(&rt_b->rt_runtime_lock);
- }
- if (idle)
- rt_b->rt_period_active = 0;
- raw_spin_unlock(&rt_b->rt_runtime_lock);
- return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
- }
- void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
- {
- rt_b->rt_period = ns_to_ktime(period);
- rt_b->rt_runtime = runtime;
- raw_spin_lock_init(&rt_b->rt_runtime_lock);
- hrtimer_init(&rt_b->rt_period_timer,
- CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- rt_b->rt_period_timer.function = sched_rt_period_timer;
- }
- static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
- {
- if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
- return;
- raw_spin_lock(&rt_b->rt_runtime_lock);
- if (!rt_b->rt_period_active) {
- rt_b->rt_period_active = 1;
- /*
- * SCHED_DEADLINE updates the bandwidth, as a run away
- * RT task with a DL task could hog a CPU. But DL does
- * not reset the period. If a deadline task was running
- * without an RT task running, it can cause RT tasks to
- * throttle when they start up. Kick the timer right away
- * to update the period.
- */
- hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
- hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
- }
- raw_spin_unlock(&rt_b->rt_runtime_lock);
- }
- void init_rt_rq(struct rt_rq *rt_rq)
- {
- struct rt_prio_array *array;
- int i;
- array = &rt_rq->active;
- for (i = 0; i < MAX_RT_PRIO; i++) {
- INIT_LIST_HEAD(array->queue + i);
- __clear_bit(i, array->bitmap);
- }
- /* delimiter for bitsearch: */
- __set_bit(MAX_RT_PRIO, array->bitmap);
- #if defined CONFIG_SMP
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
- rt_rq->highest_prio.next = MAX_RT_PRIO;
- rt_rq->rt_nr_migratory = 0;
- rt_rq->overloaded = 0;
- plist_head_init(&rt_rq->pushable_tasks);
- #endif /* CONFIG_SMP */
- /* We start is dequeued state, because no RT tasks are queued */
- rt_rq->rt_queued = 0;
- rt_rq->rt_time = 0;
- rt_rq->rt_throttled = 0;
- rt_rq->rt_runtime = 0;
- raw_spin_lock_init(&rt_rq->rt_runtime_lock);
- }
- #ifdef CONFIG_RT_GROUP_SCHED
- static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
- {
- hrtimer_cancel(&rt_b->rt_period_timer);
- }
- #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
- static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
- {
- #ifdef CONFIG_SCHED_DEBUG
- WARN_ON_ONCE(!rt_entity_is_task(rt_se));
- #endif
- return container_of(rt_se, struct task_struct, rt);
- }
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return rt_rq->rq;
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- return rt_se->rt_rq;
- }
- static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = rt_se->rt_rq;
- return rt_rq->rq;
- }
- void free_rt_sched_group(struct task_group *tg)
- {
- int i;
- if (tg->rt_se)
- destroy_rt_bandwidth(&tg->rt_bandwidth);
- for_each_possible_cpu(i) {
- if (tg->rt_rq)
- kfree(tg->rt_rq[i]);
- if (tg->rt_se)
- kfree(tg->rt_se[i]);
- }
- kfree(tg->rt_rq);
- kfree(tg->rt_se);
- }
- void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
- struct sched_rt_entity *rt_se, int cpu,
- struct sched_rt_entity *parent)
- {
- struct rq *rq = cpu_rq(cpu);
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
- rt_rq->rt_nr_boosted = 0;
- rt_rq->rq = rq;
- rt_rq->tg = tg;
- tg->rt_rq[cpu] = rt_rq;
- tg->rt_se[cpu] = rt_se;
- if (!rt_se)
- return;
- if (!parent)
- rt_se->rt_rq = &rq->rt;
- else
- rt_se->rt_rq = parent->my_q;
- rt_se->my_q = rt_rq;
- rt_se->parent = parent;
- INIT_LIST_HEAD(&rt_se->run_list);
- }
- int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
- {
- struct rt_rq *rt_rq;
- struct sched_rt_entity *rt_se;
- int i;
- tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->rt_rq)
- goto err;
- tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->rt_se)
- goto err;
- init_rt_bandwidth(&tg->rt_bandwidth,
- ktime_to_ns(def_rt_bandwidth.rt_period), 0);
- for_each_possible_cpu(i) {
- rt_rq = kzalloc_node(sizeof(struct rt_rq),
- GFP_KERNEL, cpu_to_node(i));
- if (!rt_rq)
- goto err;
- rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
- GFP_KERNEL, cpu_to_node(i));
- if (!rt_se)
- goto err_free_rq;
- init_rt_rq(rt_rq);
- rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
- init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
- }
- return 1;
- err_free_rq:
- kfree(rt_rq);
- err:
- return 0;
- }
- #else /* CONFIG_RT_GROUP_SCHED */
- #define rt_entity_is_task(rt_se) (1)
- static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
- {
- return container_of(rt_se, struct task_struct, rt);
- }
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return container_of(rt_rq, struct rq, rt);
- }
- static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
- {
- struct task_struct *p = rt_task_of(rt_se);
- return task_rq(p);
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- struct rq *rq = rq_of_rt_se(rt_se);
- return &rq->rt;
- }
- void free_rt_sched_group(struct task_group *tg) { }
- int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
- {
- return 1;
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_SMP
- static void pull_rt_task(struct rq *this_rq);
- static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
- {
- /* Try to pull RT tasks here if we lower this rq's prio */
- return rq->rt.highest_prio.curr > prev->prio;
- }
- static inline int rt_overloaded(struct rq *rq)
- {
- return atomic_read(&rq->rd->rto_count);
- }
- static inline void rt_set_overload(struct rq *rq)
- {
- if (!rq->online)
- return;
- cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
- /*
- * Make sure the mask is visible before we set
- * the overload count. That is checked to determine
- * if we should look at the mask. It would be a shame
- * if we looked at the mask, but the mask was not
- * updated yet.
- *
- * Matched by the barrier in pull_rt_task().
