mqueue.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
  1. /*
  2. * POSIX message queues filesystem for Linux.
  3. *
  4. * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
  5. * Michal Wronski (michal.wronski@gmail.com)
  6. *
  7. * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
  8. * Lockless receive & send, fd based notify:
  9. * Manfred Spraul (manfred@colorfullife.com)
  10. *
  11. * Audit: George Wilson (ltcgcw@us.ibm.com)
  12. *
  13. * This file is released under the GPL.
  14. */
  15. #include <linux/capability.h>
  16. #include <linux/init.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/file.h>
  19. #include <linux/mount.h>
  20. #include <linux/namei.h>
  21. #include <linux/sysctl.h>
  22. #include <linux/poll.h>
  23. #include <linux/mqueue.h>
  24. #include <linux/msg.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/netlink.h>
  28. #include <linux/syscalls.h>
  29. #include <linux/audit.h>
  30. #include <linux/signal.h>
  31. #include <linux/mutex.h>
  32. #include <linux/nsproxy.h>
  33. #include <linux/pid.h>
  34. #include <linux/ipc_namespace.h>
  35. #include <linux/user_namespace.h>
  36. #include <linux/slab.h>
  37. #include <net/sock.h>
  38. #include "util.h"
  39. #define MQUEUE_MAGIC 0x19800202
  40. #define DIRENT_SIZE 20
  41. #define FILENT_SIZE 80
  42. #define SEND 0
  43. #define RECV 1
  44. #define STATE_NONE 0
  45. #define STATE_READY 1
  46. struct posix_msg_tree_node {
  47. struct rb_node rb_node;
  48. struct list_head msg_list;
  49. int priority;
  50. };
  51. struct ext_wait_queue { /* queue of sleeping tasks */
  52. struct task_struct *task;
  53. struct list_head list;
  54. struct msg_msg *msg; /* ptr of loaded message */
  55. int state; /* one of STATE_* values */
  56. };
  57. struct mqueue_inode_info {
  58. spinlock_t lock;
  59. struct inode vfs_inode;
  60. wait_queue_head_t wait_q;
  61. struct rb_root msg_tree;
  62. struct posix_msg_tree_node *node_cache;
  63. struct mq_attr attr;
  64. struct sigevent notify;
  65. struct pid *notify_owner;
  66. struct user_namespace *notify_user_ns;
  67. struct user_struct *user; /* user who created, for accounting */
  68. struct sock *notify_sock;
  69. struct sk_buff *notify_cookie;
  70. /* for tasks waiting for free space and messages, respectively */
  71. struct ext_wait_queue e_wait_q[2];
  72. unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  73. };
  74. static const struct inode_operations mqueue_dir_inode_operations;
  75. static const struct file_operations mqueue_file_operations;
  76. static const struct super_operations mqueue_super_ops;
  77. static void remove_notification(struct mqueue_inode_info *info);
  78. static struct kmem_cache *mqueue_inode_cachep;
  79. static struct ctl_table_header *mq_sysctl_table;
  80. static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  81. {
  82. return container_of(inode, struct mqueue_inode_info, vfs_inode);
  83. }
  84. /*
  85. * This routine should be called with the mq_lock held.
  86. */
  87. static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
  88. {
  89. return get_ipc_ns(inode->i_sb->s_fs_info);
  90. }
  91. static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
  92. {
  93. struct ipc_namespace *ns;
  94. spin_lock(&mq_lock);
  95. ns = __get_ns_from_inode(inode);
  96. spin_unlock(&mq_lock);
  97. return ns;
  98. }
  99. /* Auxiliary functions to manipulate messages' list */
  100. static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
  101. {
  102. struct rb_node **p, *parent = NULL;
  103. struct posix_msg_tree_node *leaf;
  104. p = &info->msg_tree.rb_node;
  105. while (*p) {
  106. parent = *p;
  107. leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
  108. if (likely(leaf->priority == msg->m_type))
  109. goto insert_msg;
  110. else if (msg->m_type < leaf->priority)
  111. p = &(*p)->rb_left;
  112. else
  113. p = &(*p)->rb_right;
  114. }
  115. if (info->node_cache) {
  116. leaf = info->node_cache;
  117. info->node_cache = NULL;
  118. } else {
  119. leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
  120. if (!leaf)
  121. return -ENOMEM;
  122. INIT_LIST_HEAD(&leaf->msg_list);
  123. }
  124. leaf->priority = msg->m_type;
  125. rb_link_node(&leaf->rb_node, parent, p);
  126. rb_insert_color(&leaf->rb_node, &info->msg_tree);
  127. insert_msg:
  128. info->attr.mq_curmsgs++;
  129. info->qsize += msg->m_ts;
  130. list_add_tail(&msg->m_list, &leaf->msg_list);
  131. return 0;
  132. }
  133. static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
  134. {
  135. struct rb_node **p, *parent = NULL;
  136. struct posix_msg_tree_node *leaf;
  137. struct msg_msg *msg;
  138. try_again:
  139. p = &info->msg_tree.rb_node;
  140. while (*p) {
  141. parent = *p;
  142. /*
  143. * During insert, low priorities go to the left and high to the
  144. * right. On receive, we want the highest priorities first, so
  145. * walk all the way to the right.
