namespace.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. /* Maximum number of mounts in a mount namespace */
  29. unsigned int sysctl_mount_max __read_mostly = 100000;
  30. static unsigned int m_hash_mask __read_mostly;
  31. static unsigned int m_hash_shift __read_mostly;
  32. static unsigned int mp_hash_mask __read_mostly;
  33. static unsigned int mp_hash_shift __read_mostly;
  34. static __initdata unsigned long mhash_entries;
  35. static int __init set_mhash_entries(char *str)
  36. {
  37. if (!str)
  38. return 0;
  39. mhash_entries = simple_strtoul(str, &str, 0);
  40. return 1;
  41. }
  42. __setup("mhash_entries=", set_mhash_entries);
  43. static __initdata unsigned long mphash_entries;
  44. static int __init set_mphash_entries(char *str)
  45. {
  46. if (!str)
  47. return 0;
  48. mphash_entries = simple_strtoul(str, &str, 0);
  49. return 1;
  50. }
  51. __setup("mphash_entries=", set_mphash_entries);
  52. static u64 event;
  53. static DEFINE_IDA(mnt_id_ida);
  54. static DEFINE_IDA(mnt_group_ida);
  55. static DEFINE_SPINLOCK(mnt_id_lock);
  56. static int mnt_id_start = 0;
  57. static int mnt_group_start = 1;
  58. static struct hlist_head *mount_hashtable __read_mostly;
  59. static struct hlist_head *mountpoint_hashtable __read_mostly;
  60. static struct kmem_cache *mnt_cache __read_mostly;
  61. static DECLARE_RWSEM(namespace_sem);
  62. /* /sys/fs */
  63. struct kobject *fs_kobj;
  64. EXPORT_SYMBOL_GPL(fs_kobj);
  65. /*
  66. * vfsmount lock may be taken for read to prevent changes to the
  67. * vfsmount hash, ie. during mountpoint lookups or walking back
  68. * up the tree.
  69. *
  70. * It should be taken for write in all cases where the vfsmount
  71. * tree or hash is modified or when a vfsmount structure is modified.
  72. */
  73. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  74. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  75. {
  76. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  77. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  78. tmp = tmp + (tmp >> m_hash_shift);
  79. return &mount_hashtable[tmp & m_hash_mask];
  80. }
  81. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  82. {
  83. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  84. tmp = tmp + (tmp >> mp_hash_shift);
  85. return &mountpoint_hashtable[tmp & mp_hash_mask];
  86. }
  87. /*
  88. * allocation is serialized by namespace_sem, but we need the spinlock to
  89. * serialize with freeing.
  90. */
  91. static int mnt_alloc_id(struct mount *mnt)
  92. {
  93. int res;
  94. retry:
  95. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  96. spin_lock(&mnt_id_lock);
  97. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  98. if (!res)
  99. mnt_id_start = mnt->mnt_id + 1;
  100. spin_unlock(&mnt_id_lock);
  101. if (res == -EAGAIN)
  102. goto retry;
  103. return res;
  104. }
  105. static void mnt_free_id(struct mount *mnt)
  106. {
  107. int id = mnt->mnt_id;
  108. spin_lock(&mnt_id_lock);
  109. ida_remove(&mnt_id_ida, id);
  110. if (mnt_id_start > id)
  111. mnt_id_start = id;
  112. spin_unlock(&mnt_id_lock);
  113. }
  114. /*
  115. * Allocate a new peer group ID
  116. *
  117. * mnt_group_ida is protected by namespace_sem
  118. */
  119. static int mnt_alloc_group_id(struct mount *mnt)
  120. {
  121. int res;
  122. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  123. return -ENOMEM;
  124. res = ida_get_new_above(&mnt_group_ida,
  125. mnt_group_start,
  126. &mnt->mnt_group_id);
  127. if (!res)
  128. mnt_group_start = mnt->mnt_group_id + 1;
  129. return res;
  130. }
  131. /*
  132. * Release a peer group ID
  133. */
  134. void mnt_release_group_id(struct mount *mnt)
  135. {
  136. int id = mnt->mnt_group_id;
  137. ida_remove(&mnt_group_ida, id);
  138. if (mnt_group_start > id)
  139. mnt_group_start = id;
  140. mnt->mnt_group_id = 0;
  141. }
  142. /*
  143. * vfsmount lock must be held for read
  144. */
  145. static inline void mnt_add_count(struct mount *mnt, int n)
  146. {
  147. #ifdef CONFIG_SMP
  148. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  149. #else
  150. preempt_disable();
  151. mnt->mnt_count += n;
  152. preempt_enable();
  153. #endif
  154. }
  155. /*
  156. * vfsmount lock must be held for write
  157. */
  158. unsigned int mnt_get_count(struct mount *mnt)
  159. {
  160. #ifdef CONFIG_SMP
  161. unsigned int count = 0;
  162. int cpu;
  163. for_each_possible_cpu(cpu) {
  164. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  165. }
  166. return count;
  167. #else
  168. return mnt->mnt_count;
  169. #endif
  170. }
  171. static void drop_mountpoint(struct fs_pin *p)
  172. {
  173. struct mount *m = container_of(p, struct mount, mnt_umount);
  174. dput(m->mnt_ex_mountpoint);
  175. pin_remove(p);
  176. mntput(&m->mnt);
  177. }
  178. static struct mount *alloc_vfsmnt(const char *name)
  179. {
  180. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  181. if (mnt) {
  182. int err;
  183. err = mnt_alloc_id(mnt);
  184. if (err)
  185. goto out_free_cache;
  186. if (name) {
  187. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  188. if (!mnt->mnt_devname)
  189. goto out_free_id;
  190. }
  191. #ifdef CONFIG_SMP
  192. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  193. if (!mnt->mnt_pcp)
  194. goto out_free_devname;
  195. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  196. #else
  197. mnt->mnt_count = 1;
  198. mnt->mnt_writers = 0;
  199. #endif
  200. INIT_HLIST_NODE(&mnt->mnt_hash);
  201. INIT_LIST_HEAD(&mnt->mnt_child);
  202. INIT_LIST_HEAD(&mnt->mnt_mounts);
  203. INIT_LIST_HEAD(&mnt->mnt_list);
  204. INIT_LIST_HEAD(&mnt->mnt_expire);
  205. INIT_LIST_HEAD(&mnt->mnt_share);
  206. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  207. INIT_LIST_HEAD(&mnt->mnt_slave);
  208. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  209. INIT_LIST_HEAD(&mnt->mnt_umounting);
  210. #ifdef CONFIG_FSNOTIFY
  211. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  212. #endif
  213. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  214. }
  215. return mnt;
  216. #ifdef CONFIG_SMP
  217. out_free_devname:
  218. kfree_const(mnt->mnt_devname);
  219. #endif
  220. out_free_id:
  221. mnt_free_id(mnt);
  222. out_free_cache:
  223. kmem_cache_free(mnt_cache, mnt);
  224. return NULL;
  225. }
  226. /*
  227. * Most r/o checks on a fs are for operations that take
  228. * discrete amounts of time, like a write() or unlink().
  229. * We must keep track of when those operations start
  230. * (for permission checks) and when they end, so that
  231. * we can determine when writes are able to occur to
  232. * a filesystem.
  233. */
  234. /*
  235. * __mnt_is_readonly: check whether a mount is read-only
  236. * @mnt: the mount to check for its write status
  237. *
  238. * This shouldn't be used directly ouside of the VFS.
  239. * It does not guarantee that the filesystem will stay
  240. * r/w, just that it is right *now*. This can not and
  241. * should not be used in place of IS_RDONLY(inode).
  242. * mnt_want/drop_write() will _keep_ the filesystem
  243. * r/w.
  244. */
  245. int __mnt_is_readonly(struct vfsmount *mnt)
  246. {
  247. if (mnt->mnt_flags & MNT_READONLY)
  248. return 1;
  249. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  250. return 1;
  251. return 0;
  252. }
  253. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  254. static inline void mnt_inc_writers(struct mount *mnt)
  255. {
  256. #ifdef CONFIG_SMP
  257. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  258. #else
  259. mnt->mnt_writers++;
  260. #endif
  261. }
  262. static inline void mnt_dec_writers(struct mount *mnt)
  263. {
  264. #ifdef CONFIG_SMP
  265. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  266. #else
  267. mnt->mnt_writers--;
  268. #endif
  269. }
  270. static unsigned int mnt_get_writers(struct mount *mnt)
  271. {
  272. #ifdef CONFIG_SMP
  273. unsigned int count = 0;
  274. int cpu;
  275. for_each_possible_cpu(cpu) {
  276. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  277. }
  278. return count;
  279. #else
  280. return mnt->mnt_writers;
  281. #endif
  282. }
  283. static int mnt_is_readonly(struct vfsmount *mnt)
  284. {
  285. if (mnt->mnt_sb->s_readonly_remount)
  286. return 1;
  287. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  288. smp_rmb();
  289. return __mnt_is_readonly(mnt);
  290. }
  291. /*
  292. * Most r/o & frozen checks on a fs are for operations that take discrete
  293. * amounts of time, like a write() or unlink(). We must keep track of when
  294. * those operations start (for permission checks) and when they end, so that we
  295. * can determine when writes are able to occur to a filesystem.
  296. */
  297. /**
  298. * __mnt_want_write - get write access to a mount without freeze protection
  299. * @m: the mount on which to take a write
  300. *
  301. * This tells the low-level filesystem that a write is about to be performed to
  302. * it, and makes sure that writes are allowed (mnt it read-write) before
  303. * returning success. This operation does not protect against filesystem being
  304. * frozen. When the write operation is finished, __mnt_drop_write() must be
  305. * called. This is effectively a refcount.
  306. */
  307. int __mnt_want_write(struct vfsmount *m)
  308. {
  309. struct mount *mnt = real_mount(m);
  310. int ret = 0;
  311. preempt_disable();
  312. mnt_inc_writers(mnt);
  313. /*
  314. * The store to mnt_inc_writers must be visible before we pass
  315. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  316. * incremented count after it has set MNT_WRITE_HOLD.
  317. */
  318. smp_mb();
  319. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  320. cpu_relax();
  321. /*
  322. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  323. * be set to match its requirements. So we must not load that until
  324. * MNT_WRITE_HOLD is cleared.
  325. */
  326. smp_rmb();
  327. if (mnt_is_readonly(m)) {
  328. mnt_dec_writers(mnt);
  329. ret = -EROFS;
  330. }
  331. preempt_enable();
  332. return ret;
  333. }
  334. /**
  335. * mnt_want_write - get write access to a mount
  336. * @m: the mount on which to take a write
  337. *
  338. * This tells the low-level filesystem that a write is about to be performed to
  339. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  340. * is not frozen) before returning success. When the write operation is
  341. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  342. */
  343. int mnt_want_write(struct vfsmount *m)
  344. {
  345. int ret;
  346. sb_start_write(m->mnt_sb);
  347. ret = __mnt_want_write(m);
  348. if (ret)
  349. sb_end_write(m->mnt_sb);
  350. return ret;
  351. }
  352. EXPORT_SYMBOL_GPL(mnt_want_write);
  353. /**
  354. * mnt_clone_write - get write access to a mount
  355. * @mnt: the mount on which to take a write
  356. *
  357. * This is effectively like mnt_want_write, except
  358. * it must only be used to take an extra write reference
  359. * on a mountpoint that we already know has a write reference
  360. * on it. This allows some optimisation.
  361. *
  362. * After finished, mnt_drop_write must be called as usual to
  363. * drop the reference.
  364. */
  365. int mnt_clone_write(struct vfsmount *mnt)
  366. {
  367. /* superblock may be r/o */
  368. if (__mnt_is_readonly(mnt))
  369. return -EROFS;
  370. preempt_disable();
  371. mnt_inc_writers(real_mount(mnt));
  372. preempt_enable();
  373. return 0;
  374. }
  375. EXPORT_SYMBOL_GPL(mnt_clone_write);
  376. /**
  377. * __mnt_want_write_file - get write access to a file's mount
  378. * @file: the file who's mount on which to take a write
  379. *
  380. * This is like __mnt_want_write, but it takes a file and can
  381. * do some optimisations if the file is open for write already
  382. */
  383. int __mnt_want_write_file(struct file *file)
  384. {
  385. if (!(file->f_mode & FMODE_WRITER))
  386. return __mnt_want_write(file->f_path.mnt);
  387. else
  388. return mnt_clone_write(file->f_path.mnt);
  389. }
  390. /**
  391. * mnt_want_write_file - get write access to a file's mount
  392. * @file: the file who's mount on which to take a write
  393. *
  394. * This is like mnt_want_write, but it takes a file and can
  395. * do some optimisations if the file is open for write already
  396. */
  397. int mnt_want_write_file(struct file *file)
  398. {
  399. int ret;
  400. sb_start_write(file->f_path.mnt->mnt_sb);
  401. ret = __mnt_want_write_file(file);
  402. if (ret)
  403. sb_end_write(file->f_path.mnt->mnt_sb);
  404. return ret;
  405. }
  406. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  407. /**
  408. * __mnt_drop_write - give up write access to a mount
  409. * @mnt: the mount on which to give up write access
  410. *
  411. * Tells the low-level filesystem that we are done
  412. * performing writes to it. Must be matched with
  413. * __mnt_want_write() call above.
