btree.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788
  1. /*
  2. * linux/fs/befs/btree.c
  3. *
  4. * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
  5. *
  6. * Licensed under the GNU GPL. See the file COPYING for details.
  7. *
  8. * 2002-02-05: Sergey S. Kostyliov added binary search within
  9. * btree nodes.
  10. *
  11. * Many thanks to:
  12. *
  13. * Dominic Giampaolo, author of "Practical File System
  14. * Design with the Be File System", for such a helpful book.
  15. *
  16. * Marcus J. Ranum, author of the b+tree package in
  17. * comp.sources.misc volume 10. This code is not copied from that
  18. * work, but it is partially based on it.
  19. *
  20. * Makoto Kato, author of the original BeFS for linux filesystem
  21. * driver.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/string.h>
  25. #include <linux/slab.h>
  26. #include <linux/mm.h>
  27. #include <linux/buffer_head.h>
  28. #include "befs.h"
  29. #include "btree.h"
  30. #include "datastream.h"
  31. /*
  32. * The btree functions in this file are built on top of the
  33. * datastream.c interface, which is in turn built on top of the
  34. * io.c interface.
  35. */
  36. /* Befs B+tree structure:
  37. *
  38. * The first thing in the tree is the tree superblock. It tells you
  39. * all kinds of useful things about the tree, like where the rootnode
  40. * is located, and the size of the nodes (always 1024 with current version
  41. * of BeOS).
  42. *
  43. * The rest of the tree consists of a series of nodes. Nodes contain a header
  44. * (struct befs_btree_nodehead), the packed key data, an array of shorts
  45. * containing the ending offsets for each of the keys, and an array of
  46. * befs_off_t values. In interior nodes, the keys are the ending keys for
  47. * the childnode they point to, and the values are offsets into the
  48. * datastream containing the tree.
  49. */
  50. /* Note:
  51. *
  52. * The book states 2 confusing things about befs b+trees. First,
  53. * it states that the overflow field of node headers is used by internal nodes
  54. * to point to another node that "effectively continues this one". Here is what
  55. * I believe that means. Each key in internal nodes points to another node that
  56. * contains key values less than itself. Inspection reveals that the last key
  57. * in the internal node is not the last key in the index. Keys that are
  58. * greater than the last key in the internal node go into the overflow node.
  59. * I imagine there is a performance reason for this.
  60. *
  61. * Second, it states that the header of a btree node is sufficient to
  62. * distinguish internal nodes from leaf nodes. Without saying exactly how.
  63. * After figuring out the first, it becomes obvious that internal nodes have
  64. * overflow nodes and leafnodes do not.
  65. */
  66. /*
  67. * Currently, this code is only good for directory B+trees.
  68. * In order to be used for other BFS indexes, it needs to be extended to handle
  69. * duplicate keys and non-string keytypes (int32, int64, float, double).
  70. */
  71. /*
  72. * In memory structure of each btree node
  73. */
  74. struct befs_btree_node {
  75. befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */
  76. struct buffer_head *bh;
  77. befs_btree_nodehead *od_node; /* on disk node */
  78. };
  79. /* local constants */
  80. static const befs_off_t BEFS_BT_INVAL = 0xffffffffffffffffULL;
  81. /* local functions */
  82. static int befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
  83. befs_btree_super * bt_super,
  84. struct befs_btree_node *this_node,
  85. befs_off_t * node_off);
  86. static int befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
  87. befs_btree_super * sup);
  88. static int befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
  89. struct befs_btree_node *node,
  90. befs_off_t node_off);
  91. static int befs_leafnode(struct befs_btree_node *node);
  92. static fs16 *befs_bt_keylen_index(struct befs_btree_node *node);
  93. static fs64 *befs_bt_valarray(struct befs_btree_node *node);
  94. static char *befs_bt_keydata(struct befs_btree_node *node);
  95. static int befs_find_key(struct super_block *sb,
  96. struct befs_btree_node *node,
  97. const char *findkey, befs_off_t * value);
  98. static char *befs_bt_get_key(struct super_block *sb,
  99. struct befs_btree_node *node,
  100. int index, u16 * keylen);
  101. static int befs_compare_strings(const void *key1, int keylen1,
  102. const void *key2, int keylen2);
  103. /**
  104. * befs_bt_read_super - read in btree superblock convert to cpu byteorder
  105. * @sb: Filesystem superblock
  106. * @ds: Datastream to read from
  107. * @sup: Buffer in which to place the btree superblock
  108. *
  109. * Calls befs_read_datastream to read in the btree superblock and
  110. * makes sure it is in cpu byteorder, byteswapping if necessary.