- */
- smp_wmb();
- atomic_inc(&rq->rd->rto_count);
- }
- static inline void rt_clear_overload(struct rq *rq)
- {
- if (!rq->online)
- return;
- /* the order here really doesn't matter */
- atomic_dec(&rq->rd->rto_count);
- cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
- }
- static void update_rt_migration(struct rt_rq *rt_rq)
- {
- if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
- if (!rt_rq->overloaded) {
- rt_set_overload(rq_of_rt_rq(rt_rq));
- rt_rq->overloaded = 1;
- }
- } else if (rt_rq->overloaded) {
- rt_clear_overload(rq_of_rt_rq(rt_rq));
- rt_rq->overloaded = 0;
- }
- }
- static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- struct task_struct *p;
- if (!rt_entity_is_task(rt_se))
- return;
- p = rt_task_of(rt_se);
- rt_rq = &rq_of_rt_rq(rt_rq)->rt;
- rt_rq->rt_nr_total++;
- if (tsk_nr_cpus_allowed(p) > 1)
- rt_rq->rt_nr_migratory++;
- update_rt_migration(rt_rq);
- }
- static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- struct task_struct *p;
- if (!rt_entity_is_task(rt_se))
- return;
- p = rt_task_of(rt_se);
- rt_rq = &rq_of_rt_rq(rt_rq)->rt;
- rt_rq->rt_nr_total--;
- if (tsk_nr_cpus_allowed(p) > 1)
- rt_rq->rt_nr_migratory--;
- update_rt_migration(rt_rq);
- }
- static inline int has_pushable_tasks(struct rq *rq)
- {
- return !plist_head_empty(&rq->rt.pushable_tasks);
- }
- static DEFINE_PER_CPU(struct callback_head, rt_push_head);
- static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
- static void push_rt_tasks(struct rq *);
- static void pull_rt_task(struct rq *);
- static inline void queue_push_tasks(struct rq *rq)
- {
- if (!has_pushable_tasks(rq))
- return;
- queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
- }
- static inline void queue_pull_task(struct rq *rq)
- {
- queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
- }
- static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
- {
- plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
- plist_node_init(&p->pushable_tasks, p->prio);
- plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
- /* Update the highest prio pushable task */
- if (p->prio < rq->rt.highest_prio.next)
- rq->rt.highest_prio.next = p->prio;
- }
- static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
- {
- plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
- /* Update the new highest prio pushable task */
- if (has_pushable_tasks(rq)) {
- p = plist_first_entry(&rq->rt.pushable_tasks,
- struct task_struct, pushable_tasks);
- rq->rt.highest_prio.next = p->prio;
- } else
- rq->rt.highest_prio.next = MAX_RT_PRIO;
- }
- #else
- static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
- {
- }
- static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
- {
- }
- static inline
- void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- }
- static inline
- void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- }
- static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
- {
- return false;
- }
- static inline void pull_rt_task(struct rq *this_rq)
- {
- }
- static inline void queue_push_tasks(struct rq *rq)
- {
- }
- #endif /* CONFIG_SMP */
- static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
- static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
- static inline int on_rt_rq(struct sched_rt_entity *rt_se)
- {
- return rt_se->on_rq;
- }
- #ifdef CONFIG_RT_GROUP_SCHED
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- if (!rt_rq->tg)
- return RUNTIME_INF;
- return rt_rq->rt_runtime;
- }
- static inline u64 sched_rt_period(struct rt_rq *rt_rq)
- {
- return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
- }
- typedef struct task_group *rt_rq_iter_t;
- static inline struct task_group *next_task_group(struct task_group *tg)
- {
- do {
- tg = list_entry_rcu(tg->list.next,
- typeof(struct task_group), list);
- } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
- if (&tg->list == &task_groups)
- tg = NULL;
- return tg;
- }
- #define for_each_rt_rq(rt_rq, iter, rq) \
- for (iter = container_of(&task_groups, typeof(*iter), list); \
- (iter = next_task_group(iter)) && \
- (rt_rq = iter->rt_rq[cpu_of(rq)]);)
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = rt_se->parent)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return rt_se->my_q;
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
- static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
- struct rq *rq = rq_of_rt_rq(rt_rq);
- struct sched_rt_entity *rt_se;
- int cpu = cpu_of(rq);
- rt_se = rt_rq->tg->rt_se[cpu];
- if (rt_rq->rt_nr_running) {
- if (!rt_se)
- enqueue_top_rt_rq(rt_rq);
- else if (!on_rt_rq(rt_se))
- enqueue_rt_entity(rt_se, 0);
- if (rt_rq->highest_prio.curr < curr->prio)
- resched_curr(rq);
- }
- }
- static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- struct sched_rt_entity *rt_se;
- int cpu = cpu_of(rq_of_rt_rq(rt_rq));
- rt_se = rt_rq->tg->rt_se[cpu];
- if (!rt_se)
- dequeue_top_rt_rq(rt_rq);
- else if (on_rt_rq(rt_se))
- dequeue_rt_entity(rt_se, 0);
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
- }
- static int rt_se_boosted(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- struct task_struct *p;
- if (rt_rq)
- return !!rt_rq->rt_nr_boosted;
- p = rt_task_of(rt_se);
- return p->prio != p->normal_prio;
- }
- #ifdef CONFIG_SMP
- static inline const struct cpumask *sched_rt_period_mask(void)
- {
- return this_rq()->rd->span;
- }
- #else
- static inline const struct cpumask *sched_rt_period_mask(void)
- {
- return cpu_online_mask;
- }
- #endif
- static inline
- struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
- {
- return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
- }
- static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
- {
- return &rt_rq->tg->rt_bandwidth;
- }
- #else /* !CONFIG_RT_GROUP_SCHED */
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_runtime;
- }
- static inline u64 sched_rt_period(struct rt_rq *rt_rq)
- {
- return ktime_to_ns(def_rt_bandwidth.rt_period);
- }
- typedef struct rt_rq *rt_rq_iter_t;
- #define for_each_rt_rq(rt_rq, iter, rq) \
- for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = NULL)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return NULL;
- }
- static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- if (!rt_rq->rt_nr_running)
- return;
- enqueue_top_rt_rq(rt_rq);
- resched_curr(rq);
- }
- static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- dequeue_top_rt_rq(rt_rq);
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled;
- }
- static inline const struct cpumask *sched_rt_period_mask(void)
- {
- return cpu_online_mask;
- }
- static inline
- struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
- {
- return &cpu_rq(cpu)->rt;
- }
- static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
- {
- return &def_rt_bandwidth;
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
- {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- return (hrtimer_active(&rt_b->rt_period_timer) ||
- rt_rq->rt_time < rt_b->rt_runtime);
- }
- #ifdef CONFIG_SMP
- /*
- * We ran out of runtime, see if we can borrow some from our neighbours.
- */
- static void do_balance_runtime(struct rt_rq *rt_rq)
- {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
- int i, weight;
- u64 rt_period;
- weight = cpumask_weight(rd->span);
- raw_spin_lock(&rt_b->rt_runtime_lock);
- rt_period = ktime_to_ns(rt_b->rt_period);
- for_each_cpu(i, rd->span) {
- struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
- s64 diff;
- if (iter == rt_rq)
- continue;
- raw_spin_lock(&iter->rt_runtime_lock);
- /*
- * Either all rqs have inf runtime and there's nothing to steal
- * or __disable_runtime() below sets a specific rq to inf to
- * indicate its been disabled and disalow stealing.
- */
- if (iter->rt_runtime == RUNTIME_INF)
- goto next;
- /*
- * From runqueues with spare time, take 1/n part of their
- * spare time, but no more than our period.
- */
- diff = iter->rt_runtime - iter->rt_time;
- if (diff > 0) {
- diff = div_u64((u64)diff, weight);
- if (rt_rq->rt_runtime + diff > rt_period)
- diff = rt_period - rt_rq->rt_runtime;
- iter->rt_runtime -= diff;
- rt_rq->rt_runtime += diff;
- if (rt_rq->rt_runtime == rt_period) {
- raw_spin_unlock(&iter->rt_runtime_lock);
- break;
- }
- }
- next:
- raw_spin_unlock(&iter->rt_runtime_lock);
- }
- raw_spin_unlock(&rt_b->rt_runtime_lock);
- }
- /*
- * Ensure this RQ takes back all the runtime it lend to its neighbours.