  414. */
  415. void __mnt_drop_write(struct vfsmount *mnt)
  416. {
  417. preempt_disable();
  418. mnt_dec_writers(real_mount(mnt));
  419. preempt_enable();
  420. }
  421. /**
  422. * mnt_drop_write - give up write access to a mount
  423. * @mnt: the mount on which to give up write access
  424. *
  425. * Tells the low-level filesystem that we are done performing writes to it and
  426. * also allows filesystem to be frozen again. Must be matched with
  427. * mnt_want_write() call above.
  428. */
  429. void mnt_drop_write(struct vfsmount *mnt)
  430. {
  431. __mnt_drop_write(mnt);
  432. sb_end_write(mnt->mnt_sb);
  433. }
  434. EXPORT_SYMBOL_GPL(mnt_drop_write);
  435. void __mnt_drop_write_file(struct file *file)
  436. {
  437. __mnt_drop_write(file->f_path.mnt);
  438. }
  439. void mnt_drop_write_file(struct file *file)
  440. {
  441. mnt_drop_write(file->f_path.mnt);
  442. }
  443. EXPORT_SYMBOL(mnt_drop_write_file);
  444. static int mnt_make_readonly(struct mount *mnt)
  445. {
  446. int ret = 0;
  447. lock_mount_hash();
  448. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  449. /*
  450. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  451. * should be visible before we do.
  452. */
  453. smp_mb();
  454. /*
  455. * With writers on hold, if this value is zero, then there are
  456. * definitely no active writers (although held writers may subsequently
  457. * increment the count, they'll have to wait, and decrement it after
  458. * seeing MNT_READONLY).
  459. *
  460. * It is OK to have counter incremented on one CPU and decremented on
  461. * another: the sum will add up correctly. The danger would be when we
  462. * sum up each counter, if we read a counter before it is incremented,
  463. * but then read another CPU's count which it has been subsequently
  464. * decremented from -- we would see more decrements than we should.
  465. * MNT_WRITE_HOLD protects against this scenario, because
  466. * mnt_want_write first increments count, then smp_mb, then spins on
  467. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  468. * we're counting up here.
  469. */
  470. if (mnt_get_writers(mnt) > 0)
  471. ret = -EBUSY;
  472. else
  473. mnt->mnt.mnt_flags |= MNT_READONLY;
  474. /*
  475. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  476. * that become unheld will see MNT_READONLY.
  477. */
  478. smp_wmb();
  479. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  480. unlock_mount_hash();
  481. return ret;
  482. }
  483. static void __mnt_unmake_readonly(struct mount *mnt)
  484. {
  485. lock_mount_hash();
  486. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  487. unlock_mount_hash();
  488. }
  489. int sb_prepare_remount_readonly(struct super_block *sb)
  490. {
  491. struct mount *mnt;
  492. int err = 0;
  493. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  494. if (atomic_long_read(&sb->s_remove_count))
  495. return -EBUSY;
  496. lock_mount_hash();
  497. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  498. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  499. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  500. smp_mb();
  501. if (mnt_get_writers(mnt) > 0) {
  502. err = -EBUSY;
  503. break;
  504. }
  505. }
  506. }
  507. if (!err && atomic_long_read(&sb->s_remove_count))
  508. err = -EBUSY;
  509. if (!err) {
  510. sb->s_readonly_remount = 1;
  511. smp_wmb();
  512. }
  513. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  514. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  515. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  516. }
  517. unlock_mount_hash();
  518. return err;
  519. }
  520. static void free_vfsmnt(struct mount *mnt)
  521. {
  522. kfree_const(mnt->mnt_devname);
  523. #ifdef CONFIG_SMP
  524. free_percpu(mnt->mnt_pcp);
  525. #endif
  526. kmem_cache_free(mnt_cache, mnt);
  527. }
  528. static void delayed_free_vfsmnt(struct rcu_head *head)
  529. {
  530. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  531. }
  532. /* call under rcu_read_lock */
  533. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  534. {
  535. struct mount *mnt;
  536. if (read_seqretry(&mount_lock, seq))
  537. return 1;
  538. if (bastard == NULL)
  539. return 0;
  540. mnt = real_mount(bastard);
  541. mnt_add_count(mnt, 1);
  542. if (likely(!read_seqretry(&mount_lock, seq)))
  543. return 0;
  544. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  545. mnt_add_count(mnt, -1);
  546. return 1;
  547. }
  548. return -1;
  549. }
  550. /* call under rcu_read_lock */
  551. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  552. {
  553. int res = __legitimize_mnt(bastard, seq);
  554. if (likely(!res))
  555. return true;
  556. if (unlikely(res < 0)) {
  557. rcu_read_unlock();
  558. mntput(bastard);
  559. rcu_read_lock();
  560. }
  561. return false;
  562. }
  563. /*
  564. * find the first mount at @dentry on vfsmount @mnt.
  565. * call under rcu_read_lock()
  566. */
  567. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  568. {
  569. struct hlist_head *head = m_hash(mnt, dentry);
  570. struct mount *p;
  571. hlist_for_each_entry_rcu(p, head, mnt_hash)
  572. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  573. return p;
  574. return NULL;
  575. }
  576. /*
  577. * lookup_mnt - Return the first child mount mounted at path
  578. *
  579. * "First" means first mounted chronologically. If you create the
  580. * following mounts:
  581. *
  582. * mount /dev/sda1 /mnt
  583. * mount /dev/sda2 /mnt
  584. * mount /dev/sda3 /mnt
  585. *
  586. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  587. * return successively the root dentry and vfsmount of /dev/sda1, then
  588. * /dev/sda2, then /dev/sda3, then NULL.
  589. *
  590. * lookup_mnt takes a reference to the found vfsmount.
  591. */
  592. struct vfsmount *lookup_mnt(struct path *path)
  593. {
  594. struct mount *child_mnt;
  595. struct vfsmount *m;
  596. unsigned seq;
  597. rcu_read_lock();
  598. do {
  599. seq = read_seqbegin(&mount_lock);
  600. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  601. m = child_mnt ? &child_mnt->mnt : NULL;
  602. } while (!legitimize_mnt(m, seq));
  603. rcu_read_unlock();
  604. return m;
  605. }
  606. /*
  607. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  608. * current mount namespace.
  609. *
  610. * The common case is dentries are not mountpoints at all and that
  611. * test is handled inline. For the slow case when we are actually
  612. * dealing with a mountpoint of some kind, walk through all of the
  613. * mounts in the current mount namespace and test to see if the dentry
  614. * is a mountpoint.
  615. *
  616. * The mount_hashtable is not usable in the context because we
  617. * need to identify all mounts that may be in the current mount
  618. * namespace not just a mount that happens to have some specified
  619. * parent mount.
  620. */
  621. bool __is_local_mountpoint(struct dentry *dentry)
  622. {
  623. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  624. struct mount *mnt;
  625. bool is_covered = false;
  626. if (!d_mountpoint(dentry))
  627. goto out;
  628. down_read(&namespace_sem);
  629. list_for_each_entry(mnt, &ns->list, mnt_list) {
  630. is_covered = (mnt->mnt_mountpoint == dentry);
  631. if (is_covered)
  632. break;
  633. }
  634. up_read(&namespace_sem);
  635. out:
  636. return is_covered;
  637. }
  638. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  639. {
  640. struct hlist_head *chain = mp_hash(dentry);
  641. struct mountpoint *mp;
  642. hlist_for_each_entry(mp, chain, m_hash) {
  643. if (mp->m_dentry == dentry) {
  644. /* might be worth a WARN_ON() */
  645. if (d_unlinked(dentry))
  646. return ERR_PTR(-ENOENT);
  647. mp->m_count++;
  648. return mp;
  649. }
  650. }
  651. return NULL;
  652. }
  653. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  654. {
  655. struct mountpoint *mp, *new = NULL;
  656. int ret;
  657. if (d_mountpoint(dentry)) {
  658. mountpoint:
  659. read_seqlock_excl(&mount_lock);
  660. mp = lookup_mountpoint(dentry);
  661. read_sequnlock_excl(&mount_lock);
  662. if (mp)
  663. goto done;
  664. }
  665. if (!new)
  666. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  667. if (!new)
  668. return ERR_PTR(-ENOMEM);
  669. /* Exactly one processes may set d_mounted */
  670. ret = d_set_mounted(dentry);
  671. /* Someone else set d_mounted? */
  672. if (ret == -EBUSY)
  673. goto mountpoint;
  674. /* The dentry is not available as a mountpoint? */
  675. mp = ERR_PTR(ret);
  676. if (ret)
  677. goto done;
  678. /* Add the new mountpoint to the hash table */
  679. read_seqlock_excl(&mount_lock);
  680. new->m_dentry = dentry;
  681. new->m_count = 1;
  682. hlist_add_head(&new->m_hash, mp_hash(dentry));
  683. INIT_HLIST_HEAD(&new->m_list);
  684. read_sequnlock_excl(&mount_lock);
  685. mp = new;
  686. new = NULL;
  687. done:
  688. kfree(new);
  689. return mp;
  690. }
  691. static void put_mountpoint(struct mountpoint *mp)
  692. {
  693. if (!--mp->m_count) {
  694. struct dentry *dentry = mp->m_dentry;
  695. BUG_ON(!hlist_empty(&mp->m_list));
  696. spin_lock(&dentry->d_lock);
  697. dentry->d_flags &= ~DCACHE_MOUNTED;
  698. spin_unlock(&dentry->d_lock);
  699. hlist_del(&mp->m_hash);
  700. kfree(mp);
  701. }
  702. }
  703. static inline int check_mnt(struct mount *mnt)
  704. {
  705. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  706. }
  707. /*
  708. * vfsmount lock must be held for write
  709. */
  710. static void touch_mnt_namespace(struct mnt_namespace *ns)
  711. {
  712. if (ns) {
  713. ns->event = ++event;
  714. wake_up_interruptible(&ns->poll);
  715. }
  716. }
  717. /*
  718. * vfsmount lock must be held for write
  719. */
  720. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  721. {
  722. if (ns && ns->event != event) {
  723. ns->event = event;
  724. wake_up_interruptible(&ns->poll);
  725. }
  726. }
  727. /*
  728. * vfsmount lock must be held for write
  729. */
  730. static void unhash_mnt(struct mount *mnt)
  731. {
  732. mnt->mnt_parent = mnt;
  733. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  734. list_del_init(&mnt->mnt_child);
  735. hlist_del_init_rcu(&mnt->mnt_hash);
  736. hlist_del_init(&mnt->mnt_mp_list);
  737. put_mountpoint(mnt->mnt_mp);
  738. mnt->mnt_mp = NULL;
  739. }
  740. /*
  741. * vfsmount lock must be held for write
  742. */
  743. static void detach_mnt(struct mount *mnt, struct path *old_path)
  744. {
  745. old_path->dentry = mnt->mnt_mountpoint;
  746. old_path->mnt = &mnt->mnt_parent->mnt;
  747. unhash_mnt(mnt);
  748. }
  749. /*
  750. * vfsmount lock must be held for write
  751. */
  752. static void umount_mnt(struct mount *mnt)
  753. {
  754. /* old mountpoint will be dropped when we can do that */
  755. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  756. unhash_mnt(mnt);
  757. }
  758. /*
  759. * vfsmount lock must be held for write
  760. */
  761. void mnt_set_mountpoint(struct mount *mnt,
  762. struct mountpoint *mp,
  763. struct mount *child_mnt)
  764. {
  765. mp->m_count++;
  766. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  767. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  768. child_mnt->mnt_parent = mnt;
  769. child_mnt->mnt_mp = mp;
  770. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  771. }
  772. static void __attach_mnt(struct mount *mnt, struct mount *parent)
  773. {
  774. hlist_add_head_rcu(&mnt->mnt_hash,
  775. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  776. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  777. }
  778. /*
  779. * vfsmount lock must be held for write
  780. */
  781. static void attach_mnt(struct mount *mnt,
  782. struct mount *parent,
  783. struct mountpoint *mp)
  784. {
  785. mnt_set_mountpoint(parent, mp, mnt);
  786. __attach_mnt(mnt, parent);
  787. }
  788. void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
  789. {
  790. struct mountpoint *old_mp = mnt->mnt_mp;
  791. struct dentry *old_mountpoint = mnt->mnt_mountpoint;
  792. struct mount *old_parent = mnt->mnt_parent;
  793. list_del_init(&mnt->mnt_child);
  794. hlist_del_init(&mnt->mnt_mp_list);
  795. hlist_del_init_rcu(&mnt->mnt_hash);
  796. attach_mnt(mnt, parent, mp);
  797. put_mountpoint(old_mp);
  798. /*
  799. * Safely avoid even the suggestion this code might sleep or
  800. * lock the mount hash by taking advantage of the knowledge that
  801. * mnt_change_mountpoint will not release the final reference
  802. * to a mountpoint.