  111. *
  112. * On success, returns BEFS_OK and *@sup contains the btree superblock,
  113. * in cpu byte order.
  114. *
  115. * On failure, BEFS_ERR is returned.
  116. */
  117. static int
  118. befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
  119. befs_btree_super * sup)
  120. {
  121. struct buffer_head *bh;
  122. befs_disk_btree_super *od_sup;
  123. befs_debug(sb, "---> %s", __func__);
  124. bh = befs_read_datastream(sb, ds, 0, NULL);
  125. if (!bh) {
  126. befs_error(sb, "Couldn't read index header.");
  127. goto error;
  128. }
  129. od_sup = (befs_disk_btree_super *) bh->b_data;
  130. befs_dump_index_entry(sb, od_sup);
  131. sup->magic = fs32_to_cpu(sb, od_sup->magic);
  132. sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
  133. sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
  134. sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
  135. sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
  136. brelse(bh);
  137. if (sup->magic != BEFS_BTREE_MAGIC) {
  138. befs_error(sb, "Index header has bad magic.");
  139. goto error;
  140. }
  141. befs_debug(sb, "<--- %s", __func__);
  142. return BEFS_OK;
  143. error:
  144. befs_debug(sb, "<--- %s ERROR", __func__);
  145. return BEFS_ERR;
  146. }
  147. /**
  148. * befs_bt_read_node - read in btree node and convert to cpu byteorder
  149. * @sb: Filesystem superblock
  150. * @ds: Datastream to read from
  151. * @node: Buffer in which to place the btree node
  152. * @node_off: Starting offset (in bytes) of the node in @ds
  153. *
  154. * Calls befs_read_datastream to read in the indicated btree node and
  155. * makes sure its header fields are in cpu byteorder, byteswapping if
  156. * necessary.
  157. * Note: node->bh must be NULL when this function is called the first time.
  158. * Don't forget brelse(node->bh) after last call.
  159. *
  160. * On success, returns BEFS_OK and *@node contains the btree node that
  161. * starts at @node_off, with the node->head fields in cpu byte order.
  162. *
  163. * On failure, BEFS_ERR is returned.
  164. */
  165. static int
  166. befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
  167. struct befs_btree_node *node, befs_off_t node_off)
  168. {
  169. uint off = 0;
  170. befs_debug(sb, "---> %s", __func__);
  171. if (node->bh)
  172. brelse(node->bh);
  173. node->bh = befs_read_datastream(sb, ds, node_off, &off);
  174. if (!node->bh) {
  175. befs_error(sb, "%s failed to read "
  176. "node at %llu", __func__, node_off);
  177. befs_debug(sb, "<--- %s ERROR", __func__);
  178. return BEFS_ERR;
  179. }
  180. node->od_node =
  181. (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
  182. befs_dump_index_node(sb, node->od_node);
  183. node->head.left = fs64_to_cpu(sb, node->od_node->left);
  184. node->head.right = fs64_to_cpu(sb, node->od_node->right);
  185. node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
  186. node->head.all_key_count =
  187. fs16_to_cpu(sb, node->od_node->all_key_count);
  188. node->head.all_key_length =
  189. fs16_to_cpu(sb, node->od_node->all_key_length);
  190. befs_debug(sb, "<--- %s", __func__);
  191. return BEFS_OK;
  192. }
  193. /**
  194. * befs_btree_find - Find a key in a befs B+tree
  195. * @sb: Filesystem superblock
  196. * @ds: Datastream containing btree
  197. * @key: Key string to lookup in btree
  198. * @value: Value stored with @key
  199. *
  200. * On success, returns BEFS_OK and sets *@value to the value stored
  201. * with @key (usually the disk block number of an inode).
  202. *
  203. * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
  204. *
  205. * Algorithm:
  206. * Read the superblock and rootnode of the b+tree.
  207. * Drill down through the interior nodes using befs_find_key().
  208. * Once at the correct leaf node, use befs_find_key() again to get the
  209. * actual value stored with the key.