- */
- static void __disable_runtime(struct rq *rq)
- {
- struct root_domain *rd = rq->rd;
- rt_rq_iter_t iter;
- struct rt_rq *rt_rq;
- if (unlikely(!scheduler_running))
- return;
- for_each_rt_rq(rt_rq, iter, rq) {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- s64 want;
- int i;
- raw_spin_lock(&rt_b->rt_runtime_lock);
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- /*
- * Either we're all inf and nobody needs to borrow, or we're
- * already disabled and thus have nothing to do, or we have
- * exactly the right amount of runtime to take out.
- */
- if (rt_rq->rt_runtime == RUNTIME_INF ||
- rt_rq->rt_runtime == rt_b->rt_runtime)
- goto balanced;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- /*
- * Calculate the difference between what we started out with
- * and what we current have, that's the amount of runtime
- * we lend and now have to reclaim.
- */
- want = rt_b->rt_runtime - rt_rq->rt_runtime;
- /*
- * Greedy reclaim, take back as much as we can.
- */
- for_each_cpu(i, rd->span) {
- struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
- s64 diff;
- /*
- * Can't reclaim from ourselves or disabled runqueues.
- */
- if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
- continue;
- raw_spin_lock(&iter->rt_runtime_lock);
- if (want > 0) {
- diff = min_t(s64, iter->rt_runtime, want);
- iter->rt_runtime -= diff;
- want -= diff;
- } else {
- iter->rt_runtime -= want;
- want -= want;
- }
- raw_spin_unlock(&iter->rt_runtime_lock);
- if (!want)
- break;
- }
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- /*
- * We cannot be left wanting - that would mean some runtime
- * leaked out of the system.
- */
- BUG_ON(want);
- balanced:
- /*
- * Disable all the borrow logic by pretending we have inf
- * runtime - in which case borrowing doesn't make sense.
- */
- rt_rq->rt_runtime = RUNTIME_INF;
- rt_rq->rt_throttled = 0;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- raw_spin_unlock(&rt_b->rt_runtime_lock);
- /* Make rt_rq available for pick_next_task() */
- sched_rt_rq_enqueue(rt_rq);
- }
- }
- static void __enable_runtime(struct rq *rq)
- {
- rt_rq_iter_t iter;
- struct rt_rq *rt_rq;
- if (unlikely(!scheduler_running))
- return;
- /*
- * Reset each runqueue's bandwidth settings
- */
- for_each_rt_rq(rt_rq, iter, rq) {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- raw_spin_lock(&rt_b->rt_runtime_lock);
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = rt_b->rt_runtime;
- rt_rq->rt_time = 0;
- rt_rq->rt_throttled = 0;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- raw_spin_unlock(&rt_b->rt_runtime_lock);
- }
- }
- static void balance_runtime(struct rt_rq *rt_rq)
- {
- if (!sched_feat(RT_RUNTIME_SHARE))
- return;
- if (rt_rq->rt_time > rt_rq->rt_runtime) {
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- do_balance_runtime(rt_rq);
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- }
- }
- #else /* !CONFIG_SMP */
- static inline void balance_runtime(struct rt_rq *rt_rq) {}
- #endif /* CONFIG_SMP */
- static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
- {
- int i, idle = 1, throttled = 0;
- const struct cpumask *span;
- span = sched_rt_period_mask();
- #ifdef CONFIG_RT_GROUP_SCHED
- /*
- * FIXME: isolated CPUs should really leave the root task group,
- * whether they are isolcpus or were isolated via cpusets, lest
- * the timer run on a CPU which does not service all runqueues,
- * potentially leaving other CPUs indefinitely throttled. If
- * isolation is really required, the user will turn the throttle
- * off to kill the perturbations it causes anyway. Meanwhile,
- * this maintains functionality for boot and/or troubleshooting.
- */
- if (rt_b == &root_task_group.rt_bandwidth)
- span = cpu_online_mask;
- #endif
- for_each_cpu(i, span) {
- int enqueue = 0;
- struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
- struct rq *rq = rq_of_rt_rq(rt_rq);
- raw_spin_lock(&rq->lock);
- update_rq_clock(rq);
- if (rt_rq->rt_time) {
- u64 runtime;
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- if (rt_rq->rt_throttled)
- balance_runtime(rt_rq);
- runtime = rt_rq->rt_runtime;
- rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
- if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
- rt_rq->rt_throttled = 0;
- enqueue = 1;
- /*
- * When we're idle and a woken (rt) task is
- * throttled check_preempt_curr() will set
- * skip_update and the time between the wakeup
- * and this unthrottle will get accounted as
- * 'runtime'.
- */
- if (rt_rq->rt_nr_running && rq->curr == rq->idle)
- rq_clock_skip_update(rq, false);
- }
- if (rt_rq->rt_time || rt_rq->rt_nr_running)
- idle = 0;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- } else if (rt_rq->rt_nr_running) {
- idle = 0;
- if (!rt_rq_throttled(rt_rq))
- enqueue = 1;
- }
- if (rt_rq->rt_throttled)
- throttled = 1;
- if (enqueue)
- sched_rt_rq_enqueue(rt_rq);
- raw_spin_unlock(&rq->lock);
- }
- if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
- return 1;
- return idle;
- }
- static inline int rt_se_prio(struct sched_rt_entity *rt_se)
- {
- #ifdef CONFIG_RT_GROUP_SCHED
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- if (rt_rq)
- return rt_rq->highest_prio.curr;
- #endif
- return rt_task_of(rt_se)->prio;
- }
- static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
- {
- u64 runtime = sched_rt_runtime(rt_rq);
- if (rt_rq->rt_throttled)
- return rt_rq_throttled(rt_rq);
- if (runtime >= sched_rt_period(rt_rq))
- return 0;
- balance_runtime(rt_rq);
- runtime = sched_rt_runtime(rt_rq);
- if (runtime == RUNTIME_INF)
- return 0;
- if (rt_rq->rt_time > runtime) {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- /*
- * Don't actually throttle groups that have no runtime assigned
- * but accrue some time due to boosting.
- */
- if (likely(rt_b->rt_runtime)) {
- rt_rq->rt_throttled = 1;
- printk_deferred_once("sched: RT throttling activated\n");
- } else {
- /*
- * In case we did anyway, make it go away,
- * replenishment is a joke, since it will replenish us
- * with exactly 0 ns.