  803. *
  804. * During mounting, the mount passed in as the parent mount will
  805. * continue to use the old mountpoint and during unmounting, the
  806. * old mountpoint will continue to exist until namespace_unlock,
  807. * which happens well after mnt_change_mountpoint.
  808. */
  809. spin_lock(&old_mountpoint->d_lock);
  810. old_mountpoint->d_lockref.count--;
  811. spin_unlock(&old_mountpoint->d_lock);
  812. mnt_add_count(old_parent, -1);
  813. }
  814. /*
  815. * vfsmount lock must be held for write
  816. */
  817. static void commit_tree(struct mount *mnt)
  818. {
  819. struct mount *parent = mnt->mnt_parent;
  820. struct mount *m;
  821. LIST_HEAD(head);
  822. struct mnt_namespace *n = parent->mnt_ns;
  823. BUG_ON(parent == mnt);
  824. list_add_tail(&head, &mnt->mnt_list);
  825. list_for_each_entry(m, &head, mnt_list)
  826. m->mnt_ns = n;
  827. list_splice(&head, n->list.prev);
  828. n->mounts += n->pending_mounts;
  829. n->pending_mounts = 0;
  830. __attach_mnt(mnt, parent);
  831. touch_mnt_namespace(n);
  832. }
  833. static struct mount *next_mnt(struct mount *p, struct mount *root)
  834. {
  835. struct list_head *next = p->mnt_mounts.next;
  836. if (next == &p->mnt_mounts) {
  837. while (1) {
  838. if (p == root)
  839. return NULL;
  840. next = p->mnt_child.next;
  841. if (next != &p->mnt_parent->mnt_mounts)
  842. break;
  843. p = p->mnt_parent;
  844. }
  845. }
  846. return list_entry(next, struct mount, mnt_child);
  847. }
  848. static struct mount *skip_mnt_tree(struct mount *p)
  849. {
  850. struct list_head *prev = p->mnt_mounts.prev;
  851. while (prev != &p->mnt_mounts) {
  852. p = list_entry(prev, struct mount, mnt_child);
  853. prev = p->mnt_mounts.prev;
  854. }
  855. return p;
  856. }
  857. struct vfsmount *
  858. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  859. {
  860. struct mount *mnt;
  861. struct dentry *root;
  862. if (!type)
  863. return ERR_PTR(-ENODEV);
  864. mnt = alloc_vfsmnt(name);
  865. if (!mnt)
  866. return ERR_PTR(-ENOMEM);
  867. if (flags & MS_KERNMOUNT)
  868. mnt->mnt.mnt_flags = MNT_INTERNAL;
  869. root = mount_fs(type, flags, name, data);
  870. if (IS_ERR(root)) {
  871. mnt_free_id(mnt);
  872. free_vfsmnt(mnt);
  873. return ERR_CAST(root);
  874. }
  875. mnt->mnt.mnt_root = root;
  876. mnt->mnt.mnt_sb = root->d_sb;
  877. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  878. mnt->mnt_parent = mnt;
  879. lock_mount_hash();
  880. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  881. unlock_mount_hash();
  882. return &mnt->mnt;
  883. }
  884. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  885. struct vfsmount *
  886. vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
  887. const char *name, void *data)
  888. {
  889. /* Until it is worked out how to pass the user namespace
  890. * through from the parent mount to the submount don't support
  891. * unprivileged mounts with submounts.
  892. */
  893. if (mountpoint->d_sb->s_user_ns != &init_user_ns)
  894. return ERR_PTR(-EPERM);
  895. return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
  896. }
  897. EXPORT_SYMBOL_GPL(vfs_submount);
  898. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  899. int flag)
  900. {
  901. struct super_block *sb = old->mnt.mnt_sb;
  902. struct mount *mnt;
  903. int err;
  904. mnt = alloc_vfsmnt(old->mnt_devname);
  905. if (!mnt)
  906. return ERR_PTR(-ENOMEM);
  907. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  908. mnt->mnt_group_id = 0; /* not a peer of original */
  909. else
  910. mnt->mnt_group_id = old->mnt_group_id;
  911. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  912. err = mnt_alloc_group_id(mnt);
  913. if (err)
  914. goto out_free;
  915. }
  916. mnt->mnt.mnt_flags = old->mnt.mnt_flags;
  917. mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
  918. /* Don't allow unprivileged users to change mount flags */
  919. if (flag & CL_UNPRIVILEGED) {
  920. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  921. if (mnt->mnt.mnt_flags & MNT_READONLY)
  922. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  923. if (mnt->mnt.mnt_flags & MNT_NODEV)
  924. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  925. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  926. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  927. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  928. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  929. }
  930. /* Don't allow unprivileged users to reveal what is under a mount */
  931. if ((flag & CL_UNPRIVILEGED) &&
  932. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  933. mnt->mnt.mnt_flags |= MNT_LOCKED;
  934. atomic_inc(&sb->s_active);
  935. mnt->mnt.mnt_sb = sb;
  936. mnt->mnt.mnt_root = dget(root);
  937. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  938. mnt->mnt_parent = mnt;
  939. lock_mount_hash();
  940. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  941. unlock_mount_hash();
  942. if ((flag & CL_SLAVE) ||
  943. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  944. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  945. mnt->mnt_master = old;
  946. CLEAR_MNT_SHARED(mnt);
  947. } else if (!(flag & CL_PRIVATE)) {
  948. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  949. list_add(&mnt->mnt_share, &old->mnt_share);
  950. if (IS_MNT_SLAVE(old))
  951. list_add(&mnt->mnt_slave, &old->mnt_slave);
  952. mnt->mnt_master = old->mnt_master;
  953. }
  954. if (flag & CL_MAKE_SHARED)
  955. set_mnt_shared(mnt);
  956. /* stick the duplicate mount on the same expiry list
  957. * as the original if that was on one */
  958. if (flag & CL_EXPIRE) {
  959. if (!list_empty(&old->mnt_expire))
  960. list_add(&mnt->mnt_expire, &old->mnt_expire);
  961. }
  962. return mnt;
  963. out_free:
  964. mnt_free_id(mnt);
  965. free_vfsmnt(mnt);
  966. return ERR_PTR(err);
  967. }
  968. static void cleanup_mnt(struct mount *mnt)
  969. {
  970. /*
  971. * This probably indicates that somebody messed
  972. * up a mnt_want/drop_write() pair. If this
  973. * happens, the filesystem was probably unable
  974. * to make r/w->r/o transitions.
  975. */
  976. /*
  977. * The locking used to deal with mnt_count decrement provides barriers,
  978. * so mnt_get_writers() below is safe.
  979. */
  980. WARN_ON(mnt_get_writers(mnt));
  981. if (unlikely(mnt->mnt_pins.first))
  982. mnt_pin_kill(mnt);
  983. fsnotify_vfsmount_delete(&mnt->mnt);
  984. dput(mnt->mnt.mnt_root);
  985. deactivate_super(mnt->mnt.mnt_sb);
  986. mnt_free_id(mnt);
  987. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  988. }
  989. static void __cleanup_mnt(struct rcu_head *head)
  990. {
  991. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  992. }
  993. static LLIST_HEAD(delayed_mntput_list);
  994. static void delayed_mntput(struct work_struct *unused)
  995. {
  996. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  997. struct llist_node *next;
  998. for (; node; node = next) {
  999. next = llist_next(node);
  1000. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  1001. }
  1002. }
  1003. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  1004. static void mntput_no_expire(struct mount *mnt)
  1005. {
  1006. rcu_read_lock();
  1007. mnt_add_count(mnt, -1);
  1008. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  1009. rcu_read_unlock();
  1010. return;
  1011. }
  1012. lock_mount_hash();
  1013. if (mnt_get_count(mnt)) {
  1014. rcu_read_unlock();
  1015. unlock_mount_hash();
  1016. return;
  1017. }
  1018. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1019. rcu_read_unlock();
  1020. unlock_mount_hash();
  1021. return;
  1022. }
  1023. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1024. rcu_read_unlock();
  1025. list_del(&mnt->mnt_instance);
  1026. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1027. struct mount *p, *tmp;
  1028. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1029. umount_mnt(p);
  1030. }
  1031. }
  1032. unlock_mount_hash();
  1033. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1034. struct task_struct *task = current;
  1035. if (likely(!(task->flags & PF_KTHREAD))) {
  1036. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1037. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1038. return;
  1039. }
  1040. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1041. schedule_delayed_work(&delayed_mntput_work, 1);
  1042. return;
  1043. }
  1044. cleanup_mnt(mnt);
  1045. }
  1046. void mntput(struct vfsmount *mnt)
  1047. {
  1048. if (mnt) {
  1049. struct mount *m = real_mount(mnt);
  1050. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1051. if (unlikely(m->mnt_expiry_mark))
  1052. m->mnt_expiry_mark = 0;
  1053. mntput_no_expire(m);
  1054. }
  1055. }
  1056. EXPORT_SYMBOL(mntput);
  1057. struct vfsmount *mntget(struct vfsmount *mnt)
  1058. {
  1059. if (mnt)
  1060. mnt_add_count(real_mount(mnt), 1);
  1061. return mnt;
  1062. }
  1063. EXPORT_SYMBOL(mntget);
  1064. struct vfsmount *mnt_clone_internal(struct path *path)
  1065. {
  1066. struct mount *p;
  1067. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1068. if (IS_ERR(p))
  1069. return ERR_CAST(p);
  1070. p->mnt.mnt_flags |= MNT_INTERNAL;
  1071. return &p->mnt;
  1072. }
  1073. static inline void mangle(struct seq_file *m, const char *s)
  1074. {
  1075. seq_escape(m, s, " \t\n\\");
  1076. }
  1077. /*
  1078. * Simple .show_options callback for filesystems which don't want to
  1079. * implement more complex mount option showing.
  1080. *
  1081. * See also save_mount_options().
  1082. */
  1083. int generic_show_options(struct seq_file *m, struct dentry *root)
  1084. {
  1085. const char *options;
  1086. rcu_read_lock();
  1087. options = rcu_dereference(root->d_sb->s_options);
  1088. if (options != NULL && options[0]) {
  1089. seq_putc(m, ',');
  1090. mangle(m, options);
  1091. }
  1092. rcu_read_unlock();
  1093. return 0;
  1094. }
  1095. EXPORT_SYMBOL(generic_show_options);
  1096. /*
  1097. * If filesystem uses generic_show_options(), this function should be
  1098. * called from the fill_super() callback.
  1099. *
  1100. * The .remount_fs callback usually needs to be handled in a special
  1101. * way, to make sure, that previous options are not overwritten if the
  1102. * remount fails.
  1103. *
  1104. * Also note, that if the filesystem's .remount_fs function doesn't
  1105. * reset all options to their default value, but changes only newly
  1106. * given options, then the displayed options will not reflect reality
  1107. * any more.
  1108. */
  1109. void save_mount_options(struct super_block *sb, char *options)
  1110. {
  1111. BUG_ON(sb->s_options);
  1112. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1113. }
  1114. EXPORT_SYMBOL(save_mount_options);
  1115. void replace_mount_options(struct super_block *sb, char *options)
  1116. {
  1117. char *old = sb->s_options;
  1118. rcu_assign_pointer(sb->s_options, options);
  1119. if (old) {
  1120. synchronize_rcu();
  1121. kfree(old);
  1122. }
  1123. }
  1124. EXPORT_SYMBOL(replace_mount_options);
  1125. #ifdef CONFIG_PROC_FS
  1126. /* iterator; we want it to have access to namespace_sem, thus here... */
  1127. static void *m_start(struct seq_file *m, loff_t *pos)
  1128. {
  1129. struct proc_mounts *p = m->private;
  1130. down_read(&namespace_sem);
  1131. if (p->cached_event == p->ns->event) {
  1132. void *v = p->cached_mount;
  1133. if (*pos == p->cached_index)
  1134. return v;
  1135. if (*pos == p->cached_index + 1) {
  1136. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1137. return p->cached_mount = v;
  1138. }
  1139. }
  1140. p->cached_event = p->ns->event;
  1141. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1142. p->cached_index = *pos;
  1143. return p->cached_mount;
  1144. }
  1145. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1146. {
  1147. struct proc_mounts *p = m->private;
  1148. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1149. p->cached_index = *pos;
  1150. return p->cached_mount;
  1151. }
  1152. static void m_stop(struct seq_file *m, void *v)
  1153. {
  1154. up_read(&namespace_sem);
  1155. }
  1156. static int m_show(struct seq_file *m, void *v)
  1157. {
  1158. struct proc_mounts *p = m->private;
  1159. struct mount *r = list_entry(v, struct mount, mnt_list);
  1160. return p->show(m, &r->mnt);
  1161. }
  1162. const struct seq_operations mounts_op = {
  1163. .start = m_start,
  1164. .next = m_next,
  1165. .stop = m_stop,
  1166. .show = m_show,
  1167. };
  1168. #endif /* CONFIG_PROC_FS */
  1169. /**
  1170. * may_umount_tree - check if a mount tree is busy
  1171. * @mnt: root of mount tree
  1172. *
  1173. * This is called to check if a tree of mounts has any
  1174. * open files, pwds, chroots or sub mounts that are
  1175. * busy.