  210. */
  211. int
  212. befs_btree_find(struct super_block *sb, const befs_data_stream *ds,
  213. const char *key, befs_off_t * value)
  214. {
  215. struct befs_btree_node *this_node;
  216. befs_btree_super bt_super;
  217. befs_off_t node_off;
  218. int res;
  219. befs_debug(sb, "---> %s Key: %s", __func__, key);
  220. if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
  221. befs_error(sb,
  222. "befs_btree_find() failed to read index superblock");
  223. goto error;
  224. }
  225. this_node = kmalloc(sizeof(struct befs_btree_node),
  226. GFP_NOFS);
  227. if (!this_node) {
  228. befs_error(sb, "befs_btree_find() failed to allocate %zu "
  229. "bytes of memory", sizeof(struct befs_btree_node));
  230. goto error;
  231. }
  232. this_node->bh = NULL;
  233. /* read in root node */
  234. node_off = bt_super.root_node_ptr;
  235. if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
  236. befs_error(sb, "befs_btree_find() failed to read "
  237. "node at %llu", node_off);
  238. goto error_alloc;
  239. }
  240. while (!befs_leafnode(this_node)) {
  241. res = befs_find_key(sb, this_node, key, &node_off);
  242. /* if no key set, try the overflow node */
  243. if (res == BEFS_BT_OVERFLOW)
  244. node_off = this_node->head.overflow;
  245. if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
  246. befs_error(sb, "befs_btree_find() failed to read "
  247. "node at %llu", node_off);
  248. goto error_alloc;
  249. }
  250. }
  251. /* at a leaf node now, check if it is correct */
  252. res = befs_find_key(sb, this_node, key, value);
  253. brelse(this_node->bh);
  254. kfree(this_node);
  255. if (res != BEFS_BT_MATCH) {
  256. befs_error(sb, "<--- %s Key %s not found", __func__, key);
  257. befs_debug(sb, "<--- %s ERROR", __func__);
  258. *value = 0;
  259. return BEFS_BT_NOT_FOUND;
  260. }
  261. befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
  262. key, *value);
  263. return BEFS_OK;
  264. error_alloc:
  265. kfree(this_node);
  266. error:
  267. *value = 0;
  268. befs_debug(sb, "<--- %s ERROR", __func__);
  269. return BEFS_ERR;
  270. }
  271. /**
  272. * befs_find_key - Search for a key within a node
  273. * @sb: Filesystem superblock
  274. * @node: Node to find the key within
  275. * @findkey: Keystring to search for
  276. * @value: If key is found, the value stored with the key is put here
  277. *
  278. * Finds exact match if one exists, and returns BEFS_BT_MATCH.
  279. * If there is no match and node's value array is too small for key, return
  280. * BEFS_BT_OVERFLOW.
  281. * If no match and node should countain this key, return BEFS_BT_NOT_FOUND.
  282. *
  283. * Uses binary search instead of a linear.
  284. */
  285. static int
  286. befs_find_key(struct super_block *sb, struct befs_btree_node *node,
  287. const char *findkey, befs_off_t * value)
  288. {
  289. int first, last, mid;
  290. int eq;
  291. u16 keylen;
  292. int findkey_len;
  293. char *thiskey;
  294. fs64 *valarray;
  295. befs_debug(sb, "---> %s %s", __func__, findkey);
  296. findkey_len = strlen(findkey);
  297. /* if node can not contain key, just skip this node */
  298. last = node->head.all_key_count - 1;
  299. thiskey = befs_bt_get_key(sb, node, last, &keylen);
  300. eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
  301. if (eq < 0) {
  302. befs_debug(sb, "<--- node can't contain %s", findkey);
  303. return BEFS_BT_OVERFLOW;
  304. }
  305. valarray = befs_bt_valarray(node);
  306. /* simple binary search */
  307. first = 0;
  308. mid = 0;
  309. while (last >= first) {
  310. mid = (last + first) / 2;
  311. befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
  312. mid);
  313. thiskey = befs_bt_get_key(sb, node, mid, &keylen);
  314. eq = befs_compare_strings(thiskey, keylen, findkey,
  315. findkey_len);
  316. if (eq == 0) {
  317. befs_debug(sb, "<--- %s found %s at %d",
  318. __func__, thiskey, mid);
  319. *value = fs64_to_cpu(sb, valarray[mid]);
  320. return BEFS_BT_MATCH;
  321. }
  322. if (eq > 0)
  323. last = mid - 1;
  324. else
  325. first = mid + 1;
  326. }
  327. /* return an existing value so caller can arrive to a leaf node */
  328. if (eq < 0)
  329. *value = fs64_to_cpu(sb, valarray[mid + 1]);
  330. else
  331. *value = fs64_to_cpu(sb, valarray[mid]);
  332. befs_error(sb, "<--- %s %s not found", __func__, findkey);
  333. befs_debug(sb, "<--- %s ERROR", __func__);
  334. return BEFS_BT_NOT_FOUND;
  335. }
  336. /**
  337. * befs_btree_read - Traverse leafnodes of a btree
  338. * @sb: Filesystem superblock
  339. * @ds: Datastream containing btree
  340. * @key_no: Key number (alphabetical order) of key to read
  341. * @bufsize: Size of the buffer to return key in
  342. * @keybuf: Pointer to a buffer to put the key in
  343. * @keysize: Length of the returned key
  344. * @value: Value stored with the returned key
  345. *
  346. * Here's how it works: Key_no is the index of the key/value pair to
  347. * return in keybuf/value.