- */
- rt_rq->rt_time = 0;
- }
- if (rt_rq_throttled(rt_rq)) {
- sched_rt_rq_dequeue(rt_rq);
- return 1;
- }
- }
- return 0;
- }
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static void update_curr_rt(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- struct sched_rt_entity *rt_se = &curr->rt;
- u64 delta_exec;
- if (curr->sched_class != &rt_sched_class)
- return;
- delta_exec = rq_clock_task(rq) - curr->se.exec_start;
- if (unlikely((s64)delta_exec <= 0))
- return;
- /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
- cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
- schedstat_set(curr->se.statistics.exec_max,
- max(curr->se.statistics.exec_max, delta_exec));
- curr->se.sum_exec_runtime += delta_exec;
- account_group_exec_runtime(curr, delta_exec);
- curr->se.exec_start = rq_clock_task(rq);
- cpuacct_charge(curr, delta_exec);
- sched_rt_avg_update(rq, delta_exec);
- if (!rt_bandwidth_enabled())
- return;
- for_each_sched_rt_entity(rt_se) {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_time += delta_exec;
- if (sched_rt_runtime_exceeded(rt_rq))
- resched_curr(rq);
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- }
- }
- }
- static void
- dequeue_top_rt_rq(struct rt_rq *rt_rq)
- {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- BUG_ON(&rq->rt != rt_rq);
- if (!rt_rq->rt_queued)
- return;
- BUG_ON(!rq->nr_running);
- sub_nr_running(rq, rt_rq->rt_nr_running);
- rt_rq->rt_queued = 0;
- }
- static void
- enqueue_top_rt_rq(struct rt_rq *rt_rq)
- {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- BUG_ON(&rq->rt != rt_rq);
- if (rt_rq->rt_queued)
- return;
- if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
- return;
- add_nr_running(rq, rt_rq->rt_nr_running);
- rt_rq->rt_queued = 1;
- }
- #if defined CONFIG_SMP
- static void
- inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
- {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- #ifdef CONFIG_RT_GROUP_SCHED
- /*
- * Change rq's cpupri only if rt_rq is the top queue.
- */
- if (&rq->rt != rt_rq)
- return;
- #endif
- if (rq->online && prio < prev_prio)
- cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
- }
- static void
- dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
- {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- #ifdef CONFIG_RT_GROUP_SCHED
- /*
- * Change rq's cpupri only if rt_rq is the top queue.
- */
- if (&rq->rt != rt_rq)
- return;
- #endif
- if (rq->online && rt_rq->highest_prio.curr != prev_prio)
- cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
- }
- #else /* CONFIG_SMP */
- static inline
- void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
- static inline
- void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
- #endif /* CONFIG_SMP */
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- static void
- inc_rt_prio(struct rt_rq *rt_rq, int prio)
- {
- int prev_prio = rt_rq->highest_prio.curr;
- if (prio < prev_prio)
- rt_rq->highest_prio.curr = prio;
- inc_rt_prio_smp(rt_rq, prio, prev_prio);
- }
- static void
- dec_rt_prio(struct rt_rq *rt_rq, int prio)
- {
- int prev_prio = rt_rq->highest_prio.curr;
- if (rt_rq->rt_nr_running) {
- WARN_ON(prio < prev_prio);
- /*
- * This may have been our highest task, and therefore
- * we may have some recomputation to do
- */
- if (prio == prev_prio) {
- struct rt_prio_array *array = &rt_rq->active;
- rt_rq->highest_prio.curr =
- sched_find_first_bit(array->bitmap);
- }
- } else
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
- dec_rt_prio_smp(rt_rq, prio, prev_prio);
- }
- #else
- static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
- static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
- #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- static void
- inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted++;
- if (rt_rq->tg)
- start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
- }
- static void
- dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted--;
- WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
- }
- #else /* CONFIG_RT_GROUP_SCHED */
- static void
- inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- start_rt_bandwidth(&def_rt_bandwidth);
- }
- static inline
- void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
- #endif /* CONFIG_RT_GROUP_SCHED */
- static inline
- unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *group_rq = group_rt_rq(rt_se);
- if (group_rq)
- return group_rq->rt_nr_running;
- else
- return 1;
- }
- static inline
- unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *group_rq = group_rt_rq(rt_se);
- struct task_struct *tsk;
- if (group_rq)
- return group_rq->rr_nr_running;
- tsk = rt_task_of(rt_se);
- return (tsk->policy == SCHED_RR) ? 1 : 0;
- }
- static inline
- void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- int prio = rt_se_prio(rt_se);
- WARN_ON(!rt_prio(prio));
- rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
- rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
- inc_rt_prio(rt_rq, prio);
- inc_rt_migration(rt_se, rt_rq);
- inc_rt_group(rt_se, rt_rq);
- }
- static inline
- void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
- WARN_ON(!rt_rq->rt_nr_running);
- rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
- rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
- dec_rt_prio(rt_rq, rt_se_prio(rt_se));
- dec_rt_migration(rt_se, rt_rq);
- dec_rt_group(rt_se, rt_rq);
- }
- /*
- * Change rt_se->run_list location unless SAVE && !MOVE
- *
- * assumes ENQUEUE/DEQUEUE flags match
- */
- static inline bool move_entity(unsigned int flags)
- {
- if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
- return false;
- return true;
- }
- static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
- {
- list_del_init(&rt_se->run_list);
- if (list_empty(array->queue + rt_se_prio(rt_se)))
- __clear_bit(rt_se_prio(rt_se), array->bitmap);
- rt_se->on_list = 0;
- }
- static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- struct rt_rq *group_rq = group_rt_rq(rt_se);
- struct list_head *queue = array->queue + rt_se_prio(rt_se);
- /*
- * Don't enqueue the group if its throttled, or when empty.
- * The latter is a consequence of the former when a child group
- * get throttled and the current group doesn't have any other
- * active members.
- */
- if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
- if (rt_se->on_list)
- __delist_rt_entity(rt_se, array);
- return;
- }
- if (move_entity(flags)) {
- WARN_ON_ONCE(rt_se->on_list);
- if (flags & ENQUEUE_HEAD)
- list_add(&rt_se->run_list, queue);
- else
- list_add_tail(&rt_se->run_list, queue);
- __set_bit(rt_se_prio(rt_se), array->bitmap);
- rt_se->on_list = 1;
- }
- rt_se->on_rq = 1;
- inc_rt_tasks(rt_se, rt_rq);
- }
- static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- if (move_entity(flags)) {
- WARN_ON_ONCE(!rt_se->on_list);
- __delist_rt_entity(rt_se, array);
- }
- rt_se->on_rq = 0;
- dec_rt_tasks(rt_se, rt_rq);
- }
- /*
- * Because the prio of an upper entry depends on the lower
- * entries, we must remove entries top - down.