  1176. */
  1177. int may_umount_tree(struct vfsmount *m)
  1178. {
  1179. struct mount *mnt = real_mount(m);
  1180. int actual_refs = 0;
  1181. int minimum_refs = 0;
  1182. struct mount *p;
  1183. BUG_ON(!m);
  1184. /* write lock needed for mnt_get_count */
  1185. lock_mount_hash();
  1186. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1187. actual_refs += mnt_get_count(p);
  1188. minimum_refs += 2;
  1189. }
  1190. unlock_mount_hash();
  1191. if (actual_refs > minimum_refs)
  1192. return 0;
  1193. return 1;
  1194. }
  1195. EXPORT_SYMBOL(may_umount_tree);
  1196. /**
  1197. * may_umount - check if a mount point is busy
  1198. * @mnt: root of mount
  1199. *
  1200. * This is called to check if a mount point has any
  1201. * open files, pwds, chroots or sub mounts. If the
  1202. * mount has sub mounts this will return busy
  1203. * regardless of whether the sub mounts are busy.
  1204. *
  1205. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1206. * give false negatives. The main reason why it's here is that we need
  1207. * a non-destructive way to look for easily umountable filesystems.
  1208. */
  1209. int may_umount(struct vfsmount *mnt)
  1210. {
  1211. int ret = 1;
  1212. down_read(&namespace_sem);
  1213. lock_mount_hash();
  1214. if (propagate_mount_busy(real_mount(mnt), 2))
  1215. ret = 0;
  1216. unlock_mount_hash();
  1217. up_read(&namespace_sem);
  1218. return ret;
  1219. }
  1220. EXPORT_SYMBOL(may_umount);
  1221. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1222. static void namespace_unlock(void)
  1223. {
  1224. struct hlist_head head;
  1225. hlist_move_list(&unmounted, &head);
  1226. up_write(&namespace_sem);
  1227. if (likely(hlist_empty(&head)))
  1228. return;
  1229. synchronize_rcu();
  1230. group_pin_kill(&head);
  1231. }
  1232. static inline void namespace_lock(void)
  1233. {
  1234. down_write(&namespace_sem);
  1235. }
  1236. enum umount_tree_flags {
  1237. UMOUNT_SYNC = 1,
  1238. UMOUNT_PROPAGATE = 2,
  1239. UMOUNT_CONNECTED = 4,
  1240. };
  1241. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1242. {
  1243. /* Leaving mounts connected is only valid for lazy umounts */
  1244. if (how & UMOUNT_SYNC)
  1245. return true;
  1246. /* A mount without a parent has nothing to be connected to */
  1247. if (!mnt_has_parent(mnt))
  1248. return true;
  1249. /* Because the reference counting rules change when mounts are
  1250. * unmounted and connected, umounted mounts may not be
  1251. * connected to mounted mounts.
  1252. */
  1253. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1254. return true;
  1255. /* Has it been requested that the mount remain connected? */
  1256. if (how & UMOUNT_CONNECTED)
  1257. return false;
  1258. /* Is the mount locked such that it needs to remain connected? */
  1259. if (IS_MNT_LOCKED(mnt))
  1260. return false;
  1261. /* By default disconnect the mount */
  1262. return true;
  1263. }
  1264. /*
  1265. * mount_lock must be held
  1266. * namespace_sem must be held for write
  1267. */
  1268. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1269. {
  1270. LIST_HEAD(tmp_list);
  1271. struct mount *p;
  1272. if (how & UMOUNT_PROPAGATE)
  1273. propagate_mount_unlock(mnt);
  1274. /* Gather the mounts to umount */
  1275. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1276. p->mnt.mnt_flags |= MNT_UMOUNT;
  1277. list_move(&p->mnt_list, &tmp_list);
  1278. }
  1279. /* Hide the mounts from mnt_mounts */
  1280. list_for_each_entry(p, &tmp_list, mnt_list) {
  1281. list_del_init(&p->mnt_child);
  1282. }
  1283. /* Add propogated mounts to the tmp_list */
  1284. if (how & UMOUNT_PROPAGATE)
  1285. propagate_umount(&tmp_list);
  1286. while (!list_empty(&tmp_list)) {
  1287. struct mnt_namespace *ns;
  1288. bool disconnect;
  1289. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1290. list_del_init(&p->mnt_expire);
  1291. list_del_init(&p->mnt_list);
  1292. ns = p->mnt_ns;
  1293. if (ns) {
  1294. ns->mounts--;
  1295. __touch_mnt_namespace(ns);
  1296. }
  1297. p->mnt_ns = NULL;
  1298. if (how & UMOUNT_SYNC)
  1299. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1300. disconnect = disconnect_mount(p, how);
  1301. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1302. disconnect ? &unmounted : NULL);
  1303. if (mnt_has_parent(p)) {
  1304. mnt_add_count(p->mnt_parent, -1);
  1305. if (!disconnect) {
  1306. /* Don't forget about p */
  1307. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1308. } else {
  1309. umount_mnt(p);
  1310. }
  1311. }
  1312. change_mnt_propagation(p, MS_PRIVATE);
  1313. }
  1314. }
  1315. static void shrink_submounts(struct mount *mnt);
  1316. static int do_umount(struct mount *mnt, int flags)
  1317. {
  1318. struct super_block *sb = mnt->mnt.mnt_sb;
  1319. int retval;
  1320. retval = security_sb_umount(&mnt->mnt, flags);
  1321. if (retval)
  1322. return retval;
  1323. /*
  1324. * Allow userspace to request a mountpoint be expired rather than
  1325. * unmounting unconditionally. Unmount only happens if:
  1326. * (1) the mark is already set (the mark is cleared by mntput())
  1327. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1328. */
  1329. if (flags & MNT_EXPIRE) {
  1330. if (&mnt->mnt == current->fs->root.mnt ||
  1331. flags & (MNT_FORCE | MNT_DETACH))
  1332. return -EINVAL;
  1333. /*
  1334. * probably don't strictly need the lock here if we examined
  1335. * all race cases, but it's a slowpath.
  1336. */
  1337. lock_mount_hash();
  1338. if (mnt_get_count(mnt) != 2) {
  1339. unlock_mount_hash();
  1340. return -EBUSY;
  1341. }
  1342. unlock_mount_hash();
  1343. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1344. return -EAGAIN;
  1345. }
  1346. /*
  1347. * If we may have to abort operations to get out of this
  1348. * mount, and they will themselves hold resources we must
  1349. * allow the fs to do things. In the Unix tradition of
  1350. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1351. * might fail to complete on the first run through as other tasks
  1352. * must return, and the like. Thats for the mount program to worry
  1353. * about for the moment.
  1354. */
  1355. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1356. sb->s_op->umount_begin(sb);
  1357. }
  1358. /*
  1359. * No sense to grab the lock for this test, but test itself looks
  1360. * somewhat bogus. Suggestions for better replacement?
  1361. * Ho-hum... In principle, we might treat that as umount + switch
  1362. * to rootfs. GC would eventually take care of the old vfsmount.
  1363. * Actually it makes sense, especially if rootfs would contain a
  1364. * /reboot - static binary that would close all descriptors and
  1365. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1366. */
  1367. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1368. /*
  1369. * Special case for "unmounting" root ...
  1370. * we just try to remount it readonly.
  1371. */
  1372. if (!capable(CAP_SYS_ADMIN))
  1373. return -EPERM;
  1374. down_write(&sb->s_umount);
  1375. if (!(sb->s_flags & MS_RDONLY))
  1376. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1377. up_write(&sb->s_umount);
  1378. return retval;
  1379. }
  1380. namespace_lock();
  1381. lock_mount_hash();
  1382. event++;
  1383. if (flags & MNT_DETACH) {
  1384. if (!list_empty(&mnt->mnt_list))
  1385. umount_tree(mnt, UMOUNT_PROPAGATE);
  1386. retval = 0;
  1387. } else {
  1388. shrink_submounts(mnt);
  1389. retval = -EBUSY;
  1390. if (!propagate_mount_busy(mnt, 2)) {
  1391. if (!list_empty(&mnt->mnt_list))
  1392. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1393. retval = 0;
  1394. }
  1395. }
  1396. unlock_mount_hash();
  1397. namespace_unlock();
  1398. return retval;
  1399. }
  1400. /*
  1401. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1402. *
  1403. * During unlink, rmdir, and d_drop it is possible to loose the path
  1404. * to an existing mountpoint, and wind up leaking the mount.
  1405. * detach_mounts allows lazily unmounting those mounts instead of
  1406. * leaking them.
  1407. *
  1408. * The caller may hold dentry->d_inode->i_mutex.
  1409. */
  1410. void __detach_mounts(struct dentry *dentry)
  1411. {
  1412. struct mountpoint *mp;
  1413. struct mount *mnt;
  1414. namespace_lock();
  1415. lock_mount_hash();
  1416. mp = lookup_mountpoint(dentry);
  1417. if (IS_ERR_OR_NULL(mp))
  1418. goto out_unlock;
  1419. event++;
  1420. while (!hlist_empty(&mp->m_list)) {
  1421. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1422. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1423. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1424. umount_mnt(mnt);
  1425. }
  1426. else umount_tree(mnt, UMOUNT_CONNECTED);
  1427. }
  1428. put_mountpoint(mp);
  1429. out_unlock:
  1430. unlock_mount_hash();
  1431. namespace_unlock();
  1432. }
  1433. /*
  1434. * Is the caller allowed to modify his namespace?
  1435. */
  1436. static inline bool may_mount(void)
  1437. {
  1438. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1439. }
  1440. static inline bool may_mandlock(void)
  1441. {
  1442. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1443. return false;
  1444. #endif
  1445. return capable(CAP_SYS_ADMIN);
  1446. }
  1447. /*
  1448. * Now umount can handle mount points as well as block devices.
  1449. * This is important for filesystems which use unnamed block devices.
  1450. *
  1451. * We now support a flag for forced unmount like the other 'big iron'
  1452. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1453. */
  1454. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1455. {
  1456. struct path path;
  1457. struct mount *mnt;
  1458. int retval;
  1459. int lookup_flags = 0;
  1460. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1461. return -EINVAL;
  1462. if (!may_mount())
  1463. return -EPERM;
  1464. if (!(flags & UMOUNT_NOFOLLOW))
  1465. lookup_flags |= LOOKUP_FOLLOW;
  1466. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1467. if (retval)
  1468. goto out;
  1469. mnt = real_mount(path.mnt);
  1470. retval = -EINVAL;
  1471. if (path.dentry != path.mnt->mnt_root)
  1472. goto dput_and_out;
  1473. if (!check_mnt(mnt))
  1474. goto dput_and_out;
  1475. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1476. goto dput_and_out;
  1477. retval = -EPERM;
  1478. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1479. goto dput_and_out;
  1480. retval = do_umount(mnt, flags);
  1481. dput_and_out:
  1482. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1483. dput(path.dentry);
  1484. mntput_no_expire(mnt);
  1485. out:
  1486. return retval;
  1487. }
  1488. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1489. /*
  1490. * The 2.0 compatible umount. No flags.
  1491. */
  1492. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1493. {
  1494. return sys_umount(name, 0);
  1495. }
  1496. #endif
  1497. static bool is_mnt_ns_file(struct dentry *dentry)
  1498. {
  1499. /* Is this a proxy for a mount namespace? */
  1500. return dentry->d_op == &ns_dentry_operations &&
  1501. dentry->d_fsdata == &mntns_operations;
  1502. }
  1503. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1504. {
  1505. return container_of(ns, struct mnt_namespace, ns);
  1506. }
  1507. static bool mnt_ns_loop(struct dentry *dentry)
  1508. {
  1509. /* Could bind mounting the mount namespace inode cause a
  1510. * mount namespace loop?