  146. */
  147. p = &(*p)->rb_right;
  148. }
  149. if (!parent) {
  150. if (info->attr.mq_curmsgs) {
  151. pr_warn_once("Inconsistency in POSIX message queue, "
  152. "no tree element, but supposedly messages "
  153. "should exist!\n");
  154. info->attr.mq_curmsgs = 0;
  155. }
  156. return NULL;
  157. }
  158. leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
  159. if (unlikely(list_empty(&leaf->msg_list))) {
  160. pr_warn_once("Inconsistency in POSIX message queue, "
  161. "empty leaf node but we haven't implemented "
  162. "lazy leaf delete!\n");
  163. rb_erase(&leaf->rb_node, &info->msg_tree);
  164. if (info->node_cache) {
  165. kfree(leaf);
  166. } else {
  167. info->node_cache = leaf;
  168. }
  169. goto try_again;
  170. } else {
  171. msg = list_first_entry(&leaf->msg_list,
  172. struct msg_msg, m_list);
  173. list_del(&msg->m_list);
  174. if (list_empty(&leaf->msg_list)) {
  175. rb_erase(&leaf->rb_node, &info->msg_tree);
  176. if (info->node_cache) {
  177. kfree(leaf);
  178. } else {
  179. info->node_cache = leaf;
  180. }
  181. }
  182. }
  183. info->attr.mq_curmsgs--;
  184. info->qsize -= msg->m_ts;
  185. return msg;
  186. }
  187. static struct inode *mqueue_get_inode(struct super_block *sb,
  188. struct ipc_namespace *ipc_ns, umode_t mode,
  189. struct mq_attr *attr)
  190. {
  191. struct user_struct *u = current_user();
  192. struct inode *inode;
  193. int ret = -ENOMEM;
  194. inode = new_inode(sb);
  195. if (!inode)
  196. goto err;
  197. inode->i_ino = get_next_ino();
  198. inode->i_mode = mode;
  199. inode->i_uid = current_fsuid();
  200. inode->i_gid = current_fsgid();
  201. inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
  202. if (S_ISREG(mode)) {
  203. struct mqueue_inode_info *info;
  204. unsigned long mq_bytes, mq_treesize;
  205. inode->i_fop = &mqueue_file_operations;
  206. inode->i_size = FILENT_SIZE;
  207. /* mqueue specific info */
  208. info = MQUEUE_I(inode);
  209. spin_lock_init(&info->lock);
  210. init_waitqueue_head(&info->wait_q);
  211. INIT_LIST_HEAD(&info->e_wait_q[0].list);
  212. INIT_LIST_HEAD(&info->e_wait_q[1].list);
  213. info->notify_owner = NULL;
  214. info->notify_user_ns = NULL;
  215. info->qsize = 0;
  216. info->user = NULL; /* set when all is ok */
  217. info->msg_tree = RB_ROOT;
  218. info->node_cache = NULL;
  219. memset(&info->attr, 0, sizeof(info->attr));
  220. info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
  221. ipc_ns->mq_msg_default);
  222. info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
  223. ipc_ns->mq_msgsize_default);
  224. if (attr) {
  225. info->attr.mq_maxmsg = attr->mq_maxmsg;
  226. info->attr.mq_msgsize = attr->mq_msgsize;
  227. }
  228. /*
  229. * We used to allocate a static array of pointers and account
  230. * the size of that array as well as one msg_msg struct per
  231. * possible message into the queue size. That's no longer
  232. * accurate as the queue is now an rbtree and will grow and
  233. * shrink depending on usage patterns. We can, however, still
  234. * account one msg_msg struct per message, but the nodes are
  235. * allocated depending on priority usage, and most programs
  236. * only use one, or a handful, of priorities. However, since
  237. * this is pinned memory, we need to assume worst case, so
  238. * that means the min(mq_maxmsg, max_priorities) * struct
  239. * posix_msg_tree_node.
  240. */
  241. mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
  242. min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
  243. sizeof(struct posix_msg_tree_node);
  244. mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
  245. info->attr.mq_msgsize);
  246. spin_lock(&mq_lock);
  247. if (u->mq_bytes + mq_bytes < u->mq_bytes ||
  248. u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
  249. spin_unlock(&mq_lock);
  250. /* mqueue_evict_inode() releases info->messages */
  251. ret = -EMFILE;
  252. goto out_inode;
  253. }
  254. u->mq_bytes += mq_bytes;
  255. spin_unlock(&mq_lock);
  256. /* all is ok */
  257. info->user = get_uid(u);
  258. } else if (S_ISDIR(mode)) {
  259. inc_nlink(inode);
  260. /* Some things misbehave if size == 0 on a directory */
  261. inode->i_size = 2 * DIRENT_SIZE;
  262. inode->i_op = &mqueue_dir_inode_operations;
  263. inode->i_fop = &simple_dir_operations;
  264. }
  265. return inode;
  266. out_inode:
  267. iput(inode);
  268. err:
  269. return ERR_PTR(ret);
  270. }
  271. static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
  272. {
  273. struct inode *inode;
  274. struct ipc_namespace *ns = sb->s_fs_info;
  275. sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
  276. sb->s_blocksize = PAGE_SIZE;
  277. sb->s_blocksize_bits = PAGE_SHIFT;
  278. sb->s_magic = MQUEUE_MAGIC;
  279. sb->s_op = &mqueue_super_ops;
  280. inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
  281. if (IS_ERR(inode))
  282. return PTR_ERR(inode);
  283. sb->s_root = d_make_root(inode);
  284. if (!sb->s_root)
  285. return -ENOMEM;
  286. return 0;
  287. }
  288. static struct dentry *mqueue_mount(struct file_system_type *fs_type,
  289. int flags, const char *dev_name,
  290. void *data)
  291. {
  292. struct ipc_namespace *ns;
  293. if (flags & MS_KERNMOUNT) {
  294. ns = data;
  295. data = NULL;
  296. } else {
  297. ns = current->nsproxy->ipc_ns;
  298. }
  299. return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
  300. }
  301. static void init_once(void *foo)
  302. {
  303. struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
  304. inode_init_once(&p->vfs_inode);
  305. }
  306. static struct inode *mqueue_alloc_inode(struct super_block *sb)
  307. {
  308. struct mqueue_inode_info *ei;
  309. ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
  310. if (!ei)
  311. return NULL;
  312. return &ei->vfs_inode;
  313. }
  314. static void mqueue_i_callback(struct rcu_head *head)
  315. {
  316. struct inode *inode = container_of(head, struct inode, i_rcu);
  317. kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
  318. }
  319. static void mqueue_destroy_inode(struct inode *inode)
  320. {
  321. call_rcu(&inode->i_rcu, mqueue_i_callback);
  322. }
  323. static void mqueue_evict_inode(struct inode *inode)
  324. {
  325. struct mqueue_inode_info *info;
  326. struct user_struct *user;
  327. unsigned long mq_bytes, mq_treesize;
  328. struct ipc_namespace *ipc_ns;
  329. struct msg_msg *msg;
  330. clear_inode(inode);
  331. if (S_ISDIR(inode->i_mode))
  332. return;
  333. ipc_ns = get_ns_from_inode(inode);
  334. info = MQUEUE_I(inode);
  335. spin_lock(&info->lock);
  336. while ((msg = msg_get(info)) != NULL)
  337. free_msg(msg);
  338. kfree(info->node_cache);
  339. spin_unlock(&info->lock);
  340. /* Total amount of bytes accounted for the mqueue */
  341. mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
  342. min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
  343. sizeof(struct posix_msg_tree_node);
  344. mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
  345. info->attr.mq_msgsize);
  346. user = info->user;
  347. if (user) {
  348. spin_lock(&mq_lock);
  349. user->mq_bytes -= mq_bytes;
  350. /*
  351. * get_ns_from_inode() ensures that the
  352. * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
  353. * to which we now hold a reference, or it is NULL.