- */
- static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
- {
- struct sched_rt_entity *back = NULL;
- for_each_sched_rt_entity(rt_se) {
- rt_se->back = back;
- back = rt_se;
- }
- dequeue_top_rt_rq(rt_rq_of_se(back));
- for (rt_se = back; rt_se; rt_se = rt_se->back) {
- if (on_rt_rq(rt_se))
- __dequeue_rt_entity(rt_se, flags);
- }
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
- {
- struct rq *rq = rq_of_rt_se(rt_se);
- dequeue_rt_stack(rt_se, flags);
- for_each_sched_rt_entity(rt_se)
- __enqueue_rt_entity(rt_se, flags);
- enqueue_top_rt_rq(&rq->rt);
- }
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
- {
- struct rq *rq = rq_of_rt_se(rt_se);
- dequeue_rt_stack(rt_se, flags);
- for_each_sched_rt_entity(rt_se) {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- if (rt_rq && rt_rq->rt_nr_running)
- __enqueue_rt_entity(rt_se, flags);
- }
- enqueue_top_rt_rq(&rq->rt);
- }
- /*
- * Adding/removing a task to/from a priority array:
- */
- static void
- enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- if (flags & ENQUEUE_WAKEUP)
- rt_se->timeout = 0;
- enqueue_rt_entity(rt_se, flags);
- if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
- enqueue_pushable_task(rq, p);
- }
- static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- update_curr_rt(rq);
- dequeue_rt_entity(rt_se, flags);
- dequeue_pushable_task(rq, p);
- }
- /*
- * Put task to the head or the end of the run list without the overhead of
- * dequeue followed by enqueue.
- */
- static void
- requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
- {
- if (on_rt_rq(rt_se)) {
- struct rt_prio_array *array = &rt_rq->active;
- struct list_head *queue = array->queue + rt_se_prio(rt_se);
- if (head)
- list_move(&rt_se->run_list, queue);
- else
- list_move_tail(&rt_se->run_list, queue);
- }
- }
- static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- struct rt_rq *rt_rq;
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- requeue_rt_entity(rt_rq, rt_se, head);
- }
- }
- static void yield_task_rt(struct rq *rq)
- {
- requeue_task_rt(rq, rq->curr, 0);
- }
- #ifdef CONFIG_SMP
- static int find_lowest_rq(struct task_struct *task);
- static int
- select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
- {
- struct task_struct *curr;
- struct rq *rq;
- /* For anything but wake ups, just return the task_cpu */
- if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
- goto out;
- rq = cpu_rq(cpu);
- rcu_read_lock();
- curr = READ_ONCE(rq->curr); /* unlocked access */
- /*
- * If the current task on @p's runqueue is an RT task, then
- * try to see if we can wake this RT task up on another
- * runqueue. Otherwise simply start this RT task
- * on its current runqueue.
- *
- * We want to avoid overloading runqueues. If the woken
- * task is a higher priority, then it will stay on this CPU
- * and the lower prio task should be moved to another CPU.
- * Even though this will probably make the lower prio task
- * lose its cache, we do not want to bounce a higher task
- * around just because it gave up its CPU, perhaps for a
- * lock?
- *
- * For equal prio tasks, we just let the scheduler sort it out.
- *
- * Otherwise, just let it ride on the affined RQ and the
- * post-schedule router will push the preempted task away
- *
- * This test is optimistic, if we get it wrong the load-balancer
- * will have to sort it out.
- */
- if (curr && unlikely(rt_task(curr)) &&
- (tsk_nr_cpus_allowed(curr) < 2 ||
- curr->prio <= p->prio)) {
- int target = find_lowest_rq(p);
- /*
- * Don't bother moving it if the destination CPU is
- * not running a lower priority task.
- */
- if (target != -1 &&
- p->prio < cpu_rq(target)->rt.highest_prio.curr)
- cpu = target;
- }
- rcu_read_unlock();
- out:
- return cpu;
- }
- static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
- {
- /*
- * Current can't be migrated, useless to reschedule,
- * let's hope p can move out.
- */
- if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
- !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
- return;
- /*
- * p is migratable, so let's not schedule it and
- * see if it is pushed or pulled somewhere else.
- */
- if (tsk_nr_cpus_allowed(p) != 1
- && cpupri_find(&rq->rd->cpupri, p, NULL))
- return;
- /*
- * There appears to be other cpus that can accept
- * current and none to run 'p', so lets reschedule
- * to try and push current away:
- */
- requeue_task_rt(rq, p, 1);
- resched_curr(rq);
- }
- #endif /* CONFIG_SMP */
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
- {
- if (p->prio < rq->curr->prio) {
- resched_curr(rq);
- return;
- }
- #ifdef CONFIG_SMP
- /*
- * If:
- *
- * - the newly woken task is of equal priority to the current task
- * - the newly woken task is non-migratable while current is migratable
- * - current will be preempted on the next reschedule
- *
- * we should check to see if current can readily move to a different
- * cpu. If so, we will reschedule to allow the push logic to try
- * to move current somewhere else, making room for our non-migratable
- * task.
- */
- if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
- check_preempt_equal_prio(rq, p);
- #endif
- }
- static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
- struct rt_rq *rt_rq)
- {
- struct rt_prio_array *array = &rt_rq->active;
- struct sched_rt_entity *next = NULL;
- struct list_head *queue;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- BUG_ON(idx >= MAX_RT_PRIO);
- queue = array->queue + idx;
- next = list_entry(queue->next, struct sched_rt_entity, run_list);
- return next;
- }
- static struct task_struct *_pick_next_task_rt(struct rq *rq)
- {
- struct sched_rt_entity *rt_se;
- struct task_struct *p;
- struct rt_rq *rt_rq = &rq->rt;
- do {
- rt_se = pick_next_rt_entity(rq, rt_rq);
- BUG_ON(!rt_se);
- rt_rq = group_rt_rq(rt_se);
- } while (rt_rq);
- p = rt_task_of(rt_se);
- p->se.exec_start = rq_clock_task(rq);
- return p;
- }
- static struct task_struct *
- pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
- {
- struct task_struct *p;
- struct rt_rq *rt_rq = &rq->rt;
- if (need_pull_rt_task(rq, prev)) {
- /*
- * This is OK, because current is on_cpu, which avoids it being
- * picked for load-balance and preemption/IRQs are still
- * disabled avoiding further scheduler activity on it and we're
- * being very careful to re-start the picking loop.
- */
- lockdep_unpin_lock(&rq->lock, cookie);
- pull_rt_task(rq);
- lockdep_repin_lock(&rq->lock, cookie);
- /*
- * pull_rt_task() can drop (and re-acquire) rq->lock; this
- * means a dl or stop task can slip in, in which case we need
- * to re-start task selection.
- */
- if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
- rq->dl.dl_nr_running))
- return RETRY_TASK;
- }
- /*
- * We may dequeue prev's rt_rq in put_prev_task().
- * So, we update time before rt_nr_running check.