  1511. */
  1512. struct mnt_namespace *mnt_ns;
  1513. if (!is_mnt_ns_file(dentry))
  1514. return false;
  1515. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1516. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1517. }
  1518. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1519. int flag)
  1520. {
  1521. struct mount *res, *p, *q, *r, *parent;
  1522. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1523. return ERR_PTR(-EINVAL);
  1524. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1525. return ERR_PTR(-EINVAL);
  1526. res = q = clone_mnt(mnt, dentry, flag);
  1527. if (IS_ERR(q))
  1528. return q;
  1529. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1530. p = mnt;
  1531. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1532. struct mount *s;
  1533. if (!is_subdir(r->mnt_mountpoint, dentry))
  1534. continue;
  1535. for (s = r; s; s = next_mnt(s, r)) {
  1536. if (!(flag & CL_COPY_UNBINDABLE) &&
  1537. IS_MNT_UNBINDABLE(s)) {
  1538. s = skip_mnt_tree(s);
  1539. continue;
  1540. }
  1541. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1542. is_mnt_ns_file(s->mnt.mnt_root)) {
  1543. s = skip_mnt_tree(s);
  1544. continue;
  1545. }
  1546. while (p != s->mnt_parent) {
  1547. p = p->mnt_parent;
  1548. q = q->mnt_parent;
  1549. }
  1550. p = s;
  1551. parent = q;
  1552. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1553. if (IS_ERR(q))
  1554. goto out;
  1555. lock_mount_hash();
  1556. list_add_tail(&q->mnt_list, &res->mnt_list);
  1557. attach_mnt(q, parent, p->mnt_mp);
  1558. unlock_mount_hash();
  1559. }
  1560. }
  1561. return res;
  1562. out:
  1563. if (res) {
  1564. lock_mount_hash();
  1565. umount_tree(res, UMOUNT_SYNC);
  1566. unlock_mount_hash();
  1567. }
  1568. return q;
  1569. }
  1570. /* Caller should check returned pointer for errors */
  1571. struct vfsmount *collect_mounts(struct path *path)
  1572. {
  1573. struct mount *tree;
  1574. namespace_lock();
  1575. if (!check_mnt(real_mount(path->mnt)))
  1576. tree = ERR_PTR(-EINVAL);
  1577. else
  1578. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1579. CL_COPY_ALL | CL_PRIVATE);
  1580. namespace_unlock();
  1581. if (IS_ERR(tree))
  1582. return ERR_CAST(tree);
  1583. return &tree->mnt;
  1584. }
  1585. void drop_collected_mounts(struct vfsmount *mnt)
  1586. {
  1587. namespace_lock();
  1588. lock_mount_hash();
  1589. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1590. unlock_mount_hash();
  1591. namespace_unlock();
  1592. }
  1593. /**
  1594. * clone_private_mount - create a private clone of a path
  1595. *
  1596. * This creates a new vfsmount, which will be the clone of @path. The new will
  1597. * not be attached anywhere in the namespace and will be private (i.e. changes
  1598. * to the originating mount won't be propagated into this).
  1599. *
  1600. * Release with mntput().
  1601. */
  1602. struct vfsmount *clone_private_mount(struct path *path)
  1603. {
  1604. struct mount *old_mnt = real_mount(path->mnt);
  1605. struct mount *new_mnt;
  1606. if (IS_MNT_UNBINDABLE(old_mnt))
  1607. return ERR_PTR(-EINVAL);
  1608. down_read(&namespace_sem);
  1609. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1610. up_read(&namespace_sem);
  1611. if (IS_ERR(new_mnt))
  1612. return ERR_CAST(new_mnt);
  1613. return &new_mnt->mnt;
  1614. }
  1615. EXPORT_SYMBOL_GPL(clone_private_mount);
  1616. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1617. struct vfsmount *root)
  1618. {
  1619. struct mount *mnt;
  1620. int res = f(root, arg);
  1621. if (res)
  1622. return res;
  1623. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1624. res = f(&mnt->mnt, arg);
  1625. if (res)
  1626. return res;
  1627. }
  1628. return 0;
  1629. }
  1630. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1631. {
  1632. struct mount *p;
  1633. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1634. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1635. mnt_release_group_id(p);
  1636. }
  1637. }
  1638. static int invent_group_ids(struct mount *mnt, bool recurse)
  1639. {
  1640. struct mount *p;
  1641. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1642. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1643. int err = mnt_alloc_group_id(p);
  1644. if (err) {
  1645. cleanup_group_ids(mnt, p);
  1646. return err;
  1647. }
  1648. }
  1649. }
  1650. return 0;
  1651. }
  1652. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1653. {
  1654. unsigned int max = READ_ONCE(sysctl_mount_max);
  1655. unsigned int mounts = 0, old, pending, sum;
  1656. struct mount *p;
  1657. for (p = mnt; p; p = next_mnt(p, mnt))
  1658. mounts++;
  1659. old = ns->mounts;
  1660. pending = ns->pending_mounts;
  1661. sum = old + pending;
  1662. if ((old > sum) ||
  1663. (pending > sum) ||
  1664. (max < sum) ||
  1665. (mounts > (max - sum)))
  1666. return -ENOSPC;
  1667. ns->pending_mounts = pending + mounts;
  1668. return 0;
  1669. }
  1670. /*
  1671. * @source_mnt : mount tree to be attached
  1672. * @nd : place the mount tree @source_mnt is attached
  1673. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1674. * store the parent mount and mountpoint dentry.
  1675. * (done when source_mnt is moved)
  1676. *
  1677. * NOTE: in the table below explains the semantics when a source mount
  1678. * of a given type is attached to a destination mount of a given type.
  1679. * ---------------------------------------------------------------------------
  1680. * | BIND MOUNT OPERATION |
  1681. * |**************************************************************************
  1682. * | source-->| shared | private | slave | unbindable |
  1683. * | dest | | | | |
  1684. * | | | | | | |
  1685. * | v | | | | |
  1686. * |**************************************************************************
  1687. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1688. * | | | | | |
  1689. * |non-shared| shared (+) | private | slave (*) | invalid |
  1690. * ***************************************************************************
  1691. * A bind operation clones the source mount and mounts the clone on the
  1692. * destination mount.
  1693. *
  1694. * (++) the cloned mount is propagated to all the mounts in the propagation
  1695. * tree of the destination mount and the cloned mount is added to
  1696. * the peer group of the source mount.
  1697. * (+) the cloned mount is created under the destination mount and is marked
  1698. * as shared. The cloned mount is added to the peer group of the source
  1699. * mount.
  1700. * (+++) the mount is propagated to all the mounts in the propagation tree
  1701. * of the destination mount and the cloned mount is made slave
  1702. * of the same master as that of the source mount. The cloned mount
  1703. * is marked as 'shared and slave'.
  1704. * (*) the cloned mount is made a slave of the same master as that of the
  1705. * source mount.
  1706. *
  1707. * ---------------------------------------------------------------------------
  1708. * | MOVE MOUNT OPERATION |
  1709. * |**************************************************************************
  1710. * | source-->| shared | private | slave | unbindable |
  1711. * | dest | | | | |
  1712. * | | | | | | |
  1713. * | v | | | | |
  1714. * |**************************************************************************
  1715. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1716. * | | | | | |
  1717. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1718. * ***************************************************************************
  1719. *
  1720. * (+) the mount is moved to the destination. And is then propagated to
  1721. * all the mounts in the propagation tree of the destination mount.
  1722. * (+*) the mount is moved to the destination.
  1723. * (+++) the mount is moved to the destination and is then propagated to
  1724. * all the mounts belonging to the destination mount's propagation tree.
  1725. * the mount is marked as 'shared and slave'.
  1726. * (*) the mount continues to be a slave at the new location.
  1727. *
  1728. * if the source mount is a tree, the operations explained above is
  1729. * applied to each mount in the tree.
  1730. * Must be called without spinlocks held, since this function can sleep
  1731. * in allocations.
  1732. */
  1733. static int attach_recursive_mnt(struct mount *source_mnt,
  1734. struct mount *dest_mnt,
  1735. struct mountpoint *dest_mp,
  1736. struct path *parent_path)
  1737. {
  1738. HLIST_HEAD(tree_list);
  1739. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1740. struct mountpoint *smp;
  1741. struct mount *child, *p;
  1742. struct hlist_node *n;
  1743. int err;
  1744. /* Preallocate a mountpoint in case the new mounts need
  1745. * to be tucked under other mounts.
  1746. */
  1747. smp = get_mountpoint(source_mnt->mnt.mnt_root);
  1748. if (IS_ERR(smp))
  1749. return PTR_ERR(smp);
  1750. /* Is there space to add these mounts to the mount namespace? */
  1751. if (!parent_path) {
  1752. err = count_mounts(ns, source_mnt);
  1753. if (err)
  1754. goto out;
  1755. }
  1756. if (IS_MNT_SHARED(dest_mnt)) {
  1757. err = invent_group_ids(source_mnt, true);
  1758. if (err)
  1759. goto out;
  1760. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1761. lock_mount_hash();
  1762. if (err)
  1763. goto out_cleanup_ids;
  1764. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1765. set_mnt_shared(p);
  1766. } else {
  1767. lock_mount_hash();
  1768. }
  1769. if (parent_path) {
  1770. detach_mnt(source_mnt, parent_path);
  1771. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1772. touch_mnt_namespace(source_mnt->mnt_ns);
  1773. } else {
  1774. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1775. commit_tree(source_mnt);
  1776. }
  1777. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1778. struct mount *q;
  1779. hlist_del_init(&child->mnt_hash);
  1780. q = __lookup_mnt(&child->mnt_parent->mnt,
  1781. child->mnt_mountpoint);
  1782. if (q)
  1783. mnt_change_mountpoint(child, smp, q);
  1784. commit_tree(child);
  1785. }
  1786. put_mountpoint(smp);
  1787. unlock_mount_hash();
  1788. return 0;
  1789. out_cleanup_ids:
  1790. while (!hlist_empty(&tree_list)) {
  1791. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1792. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1793. umount_tree(child, UMOUNT_SYNC);
  1794. }
  1795. unlock_mount_hash();
  1796. cleanup_group_ids(source_mnt, NULL);
  1797. out:
  1798. ns->pending_mounts = 0;
  1799. read_seqlock_excl(&mount_lock);
  1800. put_mountpoint(smp);
  1801. read_sequnlock_excl(&mount_lock);
  1802. return err;
  1803. }
  1804. static struct mountpoint *lock_mount(struct path *path)
  1805. {
  1806. struct vfsmount *mnt;
  1807. struct dentry *dentry = path->dentry;
  1808. retry:
  1809. inode_lock(dentry->d_inode);
  1810. if (unlikely(cant_mount(dentry))) {
  1811. inode_unlock(dentry->d_inode);
  1812. return ERR_PTR(-ENOENT);
  1813. }
  1814. namespace_lock();
  1815. mnt = lookup_mnt(path);
  1816. if (likely(!mnt)) {
  1817. struct mountpoint *mp = get_mountpoint(dentry);
  1818. if (IS_ERR(mp)) {
  1819. namespace_unlock();
  1820. inode_unlock(dentry->d_inode);
  1821. return mp;
  1822. }
  1823. return mp;
  1824. }
  1825. namespace_unlock();
  1826. inode_unlock(path->dentry->d_inode);
  1827. path_put(path);
  1828. path->mnt = mnt;
  1829. dentry = path->dentry = dget(mnt->mnt_root);
  1830. goto retry;
  1831. }
  1832. static void unlock_mount(struct mountpoint *where)
  1833. {
  1834. struct dentry *dentry = where->m_dentry;
  1835. read_seqlock_excl(&mount_lock);
  1836. put_mountpoint(where);
  1837. read_sequnlock_excl(&mount_lock);
  1838. namespace_unlock();
  1839. inode_unlock(dentry->d_inode);
  1840. }
  1841. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1842. {
  1843. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1844. return -EINVAL;
  1845. if (d_is_dir(mp->m_dentry) !=
  1846. d_is_dir(mnt->mnt.mnt_root))
  1847. return -ENOTDIR;
  1848. return attach_recursive_mnt(mnt, p, mp, NULL);
  1849. }
  1850. /*
  1851. * Sanity check the flags to change_mnt_propagation.
  1852. */
  1853. static int flags_to_propagation_type(int flags)
  1854. {
  1855. int type = flags & ~(MS_REC | MS_SILENT);
  1856. /* Fail if any non-propagation flags are set */
  1857. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1858. return 0;
  1859. /* Only one propagation flag should be set */
  1860. if (!is_power_of_2(type))
  1861. return 0;
  1862. return type;
  1863. }
  1864. /*
  1865. * recursively change the type of the mountpoint.
  1866. */
  1867. static int do_change_type(struct path *path, int flag)
  1868. {
  1869. struct mount *m;
  1870. struct mount *mnt = real_mount(path->mnt);
  1871. int recurse = flag & MS_REC;
  1872. int type;
  1873. int err = 0;
  1874. if (path->dentry != path->mnt->mnt_root)
  1875. return -EINVAL;
  1876. type = flags_to_propagation_type(flag);
  1877. if (!type)
  1878. return -EINVAL;
  1879. namespace_lock();
  1880. if (type == MS_SHARED) {
  1881. err = invent_group_ids(mnt, recurse);
  1882. if (err)
  1883. goto out_unlock;
  1884. }
  1885. lock_mount_hash();
  1886. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1887. change_mnt_propagation(m, type);
  1888. unlock_mount_hash();
  1889. out_unlock:
  1890. namespace_unlock();
  1891. return err;
  1892. }
  1893. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1894. {
  1895. struct mount *child;
  1896. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1897. if (!is_subdir(child->mnt_mountpoint, dentry))
  1898. continue;
  1899. if (child->mnt.mnt_flags & MNT_LOCKED)
  1900. return true;
  1901. }
  1902. return false;
  1903. }
  1904. /*
  1905. * do loopback mount.
