tc35815.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158
  1. /*
  2. * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
  3. *
  4. * Based on skelton.c by Donald Becker.
  5. *
  6. * This driver is a replacement of older and less maintained version.
  7. * This is a header of the older version:
  8. * -----<snip>-----
  9. * Copyright 2001 MontaVista Software Inc.
  10. * Author: MontaVista Software, Inc.
  11. * ahennessy@mvista.com
  12. * Copyright (C) 2000-2001 Toshiba Corporation
  13. * static const char *version =
  14. * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
  15. * -----<snip>-----
  16. *
  17. * This file is subject to the terms and conditions of the GNU General Public
  18. * License. See the file "COPYING" in the main directory of this archive
  19. * for more details.
  20. *
  21. * (C) Copyright TOSHIBA CORPORATION 2004-2005
  22. * All Rights Reserved.
  23. */
  24. #define DRV_VERSION "1.39"
  25. static const char *version = "tc35815.c:v" DRV_VERSION "\n";
  26. #define MODNAME "tc35815"
  27. #include <linux/module.h>
  28. #include <linux/kernel.h>
  29. #include <linux/types.h>
  30. #include <linux/fcntl.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/ioport.h>
  33. #include <linux/in.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/slab.h>
  36. #include <linux/string.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/errno.h>
  39. #include <linux/netdevice.h>
  40. #include <linux/etherdevice.h>
  41. #include <linux/skbuff.h>
  42. #include <linux/delay.h>
  43. #include <linux/pci.h>
  44. #include <linux/phy.h>
  45. #include <linux/workqueue.h>
  46. #include <linux/platform_device.h>
  47. #include <linux/prefetch.h>
  48. #include <asm/io.h>
  49. #include <asm/byteorder.h>
  50. enum tc35815_chiptype {
  51. TC35815CF = 0,
  52. TC35815_NWU,
  53. TC35815_TX4939,
  54. };
  55. /* indexed by tc35815_chiptype, above */
  56. static const struct {
  57. const char *name;
  58. } chip_info[] = {
  59. { "TOSHIBA TC35815CF 10/100BaseTX" },
  60. { "TOSHIBA TC35815 with Wake on LAN" },
  61. { "TOSHIBA TC35815/TX4939" },
  62. };
  63. static const struct pci_device_id tc35815_pci_tbl[] = {
  64. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
  65. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
  66. {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
  67. {0,}
  68. };
  69. MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
  70. /* see MODULE_PARM_DESC */
  71. static struct tc35815_options {
  72. int speed;
  73. int duplex;
  74. } options;
  75. /*
  76. * Registers
  77. */
  78. struct tc35815_regs {
  79. __u32 DMA_Ctl; /* 0x00 */
  80. __u32 TxFrmPtr;
  81. __u32 TxThrsh;
  82. __u32 TxPollCtr;
  83. __u32 BLFrmPtr;
  84. __u32 RxFragSize;
  85. __u32 Int_En;
  86. __u32 FDA_Bas;
  87. __u32 FDA_Lim; /* 0x20 */
  88. __u32 Int_Src;
  89. __u32 unused0[2];
  90. __u32 PauseCnt;
  91. __u32 RemPauCnt;
  92. __u32 TxCtlFrmStat;
  93. __u32 unused1;
  94. __u32 MAC_Ctl; /* 0x40 */
  95. __u32 CAM_Ctl;
  96. __u32 Tx_Ctl;
  97. __u32 Tx_Stat;
  98. __u32 Rx_Ctl;
  99. __u32 Rx_Stat;
  100. __u32 MD_Data;
  101. __u32 MD_CA;
  102. __u32 CAM_Adr; /* 0x60 */
  103. __u32 CAM_Data;
  104. __u32 CAM_Ena;
  105. __u32 PROM_Ctl;
  106. __u32 PROM_Data;
  107. __u32 Algn_Cnt;
  108. __u32 CRC_Cnt;
  109. __u32 Miss_Cnt;
  110. };
  111. /*
  112. * Bit assignments
  113. */
  114. /* DMA_Ctl bit assign ------------------------------------------------------- */
  115. #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
  116. #define DMA_RxAlign_1 0x00400000
  117. #define DMA_RxAlign_2 0x00800000
  118. #define DMA_RxAlign_3 0x00c00000
  119. #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
  120. #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
  121. #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
  122. #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
  123. #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
  124. #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
  125. #define DMA_TestMode 0x00002000 /* 1:Test Mode */
  126. #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
  127. #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
  128. /* RxFragSize bit assign ---------------------------------------------------- */
  129. #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
  130. #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
  131. /* MAC_Ctl bit assign ------------------------------------------------------- */
  132. #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
  133. #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
  134. #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
  135. #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
  136. #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
  137. #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
  138. #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
  139. #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
  140. #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
  141. #define MAC_Reset 0x00000004 /* 1:Software Reset */
  142. #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
  143. #define MAC_HaltReq 0x00000001 /* 1:Halt request */
  144. /* PROM_Ctl bit assign ------------------------------------------------------ */
  145. #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
  146. #define PROM_Read 0x00004000 /*10:Read operation */
  147. #define PROM_Write 0x00002000 /*01:Write operation */
  148. #define PROM_Erase 0x00006000 /*11:Erase operation */
  149. /*00:Enable or Disable Writting, */
  150. /* as specified in PROM_Addr. */
  151. #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
  152. /*00xxxx: disable */
  153. /* CAM_Ctl bit assign ------------------------------------------------------- */
  154. #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
  155. #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
  156. /* accept other */
  157. #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
  158. #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
  159. #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
  160. /* CAM_Ena bit assign ------------------------------------------------------- */
  161. #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
  162. #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
  163. #define CAM_Ena_Bit(index) (1 << (index))
  164. #define CAM_ENTRY_DESTINATION 0
  165. #define CAM_ENTRY_SOURCE 1
  166. #define CAM_ENTRY_MACCTL 20
  167. /* Tx_Ctl bit assign -------------------------------------------------------- */
  168. #define Tx_En 0x00000001 /* 1:Transmit enable */
  169. #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
  170. #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
  171. #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
  172. #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
  173. #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
  174. #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
  175. #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
  176. #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
  177. #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
  178. #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
  179. #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
  180. /* Tx_Stat bit assign ------------------------------------------------------- */
  181. #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
  182. #define Tx_ExColl 0x00000010 /* Excessive Collision */
  183. #define Tx_TXDefer 0x00000020 /* Transmit Defered */
  184. #define Tx_Paused 0x00000040 /* Transmit Paused */
  185. #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
  186. #define Tx_Under 0x00000100 /* Underrun */
  187. #define Tx_Defer 0x00000200 /* Deferral */
  188. #define Tx_NCarr 0x00000400 /* No Carrier */
  189. #define Tx_10Stat 0x00000800 /* 10Mbps Status */
  190. #define Tx_LateColl 0x00001000 /* Late Collision */
  191. #define Tx_TxPar 0x00002000 /* Tx Parity Error */
  192. #define Tx_Comp 0x00004000 /* Completion */
