12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031 |
- /*
- * RTC subsystem, interface functions
- *
- * Copyright (C) 2005 Tower Technologies
- * Author: Alessandro Zummo <a.zummo@towertech.it>
- *
- * based on arch/arm/common/rtctime.c
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/rtc.h>
- #include <linux/sched.h>
- #include <linux/module.h>
- #include <linux/log2.h>
- #include <linux/workqueue.h>
- static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
- static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
- static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
- {
- int err;
- if (!rtc->ops)
- err = -ENODEV;
- else if (!rtc->ops->read_time)
- err = -EINVAL;
- else {
- memset(tm, 0, sizeof(struct rtc_time));
- err = rtc->ops->read_time(rtc->dev.parent, tm);
- if (err < 0) {
- dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
- err);
- return err;
- }
- err = rtc_valid_tm(tm);
- if (err < 0)
- dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
- }
- return err;
- }
- int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
- {
- int err;
- err = mutex_lock_interruptible(&rtc->ops_lock);
- if (err)
- return err;
- err = __rtc_read_time(rtc, tm);
- mutex_unlock(&rtc->ops_lock);
- return err;
- }
- EXPORT_SYMBOL_GPL(rtc_read_time);
- int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
- {
- int err;
- err = rtc_valid_tm(tm);
- if (err != 0)
- return err;
- err = mutex_lock_interruptible(&rtc->ops_lock);
- if (err)
- return err;
- if (!rtc->ops)
- err = -ENODEV;
- else if (rtc->ops->set_time)
- err = rtc->ops->set_time(rtc->dev.parent, tm);
- else if (rtc->ops->set_mmss64) {
- time64_t secs64 = rtc_tm_to_time64(tm);
- err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
- } else if (rtc->ops->set_mmss) {
- time64_t secs64 = rtc_tm_to_time64(tm);
- err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
- } else
- err = -EINVAL;
- pm_stay_awake(rtc->dev.parent);
- mutex_unlock(&rtc->ops_lock);
- /* A timer might have just expired */
- schedule_work(&rtc->irqwork);
- return err;
- }
- EXPORT_SYMBOL_GPL(rtc_set_time);
- static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
- {
- int err;
- err = mutex_lock_interruptible(&rtc->ops_lock);
- if (err)
- return err;
- if (rtc->ops == NULL)
- err = -ENODEV;
- else if (!rtc->ops->read_alarm)
- err = -EINVAL;
- else {
- alarm->enabled = 0;
- alarm->pending = 0;
- alarm->time.tm_sec = -1;
- alarm->time.tm_min = -1;
- alarm->time.tm_hour = -1;
- alarm->time.tm_mday = -1;
- alarm->time.tm_mon = -1;
- alarm->time.tm_year = -1;
- alarm->time.tm_wday = -1;
- alarm->time.tm_yday = -1;
- alarm->time.tm_isdst = -1;
- err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
- }
- mutex_unlock(&rtc->ops_lock);
- return err;
- }
- int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
- {
- int err;
- struct rtc_time before, now;
- int first_time = 1;
- time64_t t_now, t_alm;
- enum { none, day, month, year } missing = none;
- unsigned days;
- /* The lower level RTC driver may return -1 in some fields,
- * creating invalid alarm->time values, for reasons like:
- *
- * - The hardware may not be capable of filling them in;
- * many alarms match only on time-of-day fields, not
- * day/month/year calendar data.
- *
- * - Some hardware uses illegal values as "wildcard" match
- * values, which non-Linux firmware (like a BIOS) may try
- * to set up as e.g. "alarm 15 minutes after each hour".
- * Linux uses only oneshot alarms.
- *
- * When we see that here, we deal with it by using values from
- * a current RTC timestamp for any missing (-1) values. The
- * RTC driver prevents "periodic alarm" modes.
- *
- * But this can be racey, because some fields of the RTC timestamp
- * may have wrapped in the interval since we read the RTC alarm,
- * which would lead to us inserting inconsistent values in place
- * of the -1 fields.