  1906. */
  1907. static int do_loopback(struct path *path, const char *old_name,
  1908. int recurse)
  1909. {
  1910. struct path old_path;
  1911. struct mount *mnt = NULL, *old, *parent;
  1912. struct mountpoint *mp;
  1913. int err;
  1914. if (!old_name || !*old_name)
  1915. return -EINVAL;
  1916. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1917. if (err)
  1918. return err;
  1919. err = -EINVAL;
  1920. if (mnt_ns_loop(old_path.dentry))
  1921. goto out;
  1922. mp = lock_mount(path);
  1923. err = PTR_ERR(mp);
  1924. if (IS_ERR(mp))
  1925. goto out;
  1926. old = real_mount(old_path.mnt);
  1927. parent = real_mount(path->mnt);
  1928. err = -EINVAL;
  1929. if (IS_MNT_UNBINDABLE(old))
  1930. goto out2;
  1931. if (!check_mnt(parent))
  1932. goto out2;
  1933. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1934. goto out2;
  1935. if (!recurse && has_locked_children(old, old_path.dentry))
  1936. goto out2;
  1937. if (recurse)
  1938. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1939. else
  1940. mnt = clone_mnt(old, old_path.dentry, 0);
  1941. if (IS_ERR(mnt)) {
  1942. err = PTR_ERR(mnt);
  1943. goto out2;
  1944. }
  1945. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1946. err = graft_tree(mnt, parent, mp);
  1947. if (err) {
  1948. lock_mount_hash();
  1949. umount_tree(mnt, UMOUNT_SYNC);
  1950. unlock_mount_hash();
  1951. }
  1952. out2:
  1953. unlock_mount(mp);
  1954. out:
  1955. path_put(&old_path);
  1956. return err;
  1957. }
  1958. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1959. {
  1960. int error = 0;
  1961. int readonly_request = 0;
  1962. if (ms_flags & MS_RDONLY)
  1963. readonly_request = 1;
  1964. if (readonly_request == __mnt_is_readonly(mnt))
  1965. return 0;
  1966. if (readonly_request)
  1967. error = mnt_make_readonly(real_mount(mnt));
  1968. else
  1969. __mnt_unmake_readonly(real_mount(mnt));
  1970. return error;
  1971. }
  1972. /*
  1973. * change filesystem flags. dir should be a physical root of filesystem.
  1974. * If you've mounted a non-root directory somewhere and want to do remount
  1975. * on it - tough luck.
  1976. */
  1977. static int do_remount(struct path *path, int flags, int mnt_flags,
  1978. void *data)
  1979. {
  1980. int err;
  1981. struct super_block *sb = path->mnt->mnt_sb;
  1982. struct mount *mnt = real_mount(path->mnt);
  1983. if (!check_mnt(mnt))
  1984. return -EINVAL;
  1985. if (path->dentry != path->mnt->mnt_root)
  1986. return -EINVAL;
  1987. /* Don't allow changing of locked mnt flags.
  1988. *
  1989. * No locks need to be held here while testing the various
  1990. * MNT_LOCK flags because those flags can never be cleared
  1991. * once they are set.
  1992. */
  1993. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1994. !(mnt_flags & MNT_READONLY)) {
  1995. return -EPERM;
  1996. }
  1997. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1998. !(mnt_flags & MNT_NODEV)) {
  1999. return -EPERM;
  2000. }
  2001. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  2002. !(mnt_flags & MNT_NOSUID)) {
  2003. return -EPERM;
  2004. }
  2005. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  2006. !(mnt_flags & MNT_NOEXEC)) {
  2007. return -EPERM;
  2008. }
  2009. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2010. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2011. return -EPERM;
  2012. }
  2013. err = security_sb_remount(sb, data);
  2014. if (err)
  2015. return err;
  2016. down_write(&sb->s_umount);
  2017. if (flags & MS_BIND)
  2018. err = change_mount_flags(path->mnt, flags);
  2019. else if (!capable(CAP_SYS_ADMIN))
  2020. err = -EPERM;
  2021. else
  2022. err = do_remount_sb(sb, flags, data, 0);
  2023. if (!err) {
  2024. lock_mount_hash();
  2025. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2026. mnt->mnt.mnt_flags = mnt_flags;
  2027. touch_mnt_namespace(mnt->mnt_ns);
  2028. unlock_mount_hash();
  2029. }
  2030. up_write(&sb->s_umount);
  2031. return err;
  2032. }
  2033. static inline int tree_contains_unbindable(struct mount *mnt)
  2034. {
  2035. struct mount *p;
  2036. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2037. if (IS_MNT_UNBINDABLE(p))
  2038. return 1;
  2039. }
  2040. return 0;
  2041. }
  2042. static int do_move_mount(struct path *path, const char *old_name)
  2043. {
  2044. struct path old_path, parent_path;
  2045. struct mount *p;
  2046. struct mount *old;
  2047. struct mountpoint *mp;
  2048. int err;
  2049. if (!old_name || !*old_name)
  2050. return -EINVAL;
  2051. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2052. if (err)
  2053. return err;
  2054. mp = lock_mount(path);
  2055. err = PTR_ERR(mp);
  2056. if (IS_ERR(mp))
  2057. goto out;
  2058. old = real_mount(old_path.mnt);
  2059. p = real_mount(path->mnt);
  2060. err = -EINVAL;
  2061. if (!check_mnt(p) || !check_mnt(old))
  2062. goto out1;
  2063. if (old->mnt.mnt_flags & MNT_LOCKED)
  2064. goto out1;
  2065. err = -EINVAL;
  2066. if (old_path.dentry != old_path.mnt->mnt_root)
  2067. goto out1;
  2068. if (!mnt_has_parent(old))
  2069. goto out1;
  2070. if (d_is_dir(path->dentry) !=
  2071. d_is_dir(old_path.dentry))
  2072. goto out1;
  2073. /*
  2074. * Don't move a mount residing in a shared parent.
  2075. */
  2076. if (IS_MNT_SHARED(old->mnt_parent))
  2077. goto out1;
  2078. /*
  2079. * Don't move a mount tree containing unbindable mounts to a destination
  2080. * mount which is shared.
  2081. */
  2082. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2083. goto out1;
  2084. err = -ELOOP;
  2085. for (; mnt_has_parent(p); p = p->mnt_parent)
  2086. if (p == old)
  2087. goto out1;
  2088. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2089. if (err)
  2090. goto out1;
  2091. /* if the mount is moved, it should no longer be expire
  2092. * automatically */
  2093. list_del_init(&old->mnt_expire);
  2094. out1:
  2095. unlock_mount(mp);
  2096. out:
  2097. if (!err)
  2098. path_put(&parent_path);
  2099. path_put(&old_path);
  2100. return err;
  2101. }
  2102. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2103. {
  2104. int err;
  2105. const char *subtype = strchr(fstype, '.');
  2106. if (subtype) {
  2107. subtype++;
  2108. err = -EINVAL;
  2109. if (!subtype[0])
  2110. goto err;
  2111. } else
  2112. subtype = "";
  2113. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2114. err = -ENOMEM;
  2115. if (!mnt->mnt_sb->s_subtype)
  2116. goto err;
  2117. return mnt;
  2118. err:
  2119. mntput(mnt);
  2120. return ERR_PTR(err);
  2121. }
  2122. /*
  2123. * add a mount into a namespace's mount tree
  2124. */
  2125. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2126. {
  2127. struct mountpoint *mp;
  2128. struct mount *parent;
  2129. int err;
  2130. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2131. mp = lock_mount(path);
  2132. if (IS_ERR(mp))
  2133. return PTR_ERR(mp);
  2134. parent = real_mount(path->mnt);
  2135. err = -EINVAL;
  2136. if (unlikely(!check_mnt(parent))) {
  2137. /* that's acceptable only for automounts done in private ns */
  2138. if (!(mnt_flags & MNT_SHRINKABLE))
  2139. goto unlock;
  2140. /* ... and for those we'd better have mountpoint still alive */
  2141. if (!parent->mnt_ns)
  2142. goto unlock;
  2143. }
  2144. /* Refuse the same filesystem on the same mount point */
  2145. err = -EBUSY;
  2146. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2147. path->mnt->mnt_root == path->dentry)
  2148. goto unlock;
  2149. err = -EINVAL;
  2150. if (d_is_symlink(newmnt->mnt.mnt_root))
  2151. goto unlock;
  2152. newmnt->mnt.mnt_flags = mnt_flags;
  2153. err = graft_tree(newmnt, parent, mp);
  2154. unlock:
  2155. unlock_mount(mp);
  2156. return err;
  2157. }
  2158. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2159. /*
  2160. * create a new mount for userspace and request it to be added into the
  2161. * namespace's tree
  2162. */
  2163. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2164. int mnt_flags, const char *name, void *data)
  2165. {
  2166. struct file_system_type *type;
  2167. struct vfsmount *mnt;
  2168. int err;
  2169. if (!fstype)
  2170. return -EINVAL;
  2171. type = get_fs_type(fstype);
  2172. if (!type)
  2173. return -ENODEV;
  2174. mnt = vfs_kern_mount(type, flags, name, data);
  2175. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2176. !mnt->mnt_sb->s_subtype)
  2177. mnt = fs_set_subtype(mnt, fstype);
  2178. put_filesystem(type);
  2179. if (IS_ERR(mnt))
  2180. return PTR_ERR(mnt);
  2181. if (mount_too_revealing(mnt, &mnt_flags)) {
  2182. mntput(mnt);
  2183. return -EPERM;
  2184. }
  2185. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2186. if (err)
  2187. mntput(mnt);
  2188. return err;
  2189. }
  2190. int finish_automount(struct vfsmount *m, struct path *path)
  2191. {
  2192. struct mount *mnt = real_mount(m);
  2193. int err;
  2194. /* The new mount record should have at least 2 refs to prevent it being
  2195. * expired before we get a chance to add it
  2196. */
  2197. BUG_ON(mnt_get_count(mnt) < 2);
  2198. if (m->mnt_sb == path->mnt->mnt_sb &&
  2199. m->mnt_root == path->dentry) {
  2200. err = -ELOOP;
  2201. goto fail;
  2202. }
  2203. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2204. if (!err)
  2205. return 0;
  2206. fail:
  2207. /* remove m from any expiration list it may be on */
  2208. if (!list_empty(&mnt->mnt_expire)) {
  2209. namespace_lock();
  2210. list_del_init(&mnt->mnt_expire);
  2211. namespace_unlock();
  2212. }
  2213. mntput(m);
  2214. mntput(m);
  2215. return err;
  2216. }
  2217. /**
  2218. * mnt_set_expiry - Put a mount on an expiration list
  2219. * @mnt: The mount to list.
  2220. * @expiry_list: The list to add the mount to.
  2221. */
  2222. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2223. {
  2224. namespace_lock();
  2225. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2226. namespace_unlock();
  2227. }
  2228. EXPORT_SYMBOL(mnt_set_expiry);
  2229. /*
  2230. * process a list of expirable mountpoints with the intent of discarding any
  2231. * mountpoints that aren't in use and haven't been touched since last we came
  2232. * here
  2233. */
  2234. void mark_mounts_for_expiry(struct list_head *mounts)
  2235. {
  2236. struct mount *mnt, *next;
  2237. LIST_HEAD(graveyard);
  2238. if (list_empty(mounts))
  2239. return;
  2240. namespace_lock();
  2241. lock_mount_hash();
  2242. /* extract from the expiration list every vfsmount that matches the
  2243. * following criteria:
  2244. * - only referenced by its parent vfsmount
  2245. * - still marked for expiry (marked on the last call here; marks are
  2246. * cleared by mntput())
  2247. */
  2248. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2249. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2250. propagate_mount_busy(mnt, 1))
  2251. continue;
  2252. list_move(&mnt->mnt_expire, &graveyard);
  2253. }
  2254. while (!list_empty(&graveyard)) {
  2255. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2256. touch_mnt_namespace(mnt->mnt_ns);
  2257. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2258. }
  2259. unlock_mount_hash();
  2260. namespace_unlock();
  2261. }
  2262. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2263. /*
  2264. * Ripoff of 'select_parent()'
  2265. *
  2266. * search the list of submounts for a given mountpoint, and move any
  2267. * shrinkable submounts to the 'graveyard' list.
  2268. */
  2269. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2270. {
  2271. struct mount *this_parent = parent;
  2272. struct list_head *next;
  2273. int found = 0;
  2274. repeat:
  2275. next = this_parent->mnt_mounts.next;
  2276. resume:
  2277. while (next != &this_parent->mnt_mounts) {
  2278. struct list_head *tmp = next;
  2279. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2280. next = tmp->next;
  2281. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2282. continue;
  2283. /*
  2284. * Descend a level if the d_mounts list is non-empty.