  354. * We can't put it here under mq_lock, though.
  355. */
  356. if (ipc_ns)
  357. ipc_ns->mq_queues_count--;
  358. spin_unlock(&mq_lock);
  359. free_uid(user);
  360. }
  361. if (ipc_ns)
  362. put_ipc_ns(ipc_ns);
  363. }
  364. static int mqueue_create(struct inode *dir, struct dentry *dentry,
  365. umode_t mode, bool excl)
  366. {
  367. struct inode *inode;
  368. struct mq_attr *attr = dentry->d_fsdata;
  369. int error;
  370. struct ipc_namespace *ipc_ns;
  371. spin_lock(&mq_lock);
  372. ipc_ns = __get_ns_from_inode(dir);
  373. if (!ipc_ns) {
  374. error = -EACCES;
  375. goto out_unlock;
  376. }
  377. if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
  378. !capable(CAP_SYS_RESOURCE)) {
  379. error = -ENOSPC;
  380. goto out_unlock;
  381. }
  382. ipc_ns->mq_queues_count++;
  383. spin_unlock(&mq_lock);
  384. inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
  385. if (IS_ERR(inode)) {
  386. error = PTR_ERR(inode);
  387. spin_lock(&mq_lock);
  388. ipc_ns->mq_queues_count--;
  389. goto out_unlock;
  390. }
  391. put_ipc_ns(ipc_ns);
  392. dir->i_size += DIRENT_SIZE;
  393. dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
  394. d_instantiate(dentry, inode);
  395. dget(dentry);
  396. return 0;
  397. out_unlock:
  398. spin_unlock(&mq_lock);
  399. if (ipc_ns)
  400. put_ipc_ns(ipc_ns);
  401. return error;
  402. }
  403. static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
  404. {
  405. struct inode *inode = d_inode(dentry);
  406. dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
  407. dir->i_size -= DIRENT_SIZE;
  408. drop_nlink(inode);
  409. dput(dentry);
  410. return 0;
  411. }
  412. /*
  413. * This is routine for system read from queue file.
  414. * To avoid mess with doing here some sort of mq_receive we allow
  415. * to read only queue size & notification info (the only values
  416. * that are interesting from user point of view and aren't accessible
  417. * through std routines)
  418. */
  419. static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
  420. size_t count, loff_t *off)
  421. {
  422. struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
  423. char buffer[FILENT_SIZE];
  424. ssize_t ret;
  425. spin_lock(&info->lock);
  426. snprintf(buffer, sizeof(buffer),
  427. "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
  428. info->qsize,
  429. info->notify_owner ? info->notify.sigev_notify : 0,
  430. (info->notify_owner &&
  431. info->notify.sigev_notify == SIGEV_SIGNAL) ?
  432. info->notify.sigev_signo : 0,
  433. pid_vnr(info->notify_owner));
  434. spin_unlock(&info->lock);
  435. buffer[sizeof(buffer)-1] = '\0';
  436. ret = simple_read_from_buffer(u_data, count, off, buffer,
  437. strlen(buffer));
  438. if (ret <= 0)
  439. return ret;
  440. file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
  441. return ret;
  442. }
  443. static int mqueue_flush_file(struct file *filp, fl_owner_t id)
  444. {
  445. struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
  446. spin_lock(&info->lock);
  447. if (task_tgid(current) == info->notify_owner)
  448. remove_notification(info);
  449. spin_unlock(&info->lock);
  450. return 0;
  451. }
  452. static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
  453. {
  454. struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
  455. int retval = 0;
  456. poll_wait(filp, &info->wait_q, poll_tab);
  457. spin_lock(&info->lock);
  458. if (info->attr.mq_curmsgs)
  459. retval = POLLIN | POLLRDNORM;
  460. if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
  461. retval |= POLLOUT | POLLWRNORM;
  462. spin_unlock(&info->lock);
  463. return retval;
  464. }
  465. /* Adds current to info->e_wait_q[sr] before element with smaller prio */
  466. static void wq_add(struct mqueue_inode_info *info, int sr,
  467. struct ext_wait_queue *ewp)
  468. {
  469. struct ext_wait_queue *walk;
  470. ewp->task = current;
  471. list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
  472. if (walk->task->static_prio <= current->static_prio) {
  473. list_add_tail(&ewp->list, &walk->list);
  474. return;
  475. }
  476. }
  477. list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
  478. }
  479. /*
  480. * Puts current task to sleep. Caller must hold queue lock. After return
  481. * lock isn't held.