  348. * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
  349. * the number of characters in the key (just a convenience).
  350. *
  351. * Algorithm:
  352. * Get the first leafnode of the tree. See if the requested key is in that
  353. * node. If not, follow the node->right link to the next leafnode. Repeat
  354. * until the (key_no)th key is found or the tree is out of keys.
  355. */
  356. int
  357. befs_btree_read(struct super_block *sb, const befs_data_stream *ds,
  358. loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
  359. befs_off_t * value)
  360. {
  361. struct befs_btree_node *this_node;
  362. befs_btree_super bt_super;
  363. befs_off_t node_off;
  364. int cur_key;
  365. fs64 *valarray;
  366. char *keystart;
  367. u16 keylen;
  368. int res;
  369. uint key_sum = 0;
  370. befs_debug(sb, "---> %s", __func__);
  371. if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
  372. befs_error(sb,
  373. "befs_btree_read() failed to read index superblock");
  374. goto error;
  375. }
  376. this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS);
  377. if (this_node == NULL) {
  378. befs_error(sb, "befs_btree_read() failed to allocate %zu "
  379. "bytes of memory", sizeof(struct befs_btree_node));
  380. goto error;
  381. }
  382. node_off = bt_super.root_node_ptr;
  383. this_node->bh = NULL;
  384. /* seeks down to first leafnode, reads it into this_node */
  385. res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
  386. if (res == BEFS_BT_EMPTY) {
  387. brelse(this_node->bh);
  388. kfree(this_node);
  389. *value = 0;
  390. *keysize = 0;
  391. befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
  392. return BEFS_BT_EMPTY;
  393. } else if (res == BEFS_ERR) {
  394. goto error_alloc;
  395. }
  396. /* find the leaf node containing the key_no key */
  397. while (key_sum + this_node->head.all_key_count <= key_no) {
  398. /* no more nodes to look in: key_no is too large */
  399. if (this_node->head.right == BEFS_BT_INVAL) {
  400. *keysize = 0;
  401. *value = 0;
  402. befs_debug(sb,
  403. "<--- %s END of keys at %llu", __func__,
  404. (unsigned long long)
  405. key_sum + this_node->head.all_key_count);
  406. brelse(this_node->bh);
  407. kfree(this_node);
  408. return BEFS_BT_END;
  409. }
  410. key_sum += this_node->head.all_key_count;
  411. node_off = this_node->head.right;
  412. if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
  413. befs_error(sb, "%s failed to read node at %llu",
  414. __func__, (unsigned long long)node_off);
  415. goto error_alloc;
  416. }
  417. }
  418. /* how many keys into this_node is key_no */
  419. cur_key = key_no - key_sum;
  420. /* get pointers to datastructures within the node body */
  421. valarray = befs_bt_valarray(this_node);
  422. keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
  423. befs_debug(sb, "Read [%llu,%d]: keysize %d",
  424. (long long unsigned int)node_off, (int)cur_key,
  425. (int)keylen);
  426. if (bufsize < keylen + 1) {
  427. befs_error(sb, "%s keybuf too small (%zu) "
  428. "for key of size %d", __func__, bufsize, keylen);
  429. brelse(this_node->bh);
  430. goto error_alloc;
  431. }
  432. strlcpy(keybuf, keystart, keylen + 1);
  433. *value = fs64_to_cpu(sb, valarray[cur_key]);
  434. *keysize = keylen;
  435. befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
  436. cur_key, keylen, keybuf, *value);
  437. brelse(this_node->bh);
  438. kfree(this_node);
  439. befs_debug(sb, "<--- %s", __func__);
  440. return BEFS_OK;
  441. error_alloc:
  442. kfree(this_node);
  443. error:
  444. *keysize = 0;
  445. *value = 0;
  446. befs_debug(sb, "<--- %s ERROR", __func__);
  447. return BEFS_ERR;
  448. }
  449. /**
  450. * befs_btree_seekleaf - Find the first leafnode in the btree
  451. * @sb: Filesystem superblock
  452. * @ds: Datastream containing btree
  453. * @bt_super: Pointer to the superblock of the btree
  454. * @this_node: Buffer to return the leafnode in
  455. * @node_off: Pointer to offset of current node within datastream. Modified
  456. * by the function.