  2285. */
  2286. if (!list_empty(&mnt->mnt_mounts)) {
  2287. this_parent = mnt;
  2288. goto repeat;
  2289. }
  2290. if (!propagate_mount_busy(mnt, 1)) {
  2291. list_move_tail(&mnt->mnt_expire, graveyard);
  2292. found++;
  2293. }
  2294. }
  2295. /*
  2296. * All done at this level ... ascend and resume the search
  2297. */
  2298. if (this_parent != parent) {
  2299. next = this_parent->mnt_child.next;
  2300. this_parent = this_parent->mnt_parent;
  2301. goto resume;
  2302. }
  2303. return found;
  2304. }
  2305. /*
  2306. * process a list of expirable mountpoints with the intent of discarding any
  2307. * submounts of a specific parent mountpoint
  2308. *
  2309. * mount_lock must be held for write
  2310. */
  2311. static void shrink_submounts(struct mount *mnt)
  2312. {
  2313. LIST_HEAD(graveyard);
  2314. struct mount *m;
  2315. /* extract submounts of 'mountpoint' from the expiration list */
  2316. while (select_submounts(mnt, &graveyard)) {
  2317. while (!list_empty(&graveyard)) {
  2318. m = list_first_entry(&graveyard, struct mount,
  2319. mnt_expire);
  2320. touch_mnt_namespace(m->mnt_ns);
  2321. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2322. }
  2323. }
  2324. }
  2325. /*
  2326. * Some copy_from_user() implementations do not return the exact number of
  2327. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2328. * Note that this function differs from copy_from_user() in that it will oops
  2329. * on bad values of `to', rather than returning a short copy.
  2330. */
  2331. static long exact_copy_from_user(void *to, const void __user * from,
  2332. unsigned long n)
  2333. {
  2334. char *t = to;
  2335. const char __user *f = from;
  2336. char c;
  2337. if (!access_ok(VERIFY_READ, from, n))
  2338. return n;
  2339. while (n) {
  2340. if (__get_user(c, f)) {
  2341. memset(t, 0, n);
  2342. break;
  2343. }
  2344. *t++ = c;
  2345. f++;
  2346. n--;
  2347. }
  2348. return n;
  2349. }
  2350. void *copy_mount_options(const void __user * data)
  2351. {
  2352. int i;
  2353. unsigned long size;
  2354. char *copy;
  2355. if (!data)
  2356. return NULL;
  2357. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2358. if (!copy)
  2359. return ERR_PTR(-ENOMEM);
  2360. /* We only care that *some* data at the address the user
  2361. * gave us is valid. Just in case, we'll zero
  2362. * the remainder of the page.
  2363. */
  2364. /* copy_from_user cannot cross TASK_SIZE ! */
  2365. size = TASK_SIZE - (unsigned long)data;
  2366. if (size > PAGE_SIZE)
  2367. size = PAGE_SIZE;
  2368. i = size - exact_copy_from_user(copy, data, size);
  2369. if (!i) {
  2370. kfree(copy);
  2371. return ERR_PTR(-EFAULT);
  2372. }
  2373. if (i != PAGE_SIZE)
  2374. memset(copy + i, 0, PAGE_SIZE - i);
  2375. return copy;
  2376. }
  2377. char *copy_mount_string(const void __user *data)
  2378. {
  2379. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2380. }
  2381. /*
  2382. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2383. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2384. *
  2385. * data is a (void *) that can point to any structure up to
  2386. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2387. * information (or be NULL).
  2388. *
  2389. * Pre-0.97 versions of mount() didn't have a flags word.
  2390. * When the flags word was introduced its top half was required
  2391. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2392. * Therefore, if this magic number is present, it carries no information
  2393. * and must be discarded.
  2394. */
  2395. long do_mount(const char *dev_name, const char __user *dir_name,
  2396. const char *type_page, unsigned long flags, void *data_page)
  2397. {
  2398. struct path path;
  2399. int retval = 0;
  2400. int mnt_flags = 0;
  2401. /* Discard magic */
  2402. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2403. flags &= ~MS_MGC_MSK;
  2404. /* Basic sanity checks */
  2405. if (data_page)
  2406. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2407. /* ... and get the mountpoint */
  2408. retval = user_path(dir_name, &path);
  2409. if (retval)
  2410. return retval;
  2411. retval = security_sb_mount(dev_name, &path,
  2412. type_page, flags, data_page);
  2413. if (!retval && !may_mount())
  2414. retval = -EPERM;
  2415. if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
  2416. retval = -EPERM;
  2417. if (retval)
  2418. goto dput_out;
  2419. /* Default to relatime unless overriden */
  2420. if (!(flags & MS_NOATIME))
  2421. mnt_flags |= MNT_RELATIME;
  2422. /* Separate the per-mountpoint flags */
  2423. if (flags & MS_NOSUID)
  2424. mnt_flags |= MNT_NOSUID;
  2425. if (flags & MS_NODEV)
  2426. mnt_flags |= MNT_NODEV;
  2427. if (flags & MS_NOEXEC)
  2428. mnt_flags |= MNT_NOEXEC;
  2429. if (flags & MS_NOATIME)
  2430. mnt_flags |= MNT_NOATIME;
  2431. if (flags & MS_NODIRATIME)
  2432. mnt_flags |= MNT_NODIRATIME;
  2433. if (flags & MS_STRICTATIME)
  2434. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2435. if (flags & MS_RDONLY)
  2436. mnt_flags |= MNT_READONLY;
  2437. /* The default atime for remount is preservation */
  2438. if ((flags & MS_REMOUNT) &&
  2439. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2440. MS_STRICTATIME)) == 0)) {
  2441. mnt_flags &= ~MNT_ATIME_MASK;
  2442. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2443. }
  2444. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2445. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2446. MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
  2447. if (flags & MS_REMOUNT)
  2448. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2449. data_page);
  2450. else if (flags & MS_BIND)
  2451. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2452. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2453. retval = do_change_type(&path, flags);
  2454. else if (flags & MS_MOVE)
  2455. retval = do_move_mount(&path, dev_name);
  2456. else
  2457. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2458. dev_name, data_page);
  2459. dput_out:
  2460. path_put(&path);
  2461. return retval;
  2462. }
  2463. static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
  2464. {
  2465. return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
  2466. }
  2467. static void dec_mnt_namespaces(struct ucounts *ucounts)
  2468. {
  2469. dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
  2470. }
  2471. static void free_mnt_ns(struct mnt_namespace *ns)
  2472. {
  2473. ns_free_inum(&ns->ns);
  2474. dec_mnt_namespaces(ns->ucounts);
  2475. put_user_ns(ns->user_ns);
  2476. kfree(ns);
  2477. }
  2478. /*
  2479. * Assign a sequence number so we can detect when we attempt to bind
  2480. * mount a reference to an older mount namespace into the current
  2481. * mount namespace, preventing reference counting loops. A 64bit
  2482. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2483. * is effectively never, so we can ignore the possibility.
  2484. */
  2485. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2486. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2487. {
  2488. struct mnt_namespace *new_ns;
  2489. struct ucounts *ucounts;
  2490. int ret;
  2491. ucounts = inc_mnt_namespaces(user_ns);
  2492. if (!ucounts)
  2493. return ERR_PTR(-ENOSPC);
  2494. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2495. if (!new_ns) {
  2496. dec_mnt_namespaces(ucounts);
  2497. return ERR_PTR(-ENOMEM);
  2498. }
  2499. ret = ns_alloc_inum(&new_ns->ns);
  2500. if (ret) {
  2501. kfree(new_ns);
  2502. dec_mnt_namespaces(ucounts);
  2503. return ERR_PTR(ret);
  2504. }
  2505. new_ns->ns.ops = &mntns_operations;
  2506. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2507. atomic_set(&new_ns->count, 1);
  2508. new_ns->root = NULL;
  2509. INIT_LIST_HEAD(&new_ns->list);
  2510. init_waitqueue_head(&new_ns->poll);
  2511. new_ns->event = 0;
  2512. new_ns->user_ns = get_user_ns(user_ns);
  2513. new_ns->ucounts = ucounts;
  2514. new_ns->mounts = 0;
  2515. new_ns->pending_mounts = 0;
  2516. return new_ns;
  2517. }
  2518. __latent_entropy
  2519. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2520. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2521. {
  2522. struct mnt_namespace *new_ns;
  2523. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2524. struct mount *p, *q;
  2525. struct mount *old;
  2526. struct mount *new;
  2527. int copy_flags;
  2528. BUG_ON(!ns);
  2529. if (likely(!(flags & CLONE_NEWNS))) {
  2530. get_mnt_ns(ns);
  2531. return ns;
  2532. }
  2533. old = ns->root;
  2534. new_ns = alloc_mnt_ns(user_ns);
  2535. if (IS_ERR(new_ns))
  2536. return new_ns;
  2537. namespace_lock();
  2538. /* First pass: copy the tree topology */
  2539. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2540. if (user_ns != ns->user_ns)
  2541. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2542. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2543. if (IS_ERR(new)) {
  2544. namespace_unlock();
  2545. free_mnt_ns(new_ns);
  2546. return ERR_CAST(new);
  2547. }
  2548. new_ns->root = new;
  2549. list_add_tail(&new_ns->list, &new->mnt_list);
  2550. /*
  2551. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2552. * as belonging to new namespace. We have already acquired a private
  2553. * fs_struct, so tsk->fs->lock is not needed.
  2554. */
  2555. p = old;
  2556. q = new;
  2557. while (p) {
  2558. q->mnt_ns = new_ns;
  2559. new_ns->mounts++;
  2560. if (new_fs) {
  2561. if (&p->mnt == new_fs->root.mnt) {
  2562. new_fs->root.mnt = mntget(&q->mnt);
  2563. rootmnt = &p->mnt;
  2564. }
  2565. if (&p->mnt == new_fs->pwd.mnt) {
  2566. new_fs->pwd.mnt = mntget(&q->mnt);
  2567. pwdmnt = &p->mnt;
  2568. }
  2569. }
  2570. p = next_mnt(p, old);
  2571. q = next_mnt(q, new);
  2572. if (!q)
  2573. break;
  2574. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2575. p = next_mnt(p, old);
  2576. }
  2577. namespace_unlock();
  2578. if (rootmnt)
  2579. mntput(rootmnt);
  2580. if (pwdmnt)
  2581. mntput(pwdmnt);
  2582. return new_ns;
  2583. }
  2584. /**
  2585. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2586. * @mnt: pointer to the new root filesystem mountpoint
  2587. */
  2588. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2589. {
  2590. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2591. if (!IS_ERR(new_ns)) {
  2592. struct mount *mnt = real_mount(m);
  2593. mnt->mnt_ns = new_ns;
  2594. new_ns->root = mnt;
  2595. new_ns->mounts++;
  2596. list_add(&mnt->mnt_list, &new_ns->list);
  2597. } else {
  2598. mntput(m);
  2599. }
  2600. return new_ns;
  2601. }
  2602. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2603. {
  2604. struct mnt_namespace *ns;
  2605. struct super_block *s;
  2606. struct path path;
  2607. int err;
  2608. ns = create_mnt_ns(mnt);
  2609. if (IS_ERR(ns))
  2610. return ERR_CAST(ns);
  2611. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2612. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2613. put_mnt_ns(ns);
  2614. if (err)
  2615. return ERR_PTR(err);
  2616. /* trade a vfsmount reference for active sb one */
  2617. s = path.mnt->mnt_sb;
  2618. atomic_inc(&s->s_active);
  2619. mntput(path.mnt);
  2620. /* lock the sucker */
  2621. down_write(&s->s_umount);
  2622. /* ... and return the root of (sub)tree on it */
  2623. return path.dentry;
  2624. }
  2625. EXPORT_SYMBOL(mount_subtree);
  2626. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2627. char __user *, type, unsigned long, flags, void __user *, data)
  2628. {
  2629. int ret;
  2630. char *kernel_type;
  2631. char *kernel_dev;
  2632. void *options;
  2633. kernel_type = copy_mount_string(type);
  2634. ret = PTR_ERR(kernel_type);
  2635. if (IS_ERR(kernel_type))
  2636. goto out_type;
  2637. kernel_dev = copy_mount_string(dev_name);
  2638. ret = PTR_ERR(kernel_dev);
  2639. if (IS_ERR(kernel_dev))
  2640. goto out_dev;
  2641. options = copy_mount_options(data);
  2642. ret = PTR_ERR(options);
  2643. if (IS_ERR(options))
  2644. goto out_data;
  2645. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2646. kfree(options);
  2647. out_data:
  2648. kfree(kernel_dev);
  2649. out_dev:
  2650. kfree(kernel_type);
  2651. out_type:
  2652. return ret;
  2653. }
  2654. /*
  2655. * Return true if path is reachable from root
  2656. *
  2657. * namespace_sem or mount_lock is held
  2658. */
  2659. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2660. const struct path *root)
  2661. {
  2662. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2663. dentry = mnt->mnt_mountpoint;
  2664. mnt = mnt->mnt_parent;
  2665. }
  2666. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2667. }
  2668. bool path_is_under(struct path *path1, struct path *path2)
  2669. {
  2670. bool res;
  2671. read_seqlock_excl(&mount_lock);
  2672. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2673. read_sequnlock_excl(&mount_lock);
  2674. return res;
  2675. }
  2676. EXPORT_SYMBOL(path_is_under);
  2677. /*
  2678. * pivot_root Semantics:
  2679. * Moves the root file system of the current process to the directory put_old,
  2680. * makes new_root as the new root file system of the current process, and sets
  2681. * root/cwd of all processes which had them on the current root to new_root.