- *
- * Reading the alarm and timestamp in the reverse sequence
- * would have the same race condition, and not solve the issue.
- *
- * So, we must first read the RTC timestamp,
- * then read the RTC alarm value,
- * and then read a second RTC timestamp.
- *
- * If any fields of the second timestamp have changed
- * when compared with the first timestamp, then we know
- * our timestamp may be inconsistent with that used by
- * the low-level rtc_read_alarm_internal() function.
- *
- * So, when the two timestamps disagree, we just loop and do
- * the process again to get a fully consistent set of values.
- *
- * This could all instead be done in the lower level driver,
- * but since more than one lower level RTC implementation needs it,
- * then it's probably best best to do it here instead of there..
- */
- /* Get the "before" timestamp */
- err = rtc_read_time(rtc, &before);
- if (err < 0)
- return err;
- do {
- if (!first_time)
- memcpy(&before, &now, sizeof(struct rtc_time));
- first_time = 0;
- /* get the RTC alarm values, which may be incomplete */
- err = rtc_read_alarm_internal(rtc, alarm);
- if (err)
- return err;
- /* full-function RTCs won't have such missing fields */
- if (rtc_valid_tm(&alarm->time) == 0)
- return 0;
- /* get the "after" timestamp, to detect wrapped fields */
- err = rtc_read_time(rtc, &now);
- if (err < 0)
- return err;
- /* note that tm_sec is a "don't care" value here: */
- } while ( before.tm_min != now.tm_min
- || before.tm_hour != now.tm_hour
- || before.tm_mon != now.tm_mon
- || before.tm_year != now.tm_year);
- /* Fill in the missing alarm fields using the timestamp; we
- * know there's at least one since alarm->time is invalid.
- */
- if (alarm->time.tm_sec == -1)
- alarm->time.tm_sec = now.tm_sec;
- if (alarm->time.tm_min == -1)
- alarm->time.tm_min = now.tm_min;
- if (alarm->time.tm_hour == -1)
- alarm->time.tm_hour = now.tm_hour;
- /* For simplicity, only support date rollover for now */
- if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
- alarm->time.tm_mday = now.tm_mday;
- missing = day;
- }
- if ((unsigned)alarm->time.tm_mon >= 12) {
- alarm->time.tm_mon = now.tm_mon;
- if (missing == none)
- missing = month;
- }
- if (alarm->time.tm_year == -1) {
- alarm->time.tm_year = now.tm_year;
- if (missing == none)
- missing = year;
- }
- /* Can't proceed if alarm is still invalid after replacing
- * missing fields.
- */
- err = rtc_valid_tm(&alarm->time);
- if (err)
- goto done;
- /* with luck, no rollover is needed */
- t_now = rtc_tm_to_time64(&now);
- t_alm = rtc_tm_to_time64(&alarm->time);
- if (t_now < t_alm)
- goto done;
- switch (missing) {
- /* 24 hour rollover ... if it's now 10am Monday, an alarm that
- * that will trigger at 5am will do so at 5am Tuesday, which
- * could also be in the next month or year. This is a common
- * case, especially for PCs.
- */
- case day:
- dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
- t_alm += 24 * 60 * 60;
- rtc_time64_to_tm(t_alm, &alarm->time);
- break;
- /* Month rollover ... if it's the 31th, an alarm on the 3rd will
- * be next month. An alarm matching on the 30th, 29th, or 28th
- * may end up in the month after that! Many newer PCs support
- * this type of alarm.