  193. #define Tx_Halted 0x00008000 /* Tx Halted */
  194. #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
  195. /* Rx_Ctl bit assign -------------------------------------------------------- */
  196. #define Rx_EnGood 0x00004000 /* 1:Enable Good */
  197. #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
  198. #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
  199. #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
  200. #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
  201. #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
  202. #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
  203. #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
  204. #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
  205. #define Rx_LongEn 0x00000004 /* 1:Long Enable */
  206. #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
  207. #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
  208. /* Rx_Stat bit assign ------------------------------------------------------- */
  209. #define Rx_Halted 0x00008000 /* Rx Halted */
  210. #define Rx_Good 0x00004000 /* Rx Good */
  211. #define Rx_RxPar 0x00002000 /* Rx Parity Error */
  212. #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
  213. #define Rx_LongErr 0x00000800 /* Rx Long Error */
  214. #define Rx_Over 0x00000400 /* Rx Overflow */
  215. #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
  216. #define Rx_Align 0x00000100 /* Rx Alignment Error */
  217. #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
  218. #define Rx_IntRx 0x00000040 /* Rx Interrupt */
  219. #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
  220. #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
  221. #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
  222. /* Int_En bit assign -------------------------------------------------------- */
  223. #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
  224. #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
  225. #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
  226. #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
  227. #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
  228. #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
  229. #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
  230. #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
  231. #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
  232. #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
  233. #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
  234. #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
  235. /* Exhausted Enable */
  236. /* Int_Src bit assign ------------------------------------------------------- */
  237. #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
  238. #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
  239. #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
  240. #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
  241. #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
  242. #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
  243. #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
  244. #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
  245. #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
  246. #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
  247. #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
  248. #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
  249. #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
  250. #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
  251. #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
  252. /* MD_CA bit assign --------------------------------------------------------- */
  253. #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
  254. #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
  255. #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
  256. /*
  257. * Descriptors
  258. */
  259. /* Frame descriptor */
  260. struct FDesc {
  261. volatile __u32 FDNext;
  262. volatile __u32 FDSystem;
  263. volatile __u32 FDStat;
  264. volatile __u32 FDCtl;
  265. };
  266. /* Buffer descriptor */
  267. struct BDesc {
  268. volatile __u32 BuffData;
  269. volatile __u32 BDCtl;
  270. };
  271. #define FD_ALIGN 16
  272. /* Frame Descriptor bit assign ---------------------------------------------- */
  273. #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
  274. #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
  275. #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
  276. #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
  277. #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
  278. #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
  279. #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
  280. #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
  281. #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
  282. #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
  283. #define FD_BDCnt_SHIFT 16
  284. /* Buffer Descriptor bit assign --------------------------------------------- */
  285. #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
  286. #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
  287. #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
  288. #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
  289. #define BD_RxBDID_SHIFT 16
  290. #define BD_RxBDSeqN_SHIFT 24
  291. /* Some useful constants. */
  292. #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
  293. Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
  294. Tx_En) /* maybe 0x7b01 */
  295. /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
  296. #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
  297. | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
  298. #define INT_EN_CMD (Int_NRAbtEn | \
  299. Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
  300. Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
  301. Int_STargAbtEn | \
  302. Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
  303. #define DMA_CTL_CMD DMA_BURST_SIZE
  304. #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
  305. /* Tuning parameters */
  306. #define DMA_BURST_SIZE 32
  307. #define TX_THRESHOLD 1024
  308. /* used threshold with packet max byte for low pci transfer ability.*/
  309. #define TX_THRESHOLD_MAX 1536
  310. /* setting threshold max value when overrun error occurred this count. */
  311. #define TX_THRESHOLD_KEEP_LIMIT 10
  312. /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
  313. #define FD_PAGE_NUM 4
  314. #define RX_BUF_NUM 128 /* < 256 */
  315. #define RX_FD_NUM 256 /* >= 32 */
  316. #define TX_FD_NUM 128
  317. #if RX_CTL_CMD & Rx_LongEn
  318. #define RX_BUF_SIZE PAGE_SIZE
  319. #elif RX_CTL_CMD & Rx_StripCRC
  320. #define RX_BUF_SIZE \
  321. L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
  322. #else
  323. #define RX_BUF_SIZE \
  324. L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
  325. #endif
  326. #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
  327. #define NAPI_WEIGHT 16
  328. struct TxFD {
  329. struct FDesc fd;
  330. struct BDesc bd;
  331. struct BDesc unused;
  332. };
  333. struct RxFD {
  334. struct FDesc fd;
  335. struct BDesc bd[0]; /* variable length */
  336. };
  337. struct FrFD {
  338. struct FDesc fd;
  339. struct BDesc bd[RX_BUF_NUM];
  340. };
  341. #define tc_readl(addr) ioread32(addr)
  342. #define tc_writel(d, addr) iowrite32(d, addr)
  343. #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
  344. /* Information that need to be kept for each controller. */
  345. struct tc35815_local {
  346. struct pci_dev *pci_dev;
  347. struct net_device *dev;
  348. struct napi_struct napi;
  349. /* statistics */
  350. struct {
  351. int max_tx_qlen;
  352. int tx_ints;
  353. int rx_ints;
  354. int tx_underrun;
  355. } lstats;
  356. /* Tx control lock. This protects the transmit buffer ring
  357. * state along with the "tx full" state of the driver. This
  358. * means all netif_queue flow control actions are protected
  359. * by this lock as well.