  2682. *
  2683. * Restrictions:
  2684. * The new_root and put_old must be directories, and must not be on the
  2685. * same file system as the current process root. The put_old must be
  2686. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2687. * pointed to by put_old must yield the same directory as new_root. No other
  2688. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2689. *
  2690. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2691. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2692. * in this situation.
  2693. *
  2694. * Notes:
  2695. * - we don't move root/cwd if they are not at the root (reason: if something
  2696. * cared enough to change them, it's probably wrong to force them elsewhere)
  2697. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2698. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2699. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2700. * first.
  2701. */
  2702. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2703. const char __user *, put_old)
  2704. {
  2705. struct path new, old, parent_path, root_parent, root;
  2706. struct mount *new_mnt, *root_mnt, *old_mnt;
  2707. struct mountpoint *old_mp, *root_mp;
  2708. int error;
  2709. if (!may_mount())
  2710. return -EPERM;
  2711. error = user_path_dir(new_root, &new);
  2712. if (error)
  2713. goto out0;
  2714. error = user_path_dir(put_old, &old);
  2715. if (error)
  2716. goto out1;
  2717. error = security_sb_pivotroot(&old, &new);
  2718. if (error)
  2719. goto out2;
  2720. get_fs_root(current->fs, &root);
  2721. old_mp = lock_mount(&old);
  2722. error = PTR_ERR(old_mp);
  2723. if (IS_ERR(old_mp))
  2724. goto out3;
  2725. error = -EINVAL;
  2726. new_mnt = real_mount(new.mnt);
  2727. root_mnt = real_mount(root.mnt);
  2728. old_mnt = real_mount(old.mnt);
  2729. if (IS_MNT_SHARED(old_mnt) ||
  2730. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2731. IS_MNT_SHARED(root_mnt->mnt_parent))
  2732. goto out4;
  2733. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2734. goto out4;
  2735. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2736. goto out4;
  2737. error = -ENOENT;
  2738. if (d_unlinked(new.dentry))
  2739. goto out4;
  2740. error = -EBUSY;
  2741. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2742. goto out4; /* loop, on the same file system */
  2743. error = -EINVAL;
  2744. if (root.mnt->mnt_root != root.dentry)
  2745. goto out4; /* not a mountpoint */
  2746. if (!mnt_has_parent(root_mnt))
  2747. goto out4; /* not attached */
  2748. root_mp = root_mnt->mnt_mp;
  2749. if (new.mnt->mnt_root != new.dentry)
  2750. goto out4; /* not a mountpoint */
  2751. if (!mnt_has_parent(new_mnt))
  2752. goto out4; /* not attached */
  2753. /* make sure we can reach put_old from new_root */
  2754. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2755. goto out4;
  2756. /* make certain new is below the root */
  2757. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2758. goto out4;
  2759. root_mp->m_count++; /* pin it so it won't go away */
  2760. lock_mount_hash();
  2761. detach_mnt(new_mnt, &parent_path);
  2762. detach_mnt(root_mnt, &root_parent);
  2763. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2764. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2765. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2766. }
  2767. /* mount old root on put_old */
  2768. attach_mnt(root_mnt, old_mnt, old_mp);
  2769. /* mount new_root on / */
  2770. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2771. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2772. /* A moved mount should not expire automatically */
  2773. list_del_init(&new_mnt->mnt_expire);
  2774. put_mountpoint(root_mp);
  2775. unlock_mount_hash();
  2776. chroot_fs_refs(&root, &new);
  2777. error = 0;
  2778. out4:
  2779. unlock_mount(old_mp);
  2780. if (!error) {
  2781. path_put(&root_parent);
  2782. path_put(&parent_path);
  2783. }
  2784. out3:
  2785. path_put(&root);
  2786. out2:
  2787. path_put(&old);
  2788. out1:
  2789. path_put(&new);
  2790. out0:
  2791. return error;
  2792. }
  2793. static void __init init_mount_tree(void)
  2794. {
  2795. struct vfsmount *mnt;
  2796. struct mnt_namespace *ns;
  2797. struct path root;
  2798. struct file_system_type *type;
  2799. type = get_fs_type("rootfs");
  2800. if (!type)
  2801. panic("Can't find rootfs type");
  2802. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2803. put_filesystem(type);
  2804. if (IS_ERR(mnt))
  2805. panic("Can't create rootfs");
  2806. ns = create_mnt_ns(mnt);
  2807. if (IS_ERR(ns))
  2808. panic("Can't allocate initial namespace");
  2809. init_task.nsproxy->mnt_ns = ns;
  2810. get_mnt_ns(ns);
  2811. root.mnt = mnt;
  2812. root.dentry = mnt->mnt_root;
  2813. mnt->mnt_flags |= MNT_LOCKED;
  2814. set_fs_pwd(current->fs, &root);
  2815. set_fs_root(current->fs, &root);
  2816. }
  2817. void __init mnt_init(void)
  2818. {
  2819. unsigned u;
  2820. int err;
  2821. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2822. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2823. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2824. sizeof(struct hlist_head),
  2825. mhash_entries, 19,
  2826. 0,
  2827. &m_hash_shift, &m_hash_mask, 0, 0);
  2828. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2829. sizeof(struct hlist_head),
  2830. mphash_entries, 19,
  2831. 0,
  2832. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2833. if (!mount_hashtable || !mountpoint_hashtable)
  2834. panic("Failed to allocate mount hash table\n");
  2835. for (u = 0; u <= m_hash_mask; u++)
  2836. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2837. for (u = 0; u <= mp_hash_mask; u++)
  2838. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2839. kernfs_init();
  2840. err = sysfs_init();
  2841. if (err)
  2842. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2843. __func__, err);
  2844. fs_kobj = kobject_create_and_add("fs", NULL);
  2845. if (!fs_kobj)
  2846. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2847. init_rootfs();
  2848. init_mount_tree();
  2849. }
  2850. void put_mnt_ns(struct mnt_namespace *ns)
  2851. {
  2852. if (!atomic_dec_and_test(&ns->count))
  2853. return;
  2854. drop_collected_mounts(&ns->root->mnt);
  2855. free_mnt_ns(ns);
  2856. }
  2857. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2858. {
  2859. struct vfsmount *mnt;
  2860. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2861. if (!IS_ERR(mnt)) {
  2862. /*
  2863. * it is a longterm mount, don't release mnt until
  2864. * we unmount before file sys is unregistered
  2865. */
  2866. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2867. }
  2868. return mnt;
  2869. }
  2870. EXPORT_SYMBOL_GPL(kern_mount_data);
  2871. void kern_unmount(struct vfsmount *mnt)
  2872. {
  2873. /* release long term mount so mount point can be released */
  2874. if (!IS_ERR_OR_NULL(mnt)) {
  2875. real_mount(mnt)->mnt_ns = NULL;
  2876. synchronize_rcu(); /* yecchhh... */
  2877. mntput(mnt);
  2878. }
  2879. }
  2880. EXPORT_SYMBOL(kern_unmount);
  2881. bool our_mnt(struct vfsmount *mnt)
  2882. {
  2883. return check_mnt(real_mount(mnt));
  2884. }
  2885. bool current_chrooted(void)
  2886. {
  2887. /* Does the current process have a non-standard root */
  2888. struct path ns_root;
  2889. struct path fs_root;
  2890. bool chrooted;
  2891. /* Find the namespace root */
  2892. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2893. ns_root.dentry = ns_root.mnt->mnt_root;
  2894. path_get(&ns_root);
  2895. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2896. ;
  2897. get_fs_root(current->fs, &fs_root);
  2898. chrooted = !path_equal(&fs_root, &ns_root);
  2899. path_put(&fs_root);
  2900. path_put(&ns_root);
  2901. return chrooted;
  2902. }
  2903. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2904. int *new_mnt_flags)
  2905. {
  2906. int new_flags = *new_mnt_flags;
  2907. struct mount *mnt;
  2908. bool visible = false;
  2909. down_read(&namespace_sem);
  2910. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2911. struct mount *child;
  2912. int mnt_flags;
  2913. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2914. continue;
  2915. /* This mount is not fully visible if it's root directory
  2916. * is not the root directory of the filesystem.
  2917. */
  2918. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2919. continue;
  2920. /* A local view of the mount flags */
  2921. mnt_flags = mnt->mnt.mnt_flags;
  2922. /* Don't miss readonly hidden in the superblock flags */
  2923. if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
  2924. mnt_flags |= MNT_LOCK_READONLY;
  2925. /* Verify the mount flags are equal to or more permissive
  2926. * than the proposed new mount.
  2927. */
  2928. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2929. !(new_flags & MNT_READONLY))
  2930. continue;
  2931. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2932. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2933. continue;
  2934. /* This mount is not fully visible if there are any
  2935. * locked child mounts that cover anything except for
  2936. * empty directories.
  2937. */
  2938. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2939. struct inode *inode = child->mnt_mountpoint->d_inode;
  2940. /* Only worry about locked mounts */
  2941. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2942. continue;
  2943. /* Is the directory permanetly empty? */
  2944. if (!is_empty_dir_inode(inode))
  2945. goto next;
  2946. }
  2947. /* Preserve the locked attributes */
  2948. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2949. MNT_LOCK_ATIME);
  2950. visible = true;
  2951. goto found;
  2952. next: ;
  2953. }
  2954. found:
  2955. up_read(&namespace_sem);
  2956. return visible;
  2957. }
  2958. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2959. {
  2960. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2961. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2962. unsigned long s_iflags;
  2963. if (ns->user_ns == &init_user_ns)
  2964. return false;
  2965. /* Can this filesystem be too revealing? */
  2966. s_iflags = mnt->mnt_sb->s_iflags;
  2967. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  2968. return false;
  2969. if ((s_iflags & required_iflags) != required_iflags) {
  2970. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  2971. required_iflags);
  2972. return true;
  2973. }
  2974. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  2975. }
  2976. bool mnt_may_suid(struct vfsmount *mnt)
  2977. {
  2978. /*
  2979. * Foreign mounts (accessed via fchdir or through /proc
  2980. * symlinks) are always treated as if they are nosuid. This
  2981. * prevents namespaces from trusting potentially unsafe
  2982. * suid/sgid bits, file caps, or security labels that originate
  2983. * in other namespaces.
  2984. */
  2985. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  2986. current_in_userns(mnt->mnt_sb->s_user_ns);
  2987. }
  2988. static struct ns_common *mntns_get(struct task_struct *task)
  2989. {
  2990. struct ns_common *ns = NULL;
  2991. struct nsproxy *nsproxy;
  2992. task_lock(task);
  2993. nsproxy = task->nsproxy;
  2994. if (nsproxy) {
  2995. ns = &nsproxy->mnt_ns->ns;
  2996. get_mnt_ns(to_mnt_ns(ns));
  2997. }
  2998. task_unlock(task);
  2999. return ns;
  3000. }
  3001. static void mntns_put(struct ns_common *ns)
  3002. {
  3003. put_mnt_ns(to_mnt_ns(ns));
  3004. }
  3005. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3006. {
  3007. struct fs_struct *fs = current->fs;
  3008. struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
  3009. struct path root;
  3010. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3011. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3012. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3013. return -EPERM;
  3014. if (fs->users != 1)
  3015. return -EINVAL;
  3016. get_mnt_ns(mnt_ns);
  3017. put_mnt_ns(nsproxy->mnt_ns);
  3018. nsproxy->mnt_ns = mnt_ns;
  3019. /* Find the root */
  3020. root.mnt = &mnt_ns->root->mnt;
  3021. root.dentry = mnt_ns->root->mnt.mnt_root;
  3022. path_get(&root);
  3023. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  3024. ;
  3025. /* Update the pwd and root */
  3026. set_fs_pwd(fs, &root);
  3027. set_fs_root(fs, &root);
  3028. path_put(&root);
  3029. return 0;
  3030. }
  3031. static struct user_namespace *mntns_owner(struct ns_common *ns)
  3032. {
  3033. return to_mnt_ns(ns)->user_ns;
  3034. }
  3035. const struct proc_ns_operations mntns_operations = {
  3036. .name = "mnt",
  3037. .type = CLONE_NEWNS,
  3038. .get = mntns_get,
  3039. .put = mntns_put,
  3040. .install = mntns_install,
  3041. .owner = mntns_owner,
  3042. };