- */
- case month:
- dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
- do {
- if (alarm->time.tm_mon < 11)
- alarm->time.tm_mon++;
- else {
- alarm->time.tm_mon = 0;
- alarm->time.tm_year++;
- }
- days = rtc_month_days(alarm->time.tm_mon,
- alarm->time.tm_year);
- } while (days < alarm->time.tm_mday);
- break;
- /* Year rollover ... easy except for leap years! */
- case year:
- dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
- do {
- alarm->time.tm_year++;
- } while (!is_leap_year(alarm->time.tm_year + 1900)
- && rtc_valid_tm(&alarm->time) != 0);
- break;
- default:
- dev_warn(&rtc->dev, "alarm rollover not handled\n");
- }
- err = rtc_valid_tm(&alarm->time);
- done:
- if (err) {
- dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
- alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
- alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
- alarm->time.tm_sec);
- }
- return err;
- }
- int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
- {
- int err;
- err = mutex_lock_interruptible(&rtc->ops_lock);
- if (err)
- return err;
- if (rtc->ops == NULL)
- err = -ENODEV;
- else if (!rtc->ops->read_alarm)
- err = -EINVAL;
- else {
- memset(alarm, 0, sizeof(struct rtc_wkalrm));
- alarm->enabled = rtc->aie_timer.enabled;
- alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
- }
- mutex_unlock(&rtc->ops_lock);
- return err;
- }
- EXPORT_SYMBOL_GPL(rtc_read_alarm);
- static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
- {
- struct rtc_time tm;
- time64_t now, scheduled;
- int err;
- err = rtc_valid_tm(&alarm->time);
- if (err)
- return err;
- scheduled = rtc_tm_to_time64(&alarm->time);
- /* Make sure we're not setting alarms in the past */
- err = __rtc_read_time(rtc, &tm);
- if (err)
- return err;
- now = rtc_tm_to_time64(&tm);
- if (scheduled <= now)
- return -ETIME;
- /*
- * XXX - We just checked to make sure the alarm time is not
- * in the past, but there is still a race window where if
- * the is alarm set for the next second and the second ticks
- * over right here, before we set the alarm.
- */
- if (!rtc->ops)
- err = -ENODEV;
- else if (!rtc->ops->set_alarm)
- err = -EINVAL;
- else
- err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
- return err;
- }
- int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
- {
- int err;
- if (!rtc->ops)
- return -ENODEV;
- else if (!rtc->ops->set_alarm)
- return -EINVAL;
- err = rtc_valid_tm(&alarm->time);
- if (err != 0)
- return err;
- err = mutex_lock_interruptible(&rtc->ops_lock);
- if (err)
- return err;
- if (rtc->aie_timer.enabled)
- rtc_timer_remove(rtc, &rtc->aie_timer);
- rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
- rtc->aie_timer.period = ktime_set(0, 0);
- if (alarm->enabled)
- err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
- mutex_unlock(&rtc->ops_lock);
- return err;
- }
- EXPORT_SYMBOL_GPL(rtc_set_alarm);
- /* Called once per device from rtc_device_register */
- int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
- {
- int err;
- struct rtc_time now;
- err = rtc_valid_tm(&alarm->time);
- if (err != 0)
- return err;
- err = rtc_read_time(rtc, &now);
- if (err)
- return err;
- err = mutex_lock_interruptible(&rtc->ops_lock);
- if (err)
- return err;
- rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
- rtc->aie_timer.period = ktime_set(0, 0);
- /* Alarm has to be enabled & in the future for us to enqueue it */
- if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
- rtc->aie_timer.node.expires.tv64)) {
- rtc->aie_timer.enabled = 1;
- timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
- }
- mutex_unlock(&rtc->ops_lock);
- return err;
- }
- EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
- int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
- {
- int err = mutex_lock_interruptible(&rtc->ops_lock);
- if (err)
- return err;
- if (rtc->aie_timer.enabled != enabled) {
- if (enabled)
- err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
- else
- rtc_timer_remove(rtc, &rtc->aie_timer);
- }
- if (err)
- /* nothing */;
- else if (!rtc->ops)
- err = -ENODEV;
- else if (!rtc->ops->alarm_irq_enable)
- err = -EINVAL;
- else
- err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
- mutex_unlock(&rtc->ops_lock);
- return err;
- }
- EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
- int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
- {
- int err = mutex_lock_interruptible(&rtc->ops_lock);
- if (err)
- return err;
- #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
- if (enabled == 0 && rtc->uie_irq_active) {
- mutex_unlock(&rtc->ops_lock);
- return rtc_dev_update_irq_enable_emul(rtc, 0);
- }
- #endif
- /* make sure we're changing state */
- if (rtc->uie_rtctimer.enabled == enabled)
- goto out;
- if (rtc->uie_unsupported) {
- err = -EINVAL;
- goto out;
- }
- if (enabled) {
- struct rtc_time tm;
- ktime_t now, onesec;
- __rtc_read_time(rtc, &tm);
- onesec = ktime_set(1, 0);
- now = rtc_tm_to_ktime(tm);
- rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
- rtc->uie_rtctimer.period = ktime_set(1, 0);
- err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
- } else
- rtc_timer_remove(rtc, &rtc->uie_rtctimer);
- out:
- mutex_unlock(&rtc->ops_lock);
- #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
- /*
- * Enable emulation if the driver did not provide
- * the update_irq_enable function pointer or if returned
- * -EINVAL to signal that it has been configured without
- * interrupts or that are not available at the moment.