  360. */
  361. spinlock_t lock;
  362. spinlock_t rx_lock;
  363. struct mii_bus *mii_bus;
  364. int duplex;
  365. int speed;
  366. int link;
  367. struct work_struct restart_work;
  368. /*
  369. * Transmitting: Batch Mode.
  370. * 1 BD in 1 TxFD.
  371. * Receiving: Non-Packing Mode.
  372. * 1 circular FD for Free Buffer List.
  373. * RX_BUF_NUM BD in Free Buffer FD.
  374. * One Free Buffer BD has ETH_FRAME_LEN data buffer.
  375. */
  376. void *fd_buf; /* for TxFD, RxFD, FrFD */
  377. dma_addr_t fd_buf_dma;
  378. struct TxFD *tfd_base;
  379. unsigned int tfd_start;
  380. unsigned int tfd_end;
  381. struct RxFD *rfd_base;
  382. struct RxFD *rfd_limit;
  383. struct RxFD *rfd_cur;
  384. struct FrFD *fbl_ptr;
  385. unsigned int fbl_count;
  386. struct {
  387. struct sk_buff *skb;
  388. dma_addr_t skb_dma;
  389. } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
  390. u32 msg_enable;
  391. enum tc35815_chiptype chiptype;
  392. };
  393. static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
  394. {
  395. return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
  396. }
  397. #ifdef DEBUG
  398. static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
  399. {
  400. return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
  401. }
  402. #endif
  403. static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
  404. struct pci_dev *hwdev,
  405. dma_addr_t *dma_handle)
  406. {
  407. struct sk_buff *skb;
  408. skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
  409. if (!skb)
  410. return NULL;
  411. *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
  412. PCI_DMA_FROMDEVICE);
  413. if (pci_dma_mapping_error(hwdev, *dma_handle)) {
  414. dev_kfree_skb_any(skb);
  415. return NULL;
  416. }
  417. skb_reserve(skb, 2); /* make IP header 4byte aligned */
  418. return skb;
  419. }
  420. static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
  421. {
  422. pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
  423. PCI_DMA_FROMDEVICE);
  424. dev_kfree_skb_any(skb);
  425. }
  426. /* Index to functions, as function prototypes. */
  427. static int tc35815_open(struct net_device *dev);
  428. static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
  429. static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
  430. static int tc35815_rx(struct net_device *dev, int limit);
  431. static int tc35815_poll(struct napi_struct *napi, int budget);
  432. static void tc35815_txdone(struct net_device *dev);
  433. static int tc35815_close(struct net_device *dev);
  434. static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
  435. static void tc35815_set_multicast_list(struct net_device *dev);
  436. static void tc35815_tx_timeout(struct net_device *dev);
  437. static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
  438. #ifdef CONFIG_NET_POLL_CONTROLLER
  439. static void tc35815_poll_controller(struct net_device *dev);
  440. #endif
  441. static const struct ethtool_ops tc35815_ethtool_ops;
  442. /* Example routines you must write ;->. */
  443. static void tc35815_chip_reset(struct net_device *dev);
  444. static void tc35815_chip_init(struct net_device *dev);
  445. #ifdef DEBUG
  446. static void panic_queues(struct net_device *dev);
  447. #endif
  448. static void tc35815_restart_work(struct work_struct *work);
  449. static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  450. {
  451. struct net_device *dev = bus->priv;
  452. struct tc35815_regs __iomem *tr =
  453. (struct tc35815_regs __iomem *)dev->base_addr;
  454. unsigned long timeout = jiffies + HZ;
  455. tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
  456. udelay(12); /* it takes 32 x 400ns at least */
  457. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  458. if (time_after(jiffies, timeout))
  459. return -EIO;
  460. cpu_relax();
  461. }
  462. return tc_readl(&tr->MD_Data) & 0xffff;
  463. }
  464. static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
  465. {
  466. struct net_device *dev = bus->priv;
  467. struct tc35815_regs __iomem *tr =
  468. (struct tc35815_regs __iomem *)dev->base_addr;
  469. unsigned long timeout = jiffies + HZ;
  470. tc_writel(val, &tr->MD_Data);
  471. tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
  472. &tr->MD_CA);
  473. udelay(12); /* it takes 32 x 400ns at least */
  474. while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
  475. if (time_after(jiffies, timeout))
  476. return -EIO;
  477. cpu_relax();