  482. * sr: SEND or RECV
  483. */
  484. static int wq_sleep(struct mqueue_inode_info *info, int sr,
  485. ktime_t *timeout, struct ext_wait_queue *ewp)
  486. {
  487. int retval;
  488. signed long time;
  489. wq_add(info, sr, ewp);
  490. for (;;) {
  491. __set_current_state(TASK_INTERRUPTIBLE);
  492. spin_unlock(&info->lock);
  493. time = schedule_hrtimeout_range_clock(timeout, 0,
  494. HRTIMER_MODE_ABS, CLOCK_REALTIME);
  495. if (ewp->state == STATE_READY) {
  496. retval = 0;
  497. goto out;
  498. }
  499. spin_lock(&info->lock);
  500. if (ewp->state == STATE_READY) {
  501. retval = 0;
  502. goto out_unlock;
  503. }
  504. if (signal_pending(current)) {
  505. retval = -ERESTARTSYS;
  506. break;
  507. }
  508. if (time == 0) {
  509. retval = -ETIMEDOUT;
  510. break;
  511. }
  512. }
  513. list_del(&ewp->list);
  514. out_unlock:
  515. spin_unlock(&info->lock);
  516. out:
  517. return retval;
  518. }
  519. /*
  520. * Returns waiting task that should be serviced first or NULL if none exists
  521. */
  522. static struct ext_wait_queue *wq_get_first_waiter(
  523. struct mqueue_inode_info *info, int sr)
  524. {
  525. struct list_head *ptr;
  526. ptr = info->e_wait_q[sr].list.prev;
  527. if (ptr == &info->e_wait_q[sr].list)
  528. return NULL;
  529. return list_entry(ptr, struct ext_wait_queue, list);
  530. }
  531. static inline void set_cookie(struct sk_buff *skb, char code)
  532. {
  533. ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
  534. }
  535. /*
  536. * The next function is only to split too long sys_mq_timedsend
  537. */
  538. static void __do_notify(struct mqueue_inode_info *info)
  539. {
  540. /* notification
  541. * invoked when there is registered process and there isn't process
  542. * waiting synchronously for message AND state of queue changed from
  543. * empty to not empty. Here we are sure that no one is waiting
  544. * synchronously. */
  545. if (info->notify_owner &&
  546. info->attr.mq_curmsgs == 1) {
  547. struct siginfo sig_i;
  548. switch (info->notify.sigev_notify) {
  549. case SIGEV_NONE:
  550. break;
  551. case SIGEV_SIGNAL:
  552. /* sends signal */
  553. sig_i.si_signo = info->notify.sigev_signo;
  554. sig_i.si_errno = 0;
  555. sig_i.si_code = SI_MESGQ;
  556. sig_i.si_value = info->notify.sigev_value;
  557. /* map current pid/uid into info->owner's namespaces */
  558. rcu_read_lock();
  559. sig_i.si_pid = task_tgid_nr_ns(current,
  560. ns_of_pid(info->notify_owner));
  561. sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
  562. rcu_read_unlock();
  563. kill_pid_info(info->notify.sigev_signo,
  564. &sig_i, info->notify_owner);
  565. break;
  566. case SIGEV_THREAD:
  567. set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
  568. netlink_sendskb(info->notify_sock, info->notify_cookie);
  569. break;
  570. }
  571. /* after notification unregisters process */
  572. put_pid(info->notify_owner);
  573. put_user_ns(info->notify_user_ns);
  574. info->notify_owner = NULL;
  575. info->notify_user_ns = NULL;
  576. }
  577. wake_up(&info->wait_q);
  578. }
  579. static int prepare_timeout(const struct timespec __user *u_abs_timeout,
  580. ktime_t *expires, struct timespec *ts)
  581. {
  582. if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
  583. return -EFAULT;
  584. if (!timespec_valid(ts))
  585. return -EINVAL;
  586. *expires = timespec_to_ktime(*ts);
  587. return 0;
  588. }
  589. static void remove_notification(struct mqueue_inode_info *info)
  590. {
  591. if (info->notify_owner != NULL &&
  592. info->notify.sigev_notify == SIGEV_THREAD) {
  593. set_cookie(info->notify_cookie, NOTIFY_REMOVED);
  594. netlink_sendskb(info->notify_sock, info->notify_cookie);
  595. }
  596. put_pid(info->notify_owner);
  597. put_user_ns(info->notify_user_ns);
  598. info->notify_owner = NULL;
  599. info->notify_user_ns = NULL;
  600. }
  601. static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
  602. {
  603. int mq_treesize;
  604. unsigned long total_size;
  605. if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
  606. return -EINVAL;
  607. if (capable(CAP_SYS_RESOURCE)) {
  608. if (attr->mq_maxmsg > HARD_MSGMAX ||
  609. attr->mq_msgsize > HARD_MSGSIZEMAX)
  610. return -EINVAL;
  611. } else {
  612. if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
  613. attr->mq_msgsize > ipc_ns->mq_msgsize_max)
  614. return -EINVAL;
  615. }
  616. /* check for overflow */
  617. if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
  618. return -EOVERFLOW;
  619. mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
  620. min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
  621. sizeof(struct posix_msg_tree_node);
  622. total_size = attr->mq_maxmsg * attr->mq_msgsize;
  623. if (total_size + mq_treesize < total_size)
  624. return -EOVERFLOW;
  625. return 0;
  626. }
  627. /*
  628. * Invoked when creating a new queue via sys_mq_open
  629. */
  630. static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
  631. struct path *path, int oflag, umode_t mode,
  632. struct mq_attr *attr)
  633. {
  634. const struct cred *cred = current_cred();
  635. int ret;
  636. if (attr) {
  637. ret = mq_attr_ok(ipc_ns, attr);
  638. if (ret)
  639. return ERR_PTR(ret);
  640. /* store for use during create */
  641. path->dentry->d_fsdata = attr;
  642. } else {
  643. struct mq_attr def_attr;