- */
- if (prev->sched_class == &rt_sched_class)
- update_curr_rt(rq);
- if (!rt_rq->rt_queued)
- return NULL;
- put_prev_task(rq, prev);
- p = _pick_next_task_rt(rq);
- /* The running task is never eligible for pushing */
- dequeue_pushable_task(rq, p);
- queue_push_tasks(rq);
- return p;
- }
- static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
- {
- update_curr_rt(rq);
- /*
- * The previous task needs to be made eligible for pushing
- * if it is still active
- */
- if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
- enqueue_pushable_task(rq, p);
- }
- #ifdef CONFIG_SMP
- /* Only try algorithms three times */
- #define RT_MAX_TRIES 3
- static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
- {
- if (!task_running(rq, p) &&
- cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
- return 1;
- return 0;
- }
- /*
- * Return the highest pushable rq's task, which is suitable to be executed
- * on the cpu, NULL otherwise
- */
- static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
- {
- struct plist_head *head = &rq->rt.pushable_tasks;
- struct task_struct *p;
- if (!has_pushable_tasks(rq))
- return NULL;
- plist_for_each_entry(p, head, pushable_tasks) {
- if (pick_rt_task(rq, p, cpu))
- return p;
- }
- return NULL;
- }
- static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
- static int find_lowest_rq(struct task_struct *task)
- {
- struct sched_domain *sd;
- struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
- int this_cpu = smp_processor_id();
- int cpu = task_cpu(task);
- /* Make sure the mask is initialized first */
- if (unlikely(!lowest_mask))
- return -1;
- if (tsk_nr_cpus_allowed(task) == 1)
- return -1; /* No other targets possible */
- if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
- return -1; /* No targets found */
- /*
- * At this point we have built a mask of cpus representing the
- * lowest priority tasks in the system. Now we want to elect
- * the best one based on our affinity and topology.
- *
- * We prioritize the last cpu that the task executed on since
- * it is most likely cache-hot in that location.
- */
- if (cpumask_test_cpu(cpu, lowest_mask))
- return cpu;
- /*
- * Otherwise, we consult the sched_domains span maps to figure
- * out which cpu is logically closest to our hot cache data.
- */
- if (!cpumask_test_cpu(this_cpu, lowest_mask))
- this_cpu = -1; /* Skip this_cpu opt if not among lowest */
- rcu_read_lock();
- for_each_domain(cpu, sd) {
- if (sd->flags & SD_WAKE_AFFINE) {
- int best_cpu;
- /*
- * "this_cpu" is cheaper to preempt than a
- * remote processor.
- */
- if (this_cpu != -1 &&
- cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
- rcu_read_unlock();
- return this_cpu;
- }
- best_cpu = cpumask_first_and(lowest_mask,
- sched_domain_span(sd));
- if (best_cpu < nr_cpu_ids) {
- rcu_read_unlock();
- return best_cpu;
- }
- }
- }
- rcu_read_unlock();
- /*
- * And finally, if there were no matches within the domains
- * just give the caller *something* to work with from the compatible
- * locations.
- */
- if (this_cpu != -1)
- return this_cpu;
- cpu = cpumask_any(lowest_mask);
- if (cpu < nr_cpu_ids)
- return cpu;
- return -1;
- }
- /* Will lock the rq it finds */
- static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
- {
- struct rq *lowest_rq = NULL;
- int tries;
- int cpu;
- for (tries = 0; tries < RT_MAX_TRIES; tries++) {
- cpu = find_lowest_rq(task);
- if ((cpu == -1) || (cpu == rq->cpu))
- break;
- lowest_rq = cpu_rq(cpu);
- if (lowest_rq->rt.highest_prio.curr <= task->prio) {
- /*
- * Target rq has tasks of equal or higher priority,
- * retrying does not release any lock and is unlikely
- * to yield a different result.
- */
- lowest_rq = NULL;
- break;
- }
- /* if the prio of this runqueue changed, try again */
- if (double_lock_balance(rq, lowest_rq)) {
- /*
- * We had to unlock the run queue. In
- * the mean time, task could have
- * migrated already or had its affinity changed.
- * Also make sure that it wasn't scheduled on its rq.
- */
- if (unlikely(task_rq(task) != rq ||
- !cpumask_test_cpu(lowest_rq->cpu,
- tsk_cpus_allowed(task)) ||
- task_running(rq, task) ||
- !rt_task(task) ||
- !task_on_rq_queued(task))) {
- double_unlock_balance(rq, lowest_rq);
- lowest_rq = NULL;
- break;
- }
- }
- /* If this rq is still suitable use it. */
- if (lowest_rq->rt.highest_prio.curr > task->prio)
- break;
- /* try again */
- double_unlock_balance(rq, lowest_rq);
- lowest_rq = NULL;
- }
- return lowest_rq;
- }
- static struct task_struct *pick_next_pushable_task(struct rq *rq)
- {
- struct task_struct *p;
- if (!has_pushable_tasks(rq))
- return NULL;
- p = plist_first_entry(&rq->rt.pushable_tasks,
- struct task_struct, pushable_tasks);
- BUG_ON(rq->cpu != task_cpu(p));
- BUG_ON(task_current(rq, p));
- BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
- BUG_ON(!task_on_rq_queued(p));
- BUG_ON(!rt_task(p));
- return p;
- }
- /*
- * If the current CPU has more than one RT task, see if the non
- * running task can migrate over to a CPU that is running a task
- * of lesser priority.
- */
- static int push_rt_task(struct rq *rq)
- {
- struct task_struct *next_task;
- struct rq *lowest_rq;
- int ret = 0;
- if (!rq->rt.overloaded)
- return 0;
- next_task = pick_next_pushable_task(rq);
- if (!next_task)
- return 0;
- retry:
- if (unlikely(next_task == rq->curr)) {
- WARN_ON(1);
- return 0;
- }
- /*
- * It's possible that the next_task slipped in of
- * higher priority than current. If that's the case
- * just reschedule current.
- */
- if (unlikely(next_task->prio < rq->curr->prio)) {
- resched_curr(rq);
- return 0;
- }
- /* We might release rq lock */
- get_task_struct(next_task);
- /* find_lock_lowest_rq locks the rq if found */
- lowest_rq = find_lock_lowest_rq(next_task, rq);
- if (!lowest_rq) {
- struct task_struct *task;
- /*
- * find_lock_lowest_rq releases rq->lock
- * so it is possible that next_task has migrated.
- *
- * We need to make sure that the task is still on the same
- * run-queue and is also still the next task eligible for
- * pushing.
- */
- task = pick_next_pushable_task(rq);
- if (task_cpu(next_task) == rq->cpu && task == next_task) {
- /*
- * The task hasn't migrated, and is still the next
- * eligible task, but we failed to find a run-queue
- * to push it to. Do not retry in this case, since
- * other cpus will pull from us when ready.
- */
- goto out;
- }
- if (!task)
- /* No more tasks, just exit */
- goto out;
- /*
- * Something has shifted, try again.
- */
- put_task_struct(next_task);
- next_task = task;
- goto retry;
- }
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
- ret = 1;
- resched_curr(lowest_rq);
- double_unlock_balance(rq, lowest_rq);
- out:
- put_task_struct(next_task);
- return ret;
- }
- static void push_rt_tasks(struct rq *rq)
- {
- /* push_rt_task will return true if it moved an RT */
- while (push_rt_task(rq))
- ;
- }
- #ifdef HAVE_RT_PUSH_IPI
- /*
- * When a high priority task schedules out from a CPU and a lower priority
- * task is scheduled in, a check is made to see if there's any RT tasks
- * on other CPUs that are waiting to run because a higher priority RT task
- * is currently running on its CPU. In this case, the CPU with multiple RT
- * tasks queued on it (overloaded) needs to be notified that a CPU has opened
- * up that may be able to run one of its non-running queued RT tasks.