  478. }
  479. return 0;
  480. }
  481. static void tc_handle_link_change(struct net_device *dev)
  482. {
  483. struct tc35815_local *lp = netdev_priv(dev);
  484. struct phy_device *phydev = dev->phydev;
  485. unsigned long flags;
  486. int status_change = 0;
  487. spin_lock_irqsave(&lp->lock, flags);
  488. if (phydev->link &&
  489. (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
  490. struct tc35815_regs __iomem *tr =
  491. (struct tc35815_regs __iomem *)dev->base_addr;
  492. u32 reg;
  493. reg = tc_readl(&tr->MAC_Ctl);
  494. reg |= MAC_HaltReq;
  495. tc_writel(reg, &tr->MAC_Ctl);
  496. if (phydev->duplex == DUPLEX_FULL)
  497. reg |= MAC_FullDup;
  498. else
  499. reg &= ~MAC_FullDup;
  500. tc_writel(reg, &tr->MAC_Ctl);
  501. reg &= ~MAC_HaltReq;
  502. tc_writel(reg, &tr->MAC_Ctl);
  503. /*
  504. * TX4939 PCFG.SPEEDn bit will be changed on
  505. * NETDEV_CHANGE event.
  506. */
  507. /*
  508. * WORKAROUND: enable LostCrS only if half duplex
  509. * operation.
  510. * (TX4939 does not have EnLCarr)
  511. */
  512. if (phydev->duplex == DUPLEX_HALF &&
  513. lp->chiptype != TC35815_TX4939)
  514. tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
  515. &tr->Tx_Ctl);
  516. lp->speed = phydev->speed;
  517. lp->duplex = phydev->duplex;
  518. status_change = 1;
  519. }
  520. if (phydev->link != lp->link) {
  521. if (phydev->link) {
  522. /* delayed promiscuous enabling */
  523. if (dev->flags & IFF_PROMISC)
  524. tc35815_set_multicast_list(dev);
  525. } else {
  526. lp->speed = 0;
  527. lp->duplex = -1;
  528. }
  529. lp->link = phydev->link;
  530. status_change = 1;
  531. }
  532. spin_unlock_irqrestore(&lp->lock, flags);
  533. if (status_change && netif_msg_link(lp)) {
  534. phy_print_status(phydev);
  535. pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
  536. dev->name,
  537. phy_read(phydev, MII_BMCR),
  538. phy_read(phydev, MII_BMSR),
  539. phy_read(phydev, MII_LPA));
  540. }
  541. }
  542. static int tc_mii_probe(struct net_device *dev)
  543. {
  544. struct tc35815_local *lp = netdev_priv(dev);
  545. struct phy_device *phydev;
  546. u32 dropmask;
  547. phydev = phy_find_first(lp->mii_bus);
  548. if (!phydev) {
  549. printk(KERN_ERR "%s: no PHY found\n", dev->name);
  550. return -ENODEV;
  551. }
  552. /* attach the mac to the phy */
  553. phydev = phy_connect(dev, phydev_name(phydev),
  554. &tc_handle_link_change,
  555. lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
  556. if (IS_ERR(phydev)) {
  557. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  558. return PTR_ERR(phydev);
  559. }
  560. phy_attached_info(phydev);
  561. /* mask with MAC supported features */
  562. phydev->supported &= PHY_BASIC_FEATURES;
  563. dropmask = 0;
  564. if (options.speed == 10)
  565. dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
  566. else if (options.speed == 100)
  567. dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
  568. if (options.duplex == 1)
  569. dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
  570. else if (options.duplex == 2)
  571. dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
  572. phydev->supported &= ~dropmask;
  573. phydev->advertising = phydev->supported;
  574. lp->link = 0;
  575. lp->speed = 0;
  576. lp->duplex = -1;
  577. return 0;
  578. }
  579. static int tc_mii_init(struct net_device *dev)
  580. {
  581. struct tc35815_local *lp = netdev_priv(dev);
  582. int err;
  583. lp->mii_bus = mdiobus_alloc();
  584. if (lp->mii_bus == NULL) {
  585. err = -ENOMEM;
  586. goto err_out;
  587. }
  588. lp->mii_bus->name = "tc35815_mii_bus";
  589. lp->mii_bus->read = tc_mdio_read;
  590. lp->mii_bus->write = tc_mdio_write;
  591. snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  592. (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
  593. lp->mii_bus->priv = dev;
  594. lp->mii_bus->parent = &lp->pci_dev->dev;
  595. err = mdiobus_register(lp->mii_bus);
  596. if (err)
  597. goto err_out_free_mii_bus;
  598. err = tc_mii_probe(dev);
  599. if (err)
  600. goto err_out_unregister_bus;
  601. return 0;
  602. err_out_unregister_bus:
  603. mdiobus_unregister(lp->mii_bus);
  604. err_out_free_mii_bus:
  605. mdiobus_free(lp->mii_bus);
  606. err_out:
  607. return err;
  608. }
  609. #ifdef CONFIG_CPU_TX49XX
  610. /*
  611. * Find a platform_device providing a MAC address. The platform code
  612. * should provide a "tc35815-mac" device with a MAC address in its
  613. * platform_data.