  457. *
  458. * Helper function for btree traverse. Moves the current position to the
  459. * start of the first leaf node.
  460. *
  461. * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
  462. */
  463. static int
  464. befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
  465. befs_btree_super *bt_super,
  466. struct befs_btree_node *this_node,
  467. befs_off_t * node_off)
  468. {
  469. befs_debug(sb, "---> %s", __func__);
  470. if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
  471. befs_error(sb, "%s failed to read "
  472. "node at %llu", __func__, *node_off);
  473. goto error;
  474. }
  475. befs_debug(sb, "Seekleaf to root node %llu", *node_off);
  476. if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
  477. befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
  478. return BEFS_BT_EMPTY;
  479. }
  480. while (!befs_leafnode(this_node)) {
  481. if (this_node->head.all_key_count == 0) {
  482. befs_debug(sb, "%s encountered "
  483. "an empty interior node: %llu. Using Overflow "
  484. "node: %llu", __func__, *node_off,
  485. this_node->head.overflow);
  486. *node_off = this_node->head.overflow;
  487. } else {
  488. fs64 *valarray = befs_bt_valarray(this_node);
  489. *node_off = fs64_to_cpu(sb, valarray[0]);
  490. }
  491. if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
  492. befs_error(sb, "%s failed to read "
  493. "node at %llu", __func__, *node_off);
  494. goto error;
  495. }
  496. befs_debug(sb, "Seekleaf to child node %llu", *node_off);
  497. }
  498. befs_debug(sb, "Node %llu is a leaf node", *node_off);
  499. return BEFS_OK;
  500. error:
  501. befs_debug(sb, "<--- %s ERROR", __func__);
  502. return BEFS_ERR;
  503. }
  504. /**
  505. * befs_leafnode - Determine if the btree node is a leaf node or an
  506. * interior node
  507. * @node: Pointer to node structure to test
  508. *
  509. * Return 1 if leaf, 0 if interior
  510. */
  511. static int
  512. befs_leafnode(struct befs_btree_node *node)
  513. {
  514. /* all interior nodes (and only interior nodes) have an overflow node */
  515. if (node->head.overflow == BEFS_BT_INVAL)
  516. return 1;
  517. else
  518. return 0;
  519. }
  520. /**
  521. * befs_bt_keylen_index - Finds start of keylen index in a node
  522. * @node: Pointer to the node structure to find the keylen index within
  523. *
  524. * Returns a pointer to the start of the key length index array
  525. * of the B+tree node *@node
  526. *
  527. * "The length of all the keys in the node is added to the size of the
  528. * header and then rounded up to a multiple of four to get the beginning
  529. * of the key length index" (p.88, practical filesystem design).
  530. *
  531. * Except that rounding up to 8 works, and rounding up to 4 doesn't.