- */
- if (err == -EINVAL)
- err = rtc_dev_update_irq_enable_emul(rtc, enabled);
- #endif
- return err;
- }
- EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
- /**
- * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
- * @rtc: pointer to the rtc device
- *
- * This function is called when an AIE, UIE or PIE mode interrupt
- * has occurred (or been emulated).
- *
- * Triggers the registered irq_task function callback.
- */
- void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
- {
- unsigned long flags;
- /* mark one irq of the appropriate mode */
- spin_lock_irqsave(&rtc->irq_lock, flags);
- rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
- spin_unlock_irqrestore(&rtc->irq_lock, flags);
- /* call the task func */
- spin_lock_irqsave(&rtc->irq_task_lock, flags);
- if (rtc->irq_task)
- rtc->irq_task->func(rtc->irq_task->private_data);
- spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
- wake_up_interruptible(&rtc->irq_queue);
- kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
- }
- /**
- * rtc_aie_update_irq - AIE mode rtctimer hook
- * @private: pointer to the rtc_device
- *
- * This functions is called when the aie_timer expires.
- */
- void rtc_aie_update_irq(void *private)
- {
- struct rtc_device *rtc = (struct rtc_device *)private;
- rtc_handle_legacy_irq(rtc, 1, RTC_AF);
- }
- /**
- * rtc_uie_update_irq - UIE mode rtctimer hook
- * @private: pointer to the rtc_device
- *
- * This functions is called when the uie_timer expires.
- */
- void rtc_uie_update_irq(void *private)
- {
- struct rtc_device *rtc = (struct rtc_device *)private;
- rtc_handle_legacy_irq(rtc, 1, RTC_UF);
- }
- /**
- * rtc_pie_update_irq - PIE mode hrtimer hook
- * @timer: pointer to the pie mode hrtimer
- *
- * This function is used to emulate PIE mode interrupts
- * using an hrtimer. This function is called when the periodic
- * hrtimer expires.
- */
- enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
- {
- struct rtc_device *rtc;
- ktime_t period;
- int count;
- rtc = container_of(timer, struct rtc_device, pie_timer);
- period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
- count = hrtimer_forward_now(timer, period);
- rtc_handle_legacy_irq(rtc, count, RTC_PF);
- return HRTIMER_RESTART;
- }
- /**
- * rtc_update_irq - Triggered when a RTC interrupt occurs.