  614. */
  615. static int tc35815_mac_match(struct device *dev, void *data)
  616. {
  617. struct platform_device *plat_dev = to_platform_device(dev);
  618. struct pci_dev *pci_dev = data;
  619. unsigned int id = pci_dev->irq;
  620. return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
  621. }
  622. static int tc35815_read_plat_dev_addr(struct net_device *dev)
  623. {
  624. struct tc35815_local *lp = netdev_priv(dev);
  625. struct device *pd = bus_find_device(&platform_bus_type, NULL,
  626. lp->pci_dev, tc35815_mac_match);
  627. if (pd) {
  628. if (pd->platform_data)
  629. memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
  630. put_device(pd);
  631. return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
  632. }
  633. return -ENODEV;
  634. }
  635. #else
  636. static int tc35815_read_plat_dev_addr(struct net_device *dev)
  637. {
  638. return -ENODEV;
  639. }
  640. #endif
  641. static int tc35815_init_dev_addr(struct net_device *dev)
  642. {
  643. struct tc35815_regs __iomem *tr =
  644. (struct tc35815_regs __iomem *)dev->base_addr;
  645. int i;
  646. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  647. ;
  648. for (i = 0; i < 6; i += 2) {
  649. unsigned short data;
  650. tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
  651. while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
  652. ;
  653. data = tc_readl(&tr->PROM_Data);
  654. dev->dev_addr[i] = data & 0xff;
  655. dev->dev_addr[i+1] = data >> 8;
  656. }
  657. if (!is_valid_ether_addr(dev->dev_addr))
  658. return tc35815_read_plat_dev_addr(dev);
  659. return 0;
  660. }
  661. static const struct net_device_ops tc35815_netdev_ops = {
  662. .ndo_open = tc35815_open,
  663. .ndo_stop = tc35815_close,
  664. .ndo_start_xmit = tc35815_send_packet,
  665. .ndo_get_stats = tc35815_get_stats,
  666. .ndo_set_rx_mode = tc35815_set_multicast_list,
  667. .ndo_tx_timeout = tc35815_tx_timeout,
  668. .ndo_do_ioctl = tc35815_ioctl,
  669. .ndo_validate_addr = eth_validate_addr,
  670. .ndo_change_mtu = eth_change_mtu,
  671. .ndo_set_mac_address = eth_mac_addr,
  672. #ifdef CONFIG_NET_POLL_CONTROLLER
  673. .ndo_poll_controller = tc35815_poll_controller,
  674. #endif
  675. };
  676. static int tc35815_init_one(struct pci_dev *pdev,
  677. const struct pci_device_id *ent)
  678. {
  679. void __iomem *ioaddr = NULL;
  680. struct net_device *dev;
  681. struct tc35815_local *lp;
  682. int rc;
  683. static int printed_version;
  684. if (!printed_version++) {
  685. printk(version);
  686. dev_printk(KERN_DEBUG, &pdev->dev,
  687. "speed:%d duplex:%d\n",
  688. options.speed, options.duplex);
  689. }
  690. if (!pdev->irq) {
  691. dev_warn(&pdev->dev, "no IRQ assigned.\n");
  692. return -ENODEV;
  693. }
  694. /* dev zeroed in alloc_etherdev */
  695. dev = alloc_etherdev(sizeof(*lp));
  696. if (dev == NULL)
  697. return -ENOMEM;
  698. SET_NETDEV_DEV(dev, &pdev->dev);
  699. lp = netdev_priv(dev);
  700. lp->dev = dev;
  701. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  702. rc = pcim_enable_device(pdev);
  703. if (rc)
  704. goto err_out;
  705. rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
  706. if (rc)
  707. goto err_out;
  708. pci_set_master(pdev);
  709. ioaddr = pcim_iomap_table(pdev)[1];
  710. /* Initialize the device structure. */
  711. dev->netdev_ops = &tc35815_netdev_ops;
  712. dev->ethtool_ops = &tc35815_ethtool_ops;
  713. dev->watchdog_timeo = TC35815_TX_TIMEOUT;
  714. netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
  715. dev->irq = pdev->irq;
  716. dev->base_addr = (unsigned long)ioaddr;
  717. INIT_WORK(&lp->restart_work, tc35815_restart_work);
  718. spin_lock_init(&lp->lock);
  719. spin_lock_init(&lp->rx_lock);
  720. lp->pci_dev = pdev;
  721. lp->chiptype = ent->driver_data;
  722. lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
  723. pci_set_drvdata(pdev, dev);
  724. /* Soft reset the chip. */
  725. tc35815_chip_reset(dev);
  726. /* Retrieve the ethernet address. */
  727. if (tc35815_init_dev_addr(dev)) {
  728. dev_warn(&pdev->dev, "not valid ether addr\n");
  729. eth_hw_addr_random(dev);
  730. }
  731. rc = register_netdev(dev);
  732. if (rc)
  733. goto err_out;
  734. printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
  735. dev->name,
  736. chip_info[ent->driver_data].name,
  737. dev->base_addr,
  738. dev->dev_addr,