  644. def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
  645. ipc_ns->mq_msg_default);
  646. def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
  647. ipc_ns->mq_msgsize_default);
  648. ret = mq_attr_ok(ipc_ns, &def_attr);
  649. if (ret)
  650. return ERR_PTR(ret);
  651. }
  652. mode &= ~current_umask();
  653. ret = vfs_create(dir, path->dentry, mode, true);
  654. path->dentry->d_fsdata = NULL;
  655. if (ret)
  656. return ERR_PTR(ret);
  657. return dentry_open(path, oflag, cred);
  658. }
  659. /* Opens existing queue */
  660. static struct file *do_open(struct path *path, int oflag)
  661. {
  662. static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
  663. MAY_READ | MAY_WRITE };
  664. int acc;
  665. if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
  666. return ERR_PTR(-EINVAL);
  667. acc = oflag2acc[oflag & O_ACCMODE];
  668. if (inode_permission(d_inode(path->dentry), acc))
  669. return ERR_PTR(-EACCES);
  670. return dentry_open(path, oflag, current_cred());
  671. }
  672. SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
  673. struct mq_attr __user *, u_attr)
  674. {
  675. struct path path;
  676. struct file *filp;
  677. struct filename *name;
  678. struct mq_attr attr;
  679. int fd, error;
  680. struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
  681. struct vfsmount *mnt = ipc_ns->mq_mnt;
  682. struct dentry *root = mnt->mnt_root;
  683. int ro;
  684. if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
  685. return -EFAULT;
  686. audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
  687. if (IS_ERR(name = getname(u_name)))
  688. return PTR_ERR(name);
  689. fd = get_unused_fd_flags(O_CLOEXEC);
  690. if (fd < 0)
  691. goto out_putname;
  692. ro = mnt_want_write(mnt); /* we'll drop it in any case */
  693. error = 0;
  694. inode_lock(d_inode(root));
  695. path.dentry = lookup_one_len(name->name, root, strlen(name->name));
  696. if (IS_ERR(path.dentry)) {
  697. error = PTR_ERR(path.dentry);
  698. goto out_putfd;
  699. }
  700. path.mnt = mntget(mnt);
  701. if (oflag & O_CREAT) {
  702. if (d_really_is_positive(path.dentry)) { /* entry already exists */
  703. audit_inode(name, path.dentry, 0);
  704. if (oflag & O_EXCL) {
  705. error = -EEXIST;
  706. goto out;
  707. }
  708. filp = do_open(&path, oflag);
  709. } else {
  710. if (ro) {
  711. error = ro;
  712. goto out;
  713. }
  714. audit_inode_parent_hidden(name, root);
  715. filp = do_create(ipc_ns, d_inode(root),
  716. &path, oflag, mode,
  717. u_attr ? &attr : NULL);
  718. }
  719. } else {
  720. if (d_really_is_negative(path.dentry)) {
  721. error = -ENOENT;
  722. goto out;
  723. }
  724. audit_inode(name, path.dentry, 0);
  725. filp = do_open(&path, oflag);
  726. }
  727. if (!IS_ERR(filp))
  728. fd_install(fd, filp);
  729. else
  730. error = PTR_ERR(filp);
  731. out:
  732. path_put(&path);
  733. out_putfd:
  734. if (error) {
  735. put_unused_fd(fd);
  736. fd = error;
  737. }
  738. inode_unlock(d_inode(root));
  739. if (!ro)
  740. mnt_drop_write(mnt);
  741. out_putname:
  742. putname(name);
  743. return fd;
  744. }
  745. SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
  746. {
  747. int err;
  748. struct filename *name;
  749. struct dentry *dentry;
  750. struct inode *inode = NULL;
  751. struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
  752. struct vfsmount *mnt = ipc_ns->mq_mnt;
  753. name = getname(u_name);
  754. if (IS_ERR(name))
  755. return PTR_ERR(name);
  756. audit_inode_parent_hidden(name, mnt->mnt_root);
  757. err = mnt_want_write(mnt);
  758. if (err)
  759. goto out_name;
  760. inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
  761. dentry = lookup_one_len(name->name, mnt->mnt_root,
  762. strlen(name->name));
  763. if (IS_ERR(dentry)) {
  764. err = PTR_ERR(dentry);
  765. goto out_unlock;
  766. }
  767. inode = d_inode(dentry);
  768. if (!inode) {
  769. err = -ENOENT;
  770. } else {
  771. ihold(inode);
  772. err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
  773. }
  774. dput(dentry);
  775. out_unlock:
  776. inode_unlock(d_inode(mnt->mnt_root));
  777. if (inode)
  778. iput(inode);
  779. mnt_drop_write(mnt);
  780. out_name:
  781. putname(name);
  782. return err;
  783. }
  784. /* Pipelined send and receive functions.
  785. *
  786. * If a receiver finds no waiting message, then it registers itself in the
  787. * list of waiting receivers. A sender checks that list before adding the new
  788. * message into the message array. If there is a waiting receiver, then it
  789. * bypasses the message array and directly hands the message over to the
  790. * receiver. The receiver accepts the message and returns without grabbing the
  791. * queue spinlock:
  792. *
  793. * - Set pointer to message.
  794. * - Queue the receiver task for later wakeup (without the info->lock).
  795. * - Update its state to STATE_READY. Now the receiver can continue.
  796. * - Wake up the process after the lock is dropped. Should the process wake up
  797. * before this wakeup (due to a timeout or a signal) it will either see
  798. * STATE_READY and continue or acquire the lock to check the state again.
  799. *
  800. * The same algorithm is used for senders.
  801. */
  802. /* pipelined_send() - send a message directly to the task waiting in
  803. * sys_mq_timedreceive() (without inserting message into a queue).