- *
- * All CPUs with overloaded RT tasks need to be notified as there is currently
- * no way to know which of these CPUs have the highest priority task waiting
- * to run. Instead of trying to take a spinlock on each of these CPUs,
- * which has shown to cause large latency when done on machines with many
- * CPUs, sending an IPI to the CPUs to have them push off the overloaded
- * RT tasks waiting to run.
- *
- * Just sending an IPI to each of the CPUs is also an issue, as on large
- * count CPU machines, this can cause an IPI storm on a CPU, especially
- * if its the only CPU with multiple RT tasks queued, and a large number
- * of CPUs scheduling a lower priority task at the same time.
- *
- * Each root domain has its own irq work function that can iterate over
- * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
- * tassk must be checked if there's one or many CPUs that are lowering
- * their priority, there's a single irq work iterator that will try to
- * push off RT tasks that are waiting to run.
- *
- * When a CPU schedules a lower priority task, it will kick off the
- * irq work iterator that will jump to each CPU with overloaded RT tasks.
- * As it only takes the first CPU that schedules a lower priority task
- * to start the process, the rto_start variable is incremented and if
- * the atomic result is one, then that CPU will try to take the rto_lock.
- * This prevents high contention on the lock as the process handles all
- * CPUs scheduling lower priority tasks.
- *
- * All CPUs that are scheduling a lower priority task will increment the
- * rt_loop_next variable. This will make sure that the irq work iterator
- * checks all RT overloaded CPUs whenever a CPU schedules a new lower
- * priority task, even if the iterator is in the middle of a scan. Incrementing
- * the rt_loop_next will cause the iterator to perform another scan.
- *
- */
- static int rto_next_cpu(struct root_domain *rd)
- {
- int next;
- int cpu;
- /*
- * When starting the IPI RT pushing, the rto_cpu is set to -1,
- * rt_next_cpu() will simply return the first CPU found in
- * the rto_mask.
- *
- * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
- * will return the next CPU found in the rto_mask.
- *
- * If there are no more CPUs left in the rto_mask, then a check is made
- * against rto_loop and rto_loop_next. rto_loop is only updated with
- * the rto_lock held, but any CPU may increment the rto_loop_next
- * without any locking.
- */
- for (;;) {
- /* When rto_cpu is -1 this acts like cpumask_first() */
- cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
- rd->rto_cpu = cpu;
- if (cpu < nr_cpu_ids)
- return cpu;
- rd->rto_cpu = -1;
- /*
- * ACQUIRE ensures we see the @rto_mask changes
- * made prior to the @next value observed.
- *
- * Matches WMB in rt_set_overload().
- */
- next = atomic_read_acquire(&rd->rto_loop_next);
- if (rd->rto_loop == next)
- break;
- rd->rto_loop = next;
- }
- return -1;
- }
- static inline bool rto_start_trylock(atomic_t *v)
- {
- return !atomic_cmpxchg_acquire(v, 0, 1);
- }
- static inline void rto_start_unlock(atomic_t *v)
- {
- atomic_set_release(v, 0);
- }
- static void tell_cpu_to_push(struct rq *rq)
- {
- int cpu = -1;
- /* Keep the loop going if the IPI is currently active */
- atomic_inc(&rq->rd->rto_loop_next);
- /* Only one CPU can initiate a loop at a time */
- if (!rto_start_trylock(&rq->rd->rto_loop_start))
- return;
- raw_spin_lock(&rq->rd->rto_lock);
- /*
- * The rto_cpu is updated under the lock, if it has a valid cpu
- * then the IPI is still running and will continue due to the
- * update to loop_next, and nothing needs to be done here.
- * Otherwise it is finishing up and an ipi needs to be sent.
- */
- if (rq->rd->rto_cpu < 0)
- cpu = rto_next_cpu(rq->rd);
- raw_spin_unlock(&rq->rd->rto_lock);
- rto_start_unlock(&rq->rd->rto_loop_start);
- if (cpu >= 0) {
- /* Make sure the rd does not get freed while pushing */
- sched_get_rd(rq->rd);
- irq_work_queue_on(&rq->rd->rto_push_work, cpu);
- }
- }
- /* Called from hardirq context */
- void rto_push_irq_work_func(struct irq_work *work)
- {
- struct root_domain *rd =
- container_of(work, struct root_domain, rto_push_work);
- struct rq *rq;
- int cpu;
- rq = this_rq();
- /*
- * We do not need to grab the lock to check for has_pushable_tasks.
- * When it gets updated, a check is made if a push is possible.
- */
- if (has_pushable_tasks(rq)) {
- raw_spin_lock(&rq->lock);
- push_rt_tasks(rq);
- raw_spin_unlock(&rq->lock);
- }
- raw_spin_lock(&rd->rto_lock);
- /* Pass the IPI to the next rt overloaded queue */
- cpu = rto_next_cpu(rd);
- raw_spin_unlock(&rd->rto_lock);
- if (cpu < 0) {
- sched_put_rd(rd);
- return;
- }
- /* Try the next RT overloaded CPU */
- irq_work_queue_on(&rd->rto_push_work, cpu);
- }
- #endif /* HAVE_RT_PUSH_IPI */
- static void pull_rt_task(struct rq *this_rq)
- {
- int this_cpu = this_rq->cpu, cpu;
- bool resched = false;
- struct task_struct *p;
- struct rq *src_rq;
- int rt_overload_count = rt_overloaded(this_rq);
- if (likely(!rt_overload_count))
- return;
- /*
- * Match the barrier from rt_set_overloaded; this guarantees that if we
- * see overloaded we must also see the rto_mask bit.
- */
- smp_rmb();
- /* If we are the only overloaded CPU do nothing */
- if (rt_overload_count == 1 &&
- cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
- return;
- #ifdef HAVE_RT_PUSH_IPI
- if (sched_feat(RT_PUSH_IPI)) {
- tell_cpu_to_push(this_rq);
- return;
- }
- #endif
- for_each_cpu(cpu, this_rq->rd->rto_mask) {
- if (this_cpu == cpu)
- continue;
- src_rq = cpu_rq(cpu);
- /*
- * Don't bother taking the src_rq->lock if the next highest
- * task is known to be lower-priority than our current task.
- * This may look racy, but if this value is about to go
- * logically higher, the src_rq will push this task away.
- * And if its going logically lower, we do not care
- */
- if (src_rq->rt.highest_prio.next >=
- this_rq->rt.highest_prio.curr)
- continue;
- /*
- * We can potentially drop this_rq's lock in
- * double_lock_balance, and another CPU could
- * alter this_rq
- */
- double_lock_balance(this_rq, src_rq);
- /*
- * We can pull only a task, which is pushable
- * on its rq, and no others.