  739. dev->irq);
  740. rc = tc_mii_init(dev);
  741. if (rc)
  742. goto err_out_unregister;
  743. return 0;
  744. err_out_unregister:
  745. unregister_netdev(dev);
  746. err_out:
  747. free_netdev(dev);
  748. return rc;
  749. }
  750. static void tc35815_remove_one(struct pci_dev *pdev)
  751. {
  752. struct net_device *dev = pci_get_drvdata(pdev);
  753. struct tc35815_local *lp = netdev_priv(dev);
  754. phy_disconnect(dev->phydev);
  755. mdiobus_unregister(lp->mii_bus);
  756. mdiobus_free(lp->mii_bus);
  757. unregister_netdev(dev);
  758. free_netdev(dev);
  759. }
  760. static int
  761. tc35815_init_queues(struct net_device *dev)
  762. {
  763. struct tc35815_local *lp = netdev_priv(dev);
  764. int i;
  765. unsigned long fd_addr;
  766. if (!lp->fd_buf) {
  767. BUG_ON(sizeof(struct FDesc) +
  768. sizeof(struct BDesc) * RX_BUF_NUM +
  769. sizeof(struct FDesc) * RX_FD_NUM +
  770. sizeof(struct TxFD) * TX_FD_NUM >
  771. PAGE_SIZE * FD_PAGE_NUM);
  772. lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
  773. PAGE_SIZE * FD_PAGE_NUM,
  774. &lp->fd_buf_dma);
  775. if (!lp->fd_buf)
  776. return -ENOMEM;
  777. for (i = 0; i < RX_BUF_NUM; i++) {
  778. lp->rx_skbs[i].skb =
  779. alloc_rxbuf_skb(dev, lp->pci_dev,
  780. &lp->rx_skbs[i].skb_dma);
  781. if (!lp->rx_skbs[i].skb) {
  782. while (--i >= 0) {
  783. free_rxbuf_skb(lp->pci_dev,
  784. lp->rx_skbs[i].skb,
  785. lp->rx_skbs[i].skb_dma);
  786. lp->rx_skbs[i].skb = NULL;
  787. }
  788. pci_free_consistent(lp->pci_dev,
  789. PAGE_SIZE * FD_PAGE_NUM,
  790. lp->fd_buf,
  791. lp->fd_buf_dma);
  792. lp->fd_buf = NULL;
  793. return -ENOMEM;
  794. }
  795. }
  796. printk(KERN_DEBUG "%s: FD buf %p DataBuf",
  797. dev->name, lp->fd_buf);
  798. printk("\n");
  799. } else {
  800. for (i = 0; i < FD_PAGE_NUM; i++)
  801. clear_page((void *)((unsigned long)lp->fd_buf +
  802. i * PAGE_SIZE));
  803. }
  804. fd_addr = (unsigned long)lp->fd_buf;
  805. /* Free Descriptors (for Receive) */
  806. lp->rfd_base = (struct RxFD *)fd_addr;
  807. fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
  808. for (i = 0; i < RX_FD_NUM; i++)
  809. lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
  810. lp->rfd_cur = lp->rfd_base;
  811. lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
  812. /* Transmit Descriptors */
  813. lp->tfd_base = (struct TxFD *)fd_addr;
  814. fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
  815. for (i = 0; i < TX_FD_NUM; i++) {
  816. lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
  817. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  818. lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
  819. }
  820. lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
  821. lp->tfd_start = 0;
  822. lp->tfd_end = 0;
  823. /* Buffer List (for Receive) */
  824. lp->fbl_ptr = (struct FrFD *)fd_addr;
  825. lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
  826. lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
  827. /*
  828. * move all allocated skbs to head of rx_skbs[] array.
  829. * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
  830. * tc35815_rx() had failed.
  831. */
  832. lp->fbl_count = 0;
  833. for (i = 0; i < RX_BUF_NUM; i++) {
  834. if (lp->rx_skbs[i].skb) {
  835. if (i != lp->fbl_count) {
  836. lp->rx_skbs[lp->fbl_count].skb =
  837. lp->rx_skbs[i].skb;
  838. lp->rx_skbs[lp->fbl_count].skb_dma =
  839. lp->rx_skbs[i].skb_dma;
  840. }
  841. lp->fbl_count++;
  842. }
  843. }
  844. for (i = 0; i < RX_BUF_NUM; i++) {
  845. if (i >= lp->fbl_count) {
  846. lp->fbl_ptr->bd[i].BuffData = 0;
  847. lp->fbl_ptr->bd[i].BDCtl = 0;
  848. continue;
  849. }
  850. lp->fbl_ptr->bd[i].BuffData =
  851. cpu_to_le32(lp->rx_skbs[i].skb_dma);
  852. /* BDID is index of FrFD.bd[] */
  853. lp->fbl_ptr->bd[i].BDCtl =
  854. cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
  855. RX_BUF_SIZE);
  856. }
  857. printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
  858. dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
  859. return 0;
  860. }
  861. static void
  862. tc35815_clear_queues(struct net_device *dev)
  863. {
  864. struct tc35815_local *lp = netdev_priv(dev);
  865. int i;
  866. for (i = 0; i < TX_FD_NUM; i++) {
  867. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  868. struct sk_buff *skb =
  869. fdsystem != 0xffffffff ?