- * @rtc: the rtc device
- * @num: how many irqs are being reported (usually one)
- * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
- * Context: any
- */
- void rtc_update_irq(struct rtc_device *rtc,
- unsigned long num, unsigned long events)
- {
- if (IS_ERR_OR_NULL(rtc))
- return;
- pm_stay_awake(rtc->dev.parent);
- schedule_work(&rtc->irqwork);
- }
- EXPORT_SYMBOL_GPL(rtc_update_irq);
- static int __rtc_match(struct device *dev, const void *data)
- {
- const char *name = data;
- if (strcmp(dev_name(dev), name) == 0)
- return 1;
- return 0;
- }
- struct rtc_device *rtc_class_open(const char *name)
- {
- struct device *dev;
- struct rtc_device *rtc = NULL;
- dev = class_find_device(rtc_class, NULL, name, __rtc_match);
- if (dev)
- rtc = to_rtc_device(dev);
- if (rtc) {
- if (!try_module_get(rtc->owner)) {
- put_device(dev);
- rtc = NULL;
- }
- }
- return rtc;
- }
- EXPORT_SYMBOL_GPL(rtc_class_open);
- void rtc_class_close(struct rtc_device *rtc)
- {
- module_put(rtc->owner);
- put_device(&rtc->dev);
- }
- EXPORT_SYMBOL_GPL(rtc_class_close);
- int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
- {
- int retval = -EBUSY;
- if (task == NULL || task->func == NULL)
- return -EINVAL;
- /* Cannot register while the char dev is in use */
- if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
- return -EBUSY;
- spin_lock_irq(&rtc->irq_task_lock);
- if (rtc->irq_task == NULL) {
- rtc->irq_task = task;
- retval = 0;
- }
- spin_unlock_irq(&rtc->irq_task_lock);
- clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
- return retval;
- }
- EXPORT_SYMBOL_GPL(rtc_irq_register);
- void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
- {
- spin_lock_irq(&rtc->irq_task_lock);
- if (rtc->irq_task == task)
- rtc->irq_task = NULL;
- spin_unlock_irq(&rtc->irq_task_lock);
- }
- EXPORT_SYMBOL_GPL(rtc_irq_unregister);
- static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
- {
- /*
- * We always cancel the timer here first, because otherwise
- * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
- * when we manage to start the timer before the callback
- * returns HRTIMER_RESTART.
- *
- * We cannot use hrtimer_cancel() here as a running callback
- * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
- * would spin forever.
- */
- if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
- return -1;
- if (enabled) {
- ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
- hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
- }
- return 0;
- }
- /**
- * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
- * @rtc: the rtc device
- * @task: currently registered with rtc_irq_register()
- * @enabled: true to enable periodic IRQs
- * Context: any
- *
- * Note that rtc_irq_set_freq() should previously have been used to
- * specify the desired frequency of periodic IRQ task->func() callbacks.
- */
- int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
- {
- int err = 0;
- unsigned long flags;
- retry:
- spin_lock_irqsave(&rtc->irq_task_lock, flags);
- if (rtc->irq_task != NULL && task == NULL)
- err = -EBUSY;
- else if (rtc->irq_task != task)
- err = -EACCES;
- else {
- if (rtc_update_hrtimer(rtc, enabled) < 0) {
- spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
- cpu_relax();
- goto retry;
- }
- rtc->pie_enabled = enabled;
- }
- spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
- return err;
- }
- EXPORT_SYMBOL_GPL(rtc_irq_set_state);
- /**
- * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
- * @rtc: the rtc device
- * @task: currently registered with rtc_irq_register()
- * @freq: positive frequency with which task->func() will be called
- * Context: any
- *
- * Note that rtc_irq_set_state() is used to enable or disable the
- * periodic IRQs.
- */
- int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
- {
- int err = 0;
- unsigned long flags;
- if (freq <= 0 || freq > RTC_MAX_FREQ)
- return -EINVAL;
- retry:
- spin_lock_irqsave(&rtc->irq_task_lock, flags);
- if (rtc->irq_task != NULL && task == NULL)
- err = -EBUSY;
- else if (rtc->irq_task != task)
- err = -EACCES;
- else {
- rtc->irq_freq = freq;
- if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
- spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
- cpu_relax();
- goto retry;
- }
- }
- spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
- return err;
- }
- EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
- /**
- * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
- * @rtc rtc device
- * @timer timer being added.