  532. */
  533. static fs16 *
  534. befs_bt_keylen_index(struct befs_btree_node *node)
  535. {
  536. const int keylen_align = 8;
  537. unsigned long int off =
  538. (sizeof (befs_btree_nodehead) + node->head.all_key_length);
  539. ulong tmp = off % keylen_align;
  540. if (tmp)
  541. off += keylen_align - tmp;
  542. return (fs16 *) ((void *) node->od_node + off);
  543. }
  544. /**
  545. * befs_bt_valarray - Finds the start of value array in a node
  546. * @node: Pointer to the node structure to find the value array within
  547. *
  548. * Returns a pointer to the start of the value array
  549. * of the node pointed to by the node header
  550. */
  551. static fs64 *
  552. befs_bt_valarray(struct befs_btree_node *node)
  553. {
  554. void *keylen_index_start = (void *) befs_bt_keylen_index(node);
  555. size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
  556. return (fs64 *) (keylen_index_start + keylen_index_size);
  557. }
  558. /**
  559. * befs_bt_keydata - Finds start of keydata array in a node
  560. * @node: Pointer to the node structure to find the keydata array within
  561. *
  562. * Returns a pointer to the start of the keydata array
  563. * of the node pointed to by the node header
  564. */
  565. static char *
  566. befs_bt_keydata(struct befs_btree_node *node)
  567. {
  568. return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
  569. }
  570. /**
  571. * befs_bt_get_key - returns a pointer to the start of a key
  572. * @sb: filesystem superblock
  573. * @node: node in which to look for the key
  574. * @index: the index of the key to get
  575. * @keylen: modified to be the length of the key at @index
  576. *
  577. * Returns a valid pointer into @node on success.
  578. * Returns NULL on failure (bad input) and sets *@keylen = 0
  579. */
  580. static char *
  581. befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node,
  582. int index, u16 * keylen)
  583. {
  584. int prev_key_end;
  585. char *keystart;
  586. fs16 *keylen_index;
  587. if (index < 0 || index > node->head.all_key_count) {
  588. *keylen = 0;
  589. return NULL;
  590. }
  591. keystart = befs_bt_keydata(node);
  592. keylen_index = befs_bt_keylen_index(node);
  593. if (index == 0)
  594. prev_key_end = 0;
  595. else
  596. prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
  597. *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
  598. return keystart + prev_key_end;
  599. }
  600. /**
  601. * befs_compare_strings - compare two strings
  602. * @key1: pointer to the first key to be compared
  603. * @keylen1: length in bytes of key1
  604. * @key2: pointer to the second key to be compared
  605. * @keylen2: length in bytes of key2
  606. *
  607. * Returns 0 if @key1 and @key2 are equal.
  608. * Returns >0 if @key1 is greater.
  609. * Returns <0 if @key2 is greater.
  610. */
  611. static int
  612. befs_compare_strings(const void *key1, int keylen1,
  613. const void *key2, int keylen2)
  614. {
  615. int len = min_t(int, keylen1, keylen2);
  616. int result = strncmp(key1, key2, len);
  617. if (result == 0)
  618. result = keylen1 - keylen2;
  619. return result;
  620. }
  621. /* These will be used for non-string keyed btrees */
  622. #if 0
  623. static int
  624. btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
  625. {
  626. return *(int32_t *) key1 - *(int32_t *) key2;
  627. }
  628. static int
  629. btree_compare_uint32(cont void *key1, int keylen1,
  630. const void *key2, int keylen2)
  631. {
  632. if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
  633. return 0;
  634. else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
  635. return 1;
  636. return -1;
  637. }
  638. static int
  639. btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
  640. {
  641. if (*(int64_t *) key1 == *(int64_t *) key2)
  642. return 0;
  643. else if (*(int64_t *) key1 > *(int64_t *) key2)
  644. return 1;
  645. return -1;
  646. }
  647. static int
  648. btree_compare_uint64(cont void *key1, int keylen1,
  649. const void *key2, int keylen2)
  650. {
  651. if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
  652. return 0;
  653. else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
  654. return 1;
  655. return -1;
  656. }
  657. static int
  658. btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
  659. {
  660. float result = *(float *) key1 - *(float *) key2;
  661. if (result == 0.0f)
  662. return 0;
  663. return (result < 0.0f) ? -1 : 1;
  664. }
  665. static int
  666. btree_compare_double(cont void *key1, int keylen1,
  667. const void *key2, int keylen2)
  668. {
  669. double result = *(double *) key1 - *(double *) key2;
  670. if (result == 0.0)
  671. return 0;
  672. return (result < 0.0) ? -1 : 1;
  673. }
  674. #endif //0