  870. lp->tx_skbs[fdsystem].skb : NULL;
  871. #ifdef DEBUG
  872. if (lp->tx_skbs[i].skb != skb) {
  873. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  874. panic_queues(dev);
  875. }
  876. #else
  877. BUG_ON(lp->tx_skbs[i].skb != skb);
  878. #endif
  879. if (skb) {
  880. pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
  881. lp->tx_skbs[i].skb = NULL;
  882. lp->tx_skbs[i].skb_dma = 0;
  883. dev_kfree_skb_any(skb);
  884. }
  885. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  886. }
  887. tc35815_init_queues(dev);
  888. }
  889. static void
  890. tc35815_free_queues(struct net_device *dev)
  891. {
  892. struct tc35815_local *lp = netdev_priv(dev);
  893. int i;
  894. if (lp->tfd_base) {
  895. for (i = 0; i < TX_FD_NUM; i++) {
  896. u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
  897. struct sk_buff *skb =
  898. fdsystem != 0xffffffff ?
  899. lp->tx_skbs[fdsystem].skb : NULL;
  900. #ifdef DEBUG
  901. if (lp->tx_skbs[i].skb != skb) {
  902. printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
  903. panic_queues(dev);
  904. }
  905. #else
  906. BUG_ON(lp->tx_skbs[i].skb != skb);
  907. #endif
  908. if (skb) {
  909. dev_kfree_skb(skb);
  910. pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
  911. lp->tx_skbs[i].skb = NULL;
  912. lp->tx_skbs[i].skb_dma = 0;
  913. }
  914. lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
  915. }
  916. }
  917. lp->rfd_base = NULL;
  918. lp->rfd_limit = NULL;
  919. lp->rfd_cur = NULL;
  920. lp->fbl_ptr = NULL;
  921. for (i = 0; i < RX_BUF_NUM; i++) {
  922. if (lp->rx_skbs[i].skb) {
  923. free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
  924. lp->rx_skbs[i].skb_dma);
  925. lp->rx_skbs[i].skb = NULL;
  926. }
  927. }
  928. if (lp->fd_buf) {
  929. pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
  930. lp->fd_buf, lp->fd_buf_dma);
  931. lp->fd_buf = NULL;
  932. }
  933. }
  934. static void
  935. dump_txfd(struct TxFD *fd)
  936. {
  937. printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
  938. le32_to_cpu(fd->fd.FDNext),
  939. le32_to_cpu(fd->fd.FDSystem),
  940. le32_to_cpu(fd->fd.FDStat),
  941. le32_to_cpu(fd->fd.FDCtl));
  942. printk("BD: ");
  943. printk(" %08x %08x",
  944. le32_to_cpu(fd->bd.BuffData),
  945. le32_to_cpu(fd->bd.BDCtl));
  946. printk("\n");
  947. }
  948. static int
  949. dump_rxfd(struct RxFD *fd)
  950. {
  951. int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  952. if (bd_count > 8)
  953. bd_count = 8;
  954. printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
  955. le32_to_cpu(fd->fd.FDNext),
  956. le32_to_cpu(fd->fd.FDSystem),
  957. le32_to_cpu(fd->fd.FDStat),
  958. le32_to_cpu(fd->fd.FDCtl));
  959. if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
  960. return 0;
  961. printk("BD: ");
  962. for (i = 0; i < bd_count; i++)
  963. printk(" %08x %08x",
  964. le32_to_cpu(fd->bd[i].BuffData),
  965. le32_to_cpu(fd->bd[i].BDCtl));
  966. printk("\n");
  967. return bd_count;
  968. }
  969. #ifdef DEBUG
  970. static void
  971. dump_frfd(struct FrFD *fd)
  972. {
  973. int i;
  974. printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
  975. le32_to_cpu(fd->fd.FDNext),
  976. le32_to_cpu(fd->fd.FDSystem),
  977. le32_to_cpu(fd->fd.FDStat),
  978. le32_to_cpu(fd->fd.FDCtl));
  979. printk("BD: ");
  980. for (i = 0; i < RX_BUF_NUM; i++)
  981. printk(" %08x %08x",
  982. le32_to_cpu(fd->bd[i].BuffData),
  983. le32_to_cpu(fd->bd[i].BDCtl));
  984. printk("\n");
  985. }
  986. static void
  987. panic_queues(struct net_device *dev)
  988. {
  989. struct tc35815_local *lp = netdev_priv(dev);
  990. int i;
  991. printk("TxFD base %p, start %u, end %u\n",
  992. lp->tfd_base, lp->tfd_start, lp->tfd_end);
  993. printk("RxFD base %p limit %p cur %p\n",
  994. lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
  995. printk("FrFD %p\n", lp->fbl_ptr);
  996. for (i = 0; i < TX_FD_NUM; i++)
  997. dump_txfd(&lp->tfd_base[i]);
  998. for (i = 0; i < RX_FD_NUM; i++) {
  999. int bd_count = dump_rxfd(&lp->rfd_base[i]);
  1000. i += (bd_count + 1) / 2; /* skip BDs */
  1001. }
  1002. dump_frfd(lp->fbl_ptr);
  1003. panic("%s: Illegal queue state.", dev->name);
  1004. }
  1005. #endif
  1006. static void print_eth(const u8 *add)
  1007. {
  1008. printk(KERN_DEBUG "print_eth(%p)\n", add);
  1009. printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
  1010. add + 6, add, add[12], add[13]);
  1011. }
  1012. static int tc35815_tx_full(struct net_device *dev)
  1013. {
  1014. struct tc35815_local *lp = netdev_priv(dev);
  1015. return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
  1016. }
  1017. static void tc35815_restart(struct net_device *dev)
  1018. {
  1019. struct tc35815_local *lp = netdev_priv(dev);
  1020. int ret;
  1021. if (dev->phydev) {
  1022. ret = phy_init_hw(dev->phydev);
  1023. if (ret)