- *
- * Enqueues a timer onto the rtc devices timerqueue and sets
- * the next alarm event appropriately.
- *
- * Sets the enabled bit on the added timer.
- *
- * Must hold ops_lock for proper serialization of timerqueue
- */
- static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
- {
- struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
- struct rtc_time tm;
- ktime_t now;
- timer->enabled = 1;
- __rtc_read_time(rtc, &tm);
- now = rtc_tm_to_ktime(tm);
- /* Skip over expired timers */
- while (next) {
- if (next->expires.tv64 >= now.tv64)
- break;
- next = timerqueue_iterate_next(next);
- }
- timerqueue_add(&rtc->timerqueue, &timer->node);
- if (!next || ktime_before(timer->node.expires, next->expires)) {
- struct rtc_wkalrm alarm;
- int err;
- alarm.time = rtc_ktime_to_tm(timer->node.expires);
- alarm.enabled = 1;
- err = __rtc_set_alarm(rtc, &alarm);
- if (err == -ETIME) {
- pm_stay_awake(rtc->dev.parent);
- schedule_work(&rtc->irqwork);
- } else if (err) {
- timerqueue_del(&rtc->timerqueue, &timer->node);
- timer->enabled = 0;
- return err;
- }
- }
- return 0;
- }
- static void rtc_alarm_disable(struct rtc_device *rtc)
- {
- if (!rtc->ops || !rtc->ops->alarm_irq_enable)
- return;
- rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
- }
- /**
- * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
- * @rtc rtc device
- * @timer timer being removed.
- *
- * Removes a timer onto the rtc devices timerqueue and sets
- * the next alarm event appropriately.
- *
- * Clears the enabled bit on the removed timer.
- *
- * Must hold ops_lock for proper serialization of timerqueue
- */
- static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
- {
- struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
- timerqueue_del(&rtc->timerqueue, &timer->node);
- timer->enabled = 0;
- if (next == &timer->node) {
- struct rtc_wkalrm alarm;
- int err;
- next = timerqueue_getnext(&rtc->timerqueue);
- if (!next) {
- rtc_alarm_disable(rtc);
- return;
- }
- alarm.time = rtc_ktime_to_tm(next->expires);
- alarm.enabled = 1;
- err = __rtc_set_alarm(rtc, &alarm);
- if (err == -ETIME) {
- pm_stay_awake(rtc->dev.parent);
- schedule_work(&rtc->irqwork);
- }
- }
- }
- /**
- * rtc_timer_do_work - Expires rtc timers
- * @rtc rtc device
- * @timer timer being removed.
- *
- * Expires rtc timers. Reprograms next alarm event if needed.
- * Called via worktask.
- *
- * Serializes access to timerqueue via ops_lock mutex
- */
- void rtc_timer_do_work(struct work_struct *work)
- {
- struct rtc_timer *timer;
- struct timerqueue_node *next;
- ktime_t now;
- struct rtc_time tm;
- struct rtc_device *rtc =
- container_of(work, struct rtc_device, irqwork);
- mutex_lock(&rtc->ops_lock);
- again:
- __rtc_read_time(rtc, &tm);
- now = rtc_tm_to_ktime(tm);
- while ((next = timerqueue_getnext(&rtc->timerqueue))) {
- if (next->expires.tv64 > now.tv64)
- break;
- /* expire timer */
- timer = container_of(next, struct rtc_timer, node);
- timerqueue_del(&rtc->timerqueue, &timer->node);
- timer->enabled = 0;
- if (timer->task.func)
- timer->task.func(timer->task.private_data);
- /* Re-add/fwd periodic timers */
- if (ktime_to_ns(timer->period)) {
- timer->node.expires = ktime_add(timer->node.expires,
- timer->period);
- timer->enabled = 1;
- timerqueue_add(&rtc->timerqueue, &timer->node);
- }
- }
- /* Set next alarm */
- if (next) {
- struct rtc_wkalrm alarm;
- int err;
- int retry = 3;
- alarm.time = rtc_ktime_to_tm(next->expires);
- alarm.enabled = 1;
- reprogram:
- err = __rtc_set_alarm(rtc, &alarm);
- if (err == -ETIME)
- goto again;
- else if (err) {
- if (retry-- > 0)
- goto reprogram;
- timer = container_of(next, struct rtc_timer, node);
- timerqueue_del(&rtc->timerqueue, &timer->node);
- timer->enabled = 0;
- dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
- goto again;
- }
- } else
- rtc_alarm_disable(rtc);
- pm_relax(rtc->dev.parent);
- mutex_unlock(&rtc->ops_lock);
- }
- /* rtc_timer_init - Initializes an rtc_timer
- * @timer: timer to be intiialized
- * @f: function pointer to be called when timer fires
- * @data: private data passed to function pointer
- *
- * Kernel interface to initializing an rtc_timer.