  804. */
  805. static inline void pipelined_send(struct wake_q_head *wake_q,
  806. struct mqueue_inode_info *info,
  807. struct msg_msg *message,
  808. struct ext_wait_queue *receiver)
  809. {
  810. receiver->msg = message;
  811. list_del(&receiver->list);
  812. wake_q_add(wake_q, receiver->task);
  813. /*
  814. * Rely on the implicit cmpxchg barrier from wake_q_add such
  815. * that we can ensure that updating receiver->state is the last
  816. * write operation: As once set, the receiver can continue,
  817. * and if we don't have the reference count from the wake_q,
  818. * yet, at that point we can later have a use-after-free
  819. * condition and bogus wakeup.
  820. */
  821. receiver->state = STATE_READY;
  822. }
  823. /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
  824. * gets its message and put to the queue (we have one free place for sure). */
  825. static inline void pipelined_receive(struct wake_q_head *wake_q,
  826. struct mqueue_inode_info *info)
  827. {
  828. struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
  829. if (!sender) {
  830. /* for poll */
  831. wake_up_interruptible(&info->wait_q);
  832. return;
  833. }
  834. if (msg_insert(sender->msg, info))
  835. return;
  836. list_del(&sender->list);
  837. wake_q_add(wake_q, sender->task);
  838. sender->state = STATE_READY;
  839. }
  840. SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
  841. size_t, msg_len, unsigned int, msg_prio,
  842. const struct timespec __user *, u_abs_timeout)
  843. {
  844. struct fd f;
  845. struct inode *inode;
  846. struct ext_wait_queue wait;
  847. struct ext_wait_queue *receiver;
  848. struct msg_msg *msg_ptr;
  849. struct mqueue_inode_info *info;
  850. ktime_t expires, *timeout = NULL;
  851. struct timespec ts;
  852. struct posix_msg_tree_node *new_leaf = NULL;
  853. int ret = 0;
  854. WAKE_Q(wake_q);
  855. if (u_abs_timeout) {
  856. int res = prepare_timeout(u_abs_timeout, &expires, &ts);
  857. if (res)
  858. return res;
  859. timeout = &expires;
  860. }
  861. if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
  862. return -EINVAL;
  863. audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
  864. f = fdget(mqdes);
  865. if (unlikely(!f.file)) {
  866. ret = -EBADF;
  867. goto out;
  868. }
  869. inode = file_inode(f.file);
  870. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  871. ret = -EBADF;
  872. goto out_fput;
  873. }
  874. info = MQUEUE_I(inode);
  875. audit_file(f.file);
  876. if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
  877. ret = -EBADF;
  878. goto out_fput;
  879. }
  880. if (unlikely(msg_len > info->attr.mq_msgsize)) {
  881. ret = -EMSGSIZE;
  882. goto out_fput;
  883. }
  884. /* First try to allocate memory, before doing anything with
  885. * existing queues. */
  886. msg_ptr = load_msg(u_msg_ptr, msg_len);
  887. if (IS_ERR(msg_ptr)) {
  888. ret = PTR_ERR(msg_ptr);
  889. goto out_fput;
  890. }
  891. msg_ptr->m_ts = msg_len;
  892. msg_ptr->m_type = msg_prio;
  893. /*
  894. * msg_insert really wants us to have a valid, spare node struct so
  895. * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
  896. * fall back to that if necessary.
  897. */
  898. if (!info->node_cache)
  899. new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
  900. spin_lock(&info->lock);
  901. if (!info->node_cache && new_leaf) {
  902. /* Save our speculative allocation into the cache */
  903. INIT_LIST_HEAD(&new_leaf->msg_list);
  904. info->node_cache = new_leaf;
  905. new_leaf = NULL;
  906. } else {
  907. kfree(new_leaf);
  908. }
  909. if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
  910. if (f.file->f_flags & O_NONBLOCK) {
  911. ret = -EAGAIN;
  912. } else {
  913. wait.task = current;
  914. wait.msg = (void *) msg_ptr;
  915. wait.state = STATE_NONE;
  916. ret = wq_sleep(info, SEND, timeout, &wait);
  917. /*
  918. * wq_sleep must be called with info->lock held, and
  919. * returns with the lock released
  920. */
  921. goto out_free;
  922. }
  923. } else {
  924. receiver = wq_get_first_waiter(info, RECV);
  925. if (receiver) {
  926. pipelined_send(&wake_q, info, msg_ptr, receiver);
  927. } else {
  928. /* adds message to the queue */
  929. ret = msg_insert(msg_ptr, info);
  930. if (ret)
  931. goto out_unlock;
  932. __do_notify(info);
  933. }
  934. inode->i_atime = inode->i_mtime = inode->i_ctime =
  935. current_time(inode);
  936. }
  937. out_unlock:
  938. spin_unlock(&info->lock);
  939. wake_up_q(&wake_q);
  940. out_free:
  941. if (ret)
  942. free_msg(msg_ptr);
  943. out_fput:
  944. fdput(f);
  945. out:
  946. return ret;
  947. }
  948. SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
  949. size_t, msg_len, unsigned int __user *, u_msg_prio,
  950. const struct timespec __user *, u_abs_timeout)
  951. {
  952. ssize_t ret;
  953. struct msg_msg *msg_ptr;
  954. struct fd f;
  955. struct inode *inode;
  956. struct mqueue_inode_info *info;
  957. struct ext_wait_queue wait;
  958. ktime_t expires, *timeout = NULL;
  959. struct timespec ts;
  960. struct posix_msg_tree_node *new_leaf = NULL;
  961. if (u_abs_timeout) {
  962. int res = prepare_timeout(u_abs_timeout, &expires, &ts);
  963. if (res)
  964. return res;
  965. timeout = &expires;
  966. }
  967. audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
  968. f = fdget(mqdes);
  969. if (unlikely(!f.file)) {
  970. ret = -EBADF;
  971. goto out;
  972. }
  973. inode = file_inode(f.file);
  974. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  975. ret = -EBADF;
  976. goto out_fput;
  977. }
  978. info = MQUEUE_I(inode);
  979. audit_file(f.file);
  980. if (unlikely(!(f.file->f_mode & FMODE_READ))) {
  981. ret = -EBADF;
  982. goto out_fput;
  983. }
  984. /* checks if buffer is big enough */
  985. if (unlikely(msg_len < info->attr.mq_msgsize)) {
  986. ret = -EMSGSIZE;
  987. goto out_fput;
  988. }
  989. /*
  990. * msg_insert really wants us to have a valid, spare node struct so
  991. * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
  992. * fall back to that if necessary.