- */
- p = pick_highest_pushable_task(src_rq, this_cpu);
- /*
- * Do we have an RT task that preempts
- * the to-be-scheduled task?
- */
- if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
- WARN_ON(p == src_rq->curr);
- WARN_ON(!task_on_rq_queued(p));
- /*
- * There's a chance that p is higher in priority
- * than what's currently running on its cpu.
- * This is just that p is wakeing up and hasn't
- * had a chance to schedule. We only pull
- * p if it is lower in priority than the
- * current task on the run queue
- */
- if (p->prio < src_rq->curr->prio)
- goto skip;
- resched = true;
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- /*
- * We continue with the search, just in
- * case there's an even higher prio task
- * in another runqueue. (low likelihood
- * but possible)
- */
- }
- skip:
- double_unlock_balance(this_rq, src_rq);
- }
- if (resched)
- resched_curr(this_rq);
- }
- /*
- * If we are not running and we are not going to reschedule soon, we should
- * try to push tasks away now
- */
- static void task_woken_rt(struct rq *rq, struct task_struct *p)
- {
- if (!task_running(rq, p) &&
- !test_tsk_need_resched(rq->curr) &&
- tsk_nr_cpus_allowed(p) > 1 &&
- (dl_task(rq->curr) || rt_task(rq->curr)) &&
- (tsk_nr_cpus_allowed(rq->curr) < 2 ||
- rq->curr->prio <= p->prio))
- push_rt_tasks(rq);
- }
- /* Assumes rq->lock is held */
- static void rq_online_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_set_overload(rq);
- __enable_runtime(rq);
- cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
- }
- /* Assumes rq->lock is held */
- static void rq_offline_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_clear_overload(rq);
- __disable_runtime(rq);
- cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
- }
- /*
- * When switch from the rt queue, we bring ourselves to a position
- * that we might want to pull RT tasks from other runqueues.
- */
- static void switched_from_rt(struct rq *rq, struct task_struct *p)
- {
- /*
- * If there are other RT tasks then we will reschedule
- * and the scheduling of the other RT tasks will handle
- * the balancing. But if we are the last RT task
- * we may need to handle the pulling of RT tasks
- * now.
- */
- if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
- return;
- queue_pull_task(rq);
- }
- void __init init_sched_rt_class(void)
- {
- unsigned int i;
- for_each_possible_cpu(i) {
- zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
- GFP_KERNEL, cpu_to_node(i));
- }
- }
- #endif /* CONFIG_SMP */
- /*
- * When switching a task to RT, we may overload the runqueue
- * with RT tasks. In this case we try to push them off to
- * other runqueues.
- */
- static void switched_to_rt(struct rq *rq, struct task_struct *p)
- {
- /*
- * If we are already running, then there's nothing
- * that needs to be done. But if we are not running
- * we may need to preempt the current running task.
- * If that current running task is also an RT task
- * then see if we can move to another run queue.
- */
- if (task_on_rq_queued(p) && rq->curr != p) {
- #ifdef CONFIG_SMP
- if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
- queue_push_tasks(rq);
- #endif /* CONFIG_SMP */
- if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
- resched_curr(rq);
- }
- }
- /*
- * Priority of the task has changed. This may cause
- * us to initiate a push or pull.
- */
- static void
- prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
- {
- if (!task_on_rq_queued(p))
- return;
- if (rq->curr == p) {
- #ifdef CONFIG_SMP
- /*
- * If our priority decreases while running, we
- * may need to pull tasks to this runqueue.
- */
- if (oldprio < p->prio)
- queue_pull_task(rq);
- /*
- * If there's a higher priority task waiting to run
- * then reschedule.
- */
- if (p->prio > rq->rt.highest_prio.curr)
- resched_curr(rq);
- #else
- /* For UP simply resched on drop of prio */
- if (oldprio < p->prio)
- resched_curr(rq);
- #endif /* CONFIG_SMP */
- } else {
- /*
- * This task is not running, but if it is
- * greater than the current running task
- * then reschedule.
- */
- if (p->prio < rq->curr->prio)
- resched_curr(rq);
- }
- }
- static void watchdog(struct rq *rq, struct task_struct *p)
- {
- unsigned long soft, hard;
- /* max may change after cur was read, this will be fixed next tick */
- soft = task_rlimit(p, RLIMIT_RTTIME);
- hard = task_rlimit_max(p, RLIMIT_RTTIME);
- if (soft != RLIM_INFINITY) {
- unsigned long next;
- if (p->rt.watchdog_stamp != jiffies) {
- p->rt.timeout++;
- p->rt.watchdog_stamp = jiffies;
- }
- next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
- if (p->rt.timeout > next)
- p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
- }
- }
- static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- update_curr_rt(rq);
- watchdog(rq, p);
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if (p->policy != SCHED_RR)
- return;
- if (--p->rt.time_slice)
- return;
- p->rt.time_slice = sched_rr_timeslice;
- /*
- * Requeue to the end of queue if we (and all of our ancestors) are not
- * the only element on the queue
- */
- for_each_sched_rt_entity(rt_se) {
- if (rt_se->run_list.prev != rt_se->run_list.next) {
- requeue_task_rt(rq, p, 0);
- resched_curr(rq);
- return;
- }
- }
- }
- static void set_curr_task_rt(struct rq *rq)
- {
- struct task_struct *p = rq->curr;
- p->se.exec_start = rq_clock_task(rq);
- /* The running task is never eligible for pushing */
- dequeue_pushable_task(rq, p);
- }
- static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
- {
- /*
- * Time slice is 0 for SCHED_FIFO tasks
- */
- if (task->policy == SCHED_RR)
- return sched_rr_timeslice;
- else
- return 0;
- }
- const struct sched_class rt_sched_class = {
- .next = &fair_sched_class,
- .enqueue_task = enqueue_task_rt,
- .dequeue_task = dequeue_task_rt,
- .yield_task = yield_task_rt,
- .check_preempt_curr = check_preempt_curr_rt,
- .pick_next_task = pick_next_task_rt,
- .put_prev_task = put_prev_task_rt,
- #ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_rt,
- .set_cpus_allowed = set_cpus_allowed_common,
- .rq_online = rq_online_rt,
- .rq_offline = rq_offline_rt,
- .task_woken = task_woken_rt,
- .switched_from = switched_from_rt,
- #endif
- .set_curr_task = set_curr_task_rt,
- .task_tick = task_tick_rt,
- .get_rr_interval = get_rr_interval_rt,
- .prio_changed = prio_changed_rt,
- .switched_to = switched_to_rt,
- .update_curr = update_curr_rt,
- };
- #ifdef CONFIG_SCHED_DEBUG
- extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
- void print_rt_stats(struct seq_file *m, int cpu)
- {
- rt_rq_iter_t iter;
- struct rt_rq *rt_rq;
- rcu_read_lock();
- for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
- print_rt_rq(m, cpu, rt_rq);
- rcu_read_unlock();
- }
- #endif /* CONFIG_SCHED_DEBUG */
|