- */
- void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
- {
- timerqueue_init(&timer->node);
- timer->enabled = 0;
- timer->task.func = f;
- timer->task.private_data = data;
- }
- /* rtc_timer_start - Sets an rtc_timer to fire in the future
- * @ rtc: rtc device to be used
- * @ timer: timer being set
- * @ expires: time at which to expire the timer
- * @ period: period that the timer will recur
- *
- * Kernel interface to set an rtc_timer
- */
- int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
- ktime_t expires, ktime_t period)
- {
- int ret = 0;
- mutex_lock(&rtc->ops_lock);
- if (timer->enabled)
- rtc_timer_remove(rtc, timer);
- timer->node.expires = expires;
- timer->period = period;
- ret = rtc_timer_enqueue(rtc, timer);
- mutex_unlock(&rtc->ops_lock);
- return ret;
- }
- /* rtc_timer_cancel - Stops an rtc_timer
- * @ rtc: rtc device to be used
- * @ timer: timer being set
- *
- * Kernel interface to cancel an rtc_timer
- */
- void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
- {
- mutex_lock(&rtc->ops_lock);
- if (timer->enabled)
- rtc_timer_remove(rtc, timer);
- mutex_unlock(&rtc->ops_lock);
- }
- /**
- * rtc_read_offset - Read the amount of rtc offset in parts per billion
- * @ rtc: rtc device to be used
- * @ offset: the offset in parts per billion
- *
- * see below for details.
- *
- * Kernel interface to read rtc clock offset
- * Returns 0 on success, or a negative number on error.
- * If read_offset() is not implemented for the rtc, return -EINVAL
- */
- int rtc_read_offset(struct rtc_device *rtc, long *offset)
- {
- int ret;
- if (!rtc->ops)
- return -ENODEV;
- if (!rtc->ops->read_offset)
- return -EINVAL;
- mutex_lock(&rtc->ops_lock);
- ret = rtc->ops->read_offset(rtc->dev.parent, offset);
- mutex_unlock(&rtc->ops_lock);
- return ret;
- }
- /**
- * rtc_set_offset - Adjusts the duration of the average second
- * @ rtc: rtc device to be used
- * @ offset: the offset in parts per billion
- *
- * Some rtc's allow an adjustment to the average duration of a second
- * to compensate for differences in the actual clock rate due to temperature,
- * the crystal, capacitor, etc.
- *
- * Kernel interface to adjust an rtc clock offset.
- * Return 0 on success, or a negative number on error.
- * If the rtc offset is not setable (or not implemented), return -EINVAL
- */
- int rtc_set_offset(struct rtc_device *rtc, long offset)
- {
- int ret;
- if (!rtc->ops)
- return -ENODEV;
- if (!rtc->ops->set_offset)
- return -EINVAL;
- mutex_lock(&rtc->ops_lock);
- ret = rtc->ops->set_offset(rtc->dev.parent, offset);
- mutex_unlock(&rtc->ops_lock);
- return ret;
- }
|