  993. */
  994. if (!info->node_cache)
  995. new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
  996. spin_lock(&info->lock);
  997. if (!info->node_cache && new_leaf) {
  998. /* Save our speculative allocation into the cache */
  999. INIT_LIST_HEAD(&new_leaf->msg_list);
  1000. info->node_cache = new_leaf;
  1001. } else {
  1002. kfree(new_leaf);
  1003. }
  1004. if (info->attr.mq_curmsgs == 0) {
  1005. if (f.file->f_flags & O_NONBLOCK) {
  1006. spin_unlock(&info->lock);
  1007. ret = -EAGAIN;
  1008. } else {
  1009. wait.task = current;
  1010. wait.state = STATE_NONE;
  1011. ret = wq_sleep(info, RECV, timeout, &wait);
  1012. msg_ptr = wait.msg;
  1013. }
  1014. } else {
  1015. WAKE_Q(wake_q);
  1016. msg_ptr = msg_get(info);
  1017. inode->i_atime = inode->i_mtime = inode->i_ctime =
  1018. current_time(inode);
  1019. /* There is now free space in queue. */
  1020. pipelined_receive(&wake_q, info);
  1021. spin_unlock(&info->lock);
  1022. wake_up_q(&wake_q);
  1023. ret = 0;
  1024. }
  1025. if (ret == 0) {
  1026. ret = msg_ptr->m_ts;
  1027. if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
  1028. store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
  1029. ret = -EFAULT;
  1030. }
  1031. free_msg(msg_ptr);
  1032. }
  1033. out_fput:
  1034. fdput(f);
  1035. out:
  1036. return ret;
  1037. }
  1038. /*
  1039. * Notes: the case when user wants us to deregister (with NULL as pointer)
  1040. * and he isn't currently owner of notification, will be silently discarded.
  1041. * It isn't explicitly defined in the POSIX.
  1042. */
  1043. SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
  1044. const struct sigevent __user *, u_notification)
  1045. {
  1046. int ret;
  1047. struct fd f;
  1048. struct sock *sock;
  1049. struct inode *inode;
  1050. struct sigevent notification;
  1051. struct mqueue_inode_info *info;
  1052. struct sk_buff *nc;
  1053. if (u_notification) {
  1054. if (copy_from_user(&notification, u_notification,
  1055. sizeof(struct sigevent)))
  1056. return -EFAULT;
  1057. }
  1058. audit_mq_notify(mqdes, u_notification ? &notification : NULL);
  1059. nc = NULL;
  1060. sock = NULL;
  1061. if (u_notification != NULL) {
  1062. if (unlikely(notification.sigev_notify != SIGEV_NONE &&
  1063. notification.sigev_notify != SIGEV_SIGNAL &&
  1064. notification.sigev_notify != SIGEV_THREAD))
  1065. return -EINVAL;
  1066. if (notification.sigev_notify == SIGEV_SIGNAL &&
  1067. !valid_signal(notification.sigev_signo)) {
  1068. return -EINVAL;
  1069. }
  1070. if (notification.sigev_notify == SIGEV_THREAD) {
  1071. long timeo;
  1072. /* create the notify skb */
  1073. nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
  1074. if (!nc) {
  1075. ret = -ENOMEM;
  1076. goto out;
  1077. }
  1078. if (copy_from_user(nc->data,
  1079. notification.sigev_value.sival_ptr,
  1080. NOTIFY_COOKIE_LEN)) {
  1081. ret = -EFAULT;
  1082. goto out;
  1083. }
  1084. /* TODO: add a header? */
  1085. skb_put(nc, NOTIFY_COOKIE_LEN);
  1086. /* and attach it to the socket */
  1087. retry:
  1088. f = fdget(notification.sigev_signo);
  1089. if (!f.file) {
  1090. ret = -EBADF;
  1091. goto out;
  1092. }
  1093. sock = netlink_getsockbyfilp(f.file);
  1094. fdput(f);
  1095. if (IS_ERR(sock)) {
  1096. ret = PTR_ERR(sock);
  1097. sock = NULL;
  1098. goto out;
  1099. }
  1100. timeo = MAX_SCHEDULE_TIMEOUT;
  1101. ret = netlink_attachskb(sock, nc, &timeo, NULL);
  1102. if (ret == 1) {
  1103. sock = NULL;
  1104. goto retry;
  1105. }
  1106. if (ret) {
  1107. sock = NULL;
  1108. nc = NULL;
  1109. goto out;
  1110. }
  1111. }
  1112. }
  1113. f = fdget(mqdes);
  1114. if (!f.file) {
  1115. ret = -EBADF;
  1116. goto out;
  1117. }
  1118. inode = file_inode(f.file);
  1119. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  1120. ret = -EBADF;
  1121. goto out_fput;
  1122. }
  1123. info = MQUEUE_I(inode);
  1124. ret = 0;
  1125. spin_lock(&info->lock);
  1126. if (u_notification == NULL) {
  1127. if (info->notify_owner == task_tgid(current)) {
  1128. remove_notification(info);
  1129. inode->i_atime = inode->i_ctime = current_time(inode);
  1130. }
  1131. } else if (info->notify_owner != NULL) {
  1132. ret = -EBUSY;
  1133. } else {
  1134. switch (notification.sigev_notify) {
  1135. case SIGEV_NONE:
  1136. info->notify.sigev_notify = SIGEV_NONE;
  1137. break;
  1138. case SIGEV_THREAD:
  1139. info->notify_sock = sock;
  1140. info->notify_cookie = nc;
  1141. sock = NULL;
  1142. nc = NULL;
  1143. info->notify.sigev_notify = SIGEV_THREAD;
  1144. break;
  1145. case SIGEV_SIGNAL:
  1146. info->notify.sigev_signo = notification.sigev_signo;
  1147. info->notify.sigev_value = notification.sigev_value;
  1148. info->notify.sigev_notify = SIGEV_SIGNAL;
  1149. break;
  1150. }
  1151. info->notify_owner = get_pid(task_tgid(current));
  1152. info->notify_user_ns = get_user_ns(current_user_ns());
  1153. inode->i_atime = inode->i_ctime = current_time(inode);
  1154. }
  1155. spin_unlock(&info->lock);
  1156. out_fput:
  1157. fdput(f);
  1158. out:
  1159. if (sock)
  1160. netlink_detachskb(sock, nc);
  1161. else if (nc)
  1162. dev_kfree_skb(nc);
  1163. return ret;
  1164. }
  1165. SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
  1166. const struct mq_attr __user *, u_mqstat,
  1167. struct mq_attr __user *, u_omqstat)
  1168. {
  1169. int ret;
  1170. struct mq_attr mqstat, omqstat;
  1171. struct fd f;
  1172. struct inode *inode;
  1173. struct mqueue_inode_info *info;
  1174. if (u_mqstat != NULL) {
  1175. if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
  1176. return -EFAULT;
  1177. if (mqstat.mq_flags & (~O_NONBLOCK))
  1178. return -EINVAL;
  1179. }
  1180. f = fdget(mqdes);
  1181. if (!f.file) {
  1182. ret = -EBADF;
  1183. goto out;
  1184. }
  1185. inode = file_inode(f.file);
  1186. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  1187. ret = -EBADF;
  1188. goto out_fput;
  1189. }
  1190. info = MQUEUE_I(inode);
  1191. spin_lock(&info->lock);
  1192. omqstat = info->attr;
  1193. omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
  1194. if (u_mqstat) {
  1195. audit_mq_getsetattr(mqdes, &mqstat);
  1196. spin_lock(&f.file->f_lock);
  1197. if (mqstat.mq_flags & O_NONBLOCK)
  1198. f.file->f_flags |= O_NONBLOCK;
  1199. else
  1200. f.file->f_flags &= ~O_NONBLOCK;
  1201. spin_unlock(&f.file->f_lock);
  1202. inode->i_atime = inode->i_ctime = current_time(inode);
  1203. }
  1204. spin_unlock(&info->lock);
  1205. ret = 0;
  1206. if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
  1207. sizeof(struct mq_attr)))
  1208. ret = -EFAULT;
  1209. out_fput:
  1210. fdput(f);
  1211. out:
  1212. return ret;
  1213. }
  1214. static const struct inode_operations mqueue_dir_inode_operations = {
  1215. .lookup = simple_lookup,
  1216. .create = mqueue_create,
  1217. .unlink = mqueue_unlink,
  1218. };
  1219. static const struct file_operations mqueue_file_operations = {
  1220. .flush = mqueue_flush_file,
  1221. .poll = mqueue_poll_file,
  1222. .read = mqueue_read_file,
  1223. .llseek = default_llseek,
  1224. };
  1225. static const struct super_operations mqueue_super_ops = {
  1226. .alloc_inode = mqueue_alloc_inode,
  1227. .destroy_inode = mqueue_destroy_inode,
  1228. .evict_inode = mqueue_evict_inode,
  1229. .statfs = simple_statfs,
  1230. };
  1231. static struct file_system_type mqueue_fs_type = {
  1232. .name = "mqueue",
  1233. .mount = mqueue_mount,
  1234. .kill_sb = kill_litter_super,
  1235. .fs_flags = FS_USERNS_MOUNT,
  1236. };
  1237. int mq_init_ns(struct ipc_namespace *ns)
  1238. {
  1239. ns->mq_queues_count = 0;
  1240. ns->mq_queues_max = DFLT_QUEUESMAX;
  1241. ns->mq_msg_max = DFLT_MSGMAX;
  1242. ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
  1243. ns->mq_msg_default = DFLT_MSG;
  1244. ns->mq_msgsize_default = DFLT_MSGSIZE;
  1245. ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
  1246. if (IS_ERR(ns->mq_mnt)) {
  1247. int err = PTR_ERR(ns->mq_mnt);
  1248. ns->mq_mnt = NULL;
  1249. return err;
  1250. }
  1251. return 0;
  1252. }
  1253. void mq_clear_sbinfo(struct ipc_namespace *ns)
  1254. {
  1255. ns->mq_mnt->mnt_sb->s_fs_info = NULL;
  1256. }
  1257. void mq_put_mnt(struct ipc_namespace *ns)
  1258. {
  1259. kern_unmount(ns->mq_mnt);
  1260. }
  1261. static int __init init_mqueue_fs(void)
  1262. {
  1263. int error;
  1264. mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
  1265. sizeof(struct mqueue_inode_info), 0,
  1266. SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
  1267. if (mqueue_inode_cachep == NULL)
  1268. return -ENOMEM;
  1269. /* ignore failures - they are not fatal */
  1270. mq_sysctl_table = mq_register_sysctl_table();
  1271. error = register_filesystem(&mqueue_fs_type);
  1272. if (error)
  1273. goto out_sysctl;
  1274. spin_lock_init(&mq_lock);
  1275. error = mq_init_ns(&init_ipc_ns);
  1276. if (error)
  1277. goto out_filesystem;
  1278. return 0;
  1279. out_filesystem:
  1280. unregister_filesystem(&mqueue_fs_type);
  1281. out_sysctl:
  1282. if (mq_sysctl_table)
  1283. unregister_sysctl_table(mq_sysctl_table);
  1284. kmem_cache_destroy(mqueue_inode_cachep);
  1285. return error;
  1286. }
  1287. device_initcall(init_mqueue_fs);