  1024. printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
  1025. }
  1026. spin_lock_bh(&lp->rx_lock);
  1027. spin_lock_irq(&lp->lock);
  1028. tc35815_chip_reset(dev);
  1029. tc35815_clear_queues(dev);
  1030. tc35815_chip_init(dev);
  1031. /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
  1032. tc35815_set_multicast_list(dev);
  1033. spin_unlock_irq(&lp->lock);
  1034. spin_unlock_bh(&lp->rx_lock);
  1035. netif_wake_queue(dev);
  1036. }
  1037. static void tc35815_restart_work(struct work_struct *work)
  1038. {
  1039. struct tc35815_local *lp =
  1040. container_of(work, struct tc35815_local, restart_work);
  1041. struct net_device *dev = lp->dev;
  1042. tc35815_restart(dev);
  1043. }
  1044. static void tc35815_schedule_restart(struct net_device *dev)
  1045. {
  1046. struct tc35815_local *lp = netdev_priv(dev);
  1047. struct tc35815_regs __iomem *tr =
  1048. (struct tc35815_regs __iomem *)dev->base_addr;
  1049. unsigned long flags;
  1050. /* disable interrupts */
  1051. spin_lock_irqsave(&lp->lock, flags);
  1052. tc_writel(0, &tr->Int_En);
  1053. tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
  1054. schedule_work(&lp->restart_work);
  1055. spin_unlock_irqrestore(&lp->lock, flags);
  1056. }
  1057. static void tc35815_tx_timeout(struct net_device *dev)
  1058. {
  1059. struct tc35815_regs __iomem *tr =
  1060. (struct tc35815_regs __iomem *)dev->base_addr;
  1061. printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
  1062. dev->name, tc_readl(&tr->Tx_Stat));
  1063. /* Try to restart the adaptor. */
  1064. tc35815_schedule_restart(dev);
  1065. dev->stats.tx_errors++;
  1066. }
  1067. /*
  1068. * Open/initialize the controller. This is called (in the current kernel)
  1069. * sometime after booting when the 'ifconfig' program is run.
  1070. *
  1071. * This routine should set everything up anew at each open, even
  1072. * registers that "should" only need to be set once at boot, so that
  1073. * there is non-reboot way to recover if something goes wrong.
  1074. */
  1075. static int
  1076. tc35815_open(struct net_device *dev)
  1077. {
  1078. struct tc35815_local *lp = netdev_priv(dev);
  1079. /*
  1080. * This is used if the interrupt line can turned off (shared).
  1081. * See 3c503.c for an example of selecting the IRQ at config-time.
  1082. */
  1083. if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
  1084. dev->name, dev))
  1085. return -EAGAIN;
  1086. tc35815_chip_reset(dev);
  1087. if (tc35815_init_queues(dev) != 0) {
  1088. free_irq(dev->irq, dev);
  1089. return -EAGAIN;
  1090. }
  1091. napi_enable(&lp->napi);
  1092. /* Reset the hardware here. Don't forget to set the station address. */
  1093. spin_lock_irq(&lp->lock);
  1094. tc35815_chip_init(dev);
  1095. spin_unlock_irq(&lp->lock);
  1096. netif_carrier_off(dev);
  1097. /* schedule a link state check */
  1098. phy_start(dev->phydev);
  1099. /* We are now ready to accept transmit requeusts from
  1100. * the queueing layer of the networking.
  1101. */
  1102. netif_start_queue(dev);
  1103. return 0;
  1104. }
  1105. /* This will only be invoked if your driver is _not_ in XOFF state.
  1106. * What this means is that you need not check it, and that this
  1107. * invariant will hold if you make sure that the netif_*_queue()
  1108. * calls are done at the proper times.
  1109. */
  1110. static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
  1111. {
  1112. struct tc35815_local *lp = netdev_priv(dev);
  1113. struct TxFD *txfd;
  1114. unsigned long flags;
  1115. /* If some error occurs while trying to transmit this
  1116. * packet, you should return '1' from this function.
  1117. * In such a case you _may not_ do anything to the
  1118. * SKB, it is still owned by the network queueing
  1119. * layer when an error is returned. This means you
  1120. * may not modify any SKB fields, you may not free
  1121. * the SKB, etc.
  1122. */
  1123. /* This is the most common case for modern hardware.
  1124. * The spinlock protects this code from the TX complete
  1125. * hardware interrupt handler. Queue flow control is
  1126. * thus managed under this lock as well.
  1127. */
  1128. spin_lock_irqsave(&lp->lock, flags);
  1129. /* failsafe... (handle txdone now if half of FDs are used) */
  1130. if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
  1131. TX_FD_NUM / 2)
  1132. tc35815_txdone(dev);
  1133. if (netif_msg_pktdata(lp))
  1134. print_eth(skb->data);
  1135. #ifdef DEBUG
  1136. if (lp->tx_skbs[lp->tfd_start].skb) {
  1137. printk("%s: tx_skbs conflict.\n", dev->name);
  1138. panic_queues(dev);
  1139. }
  1140. #else
  1141. BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
  1142. #endif
  1143. lp->tx_skbs[lp->tfd_start].skb = skb;
  1144. lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
  1145. /*add to ring */
  1146. txfd = &lp->tfd_base[lp->tfd_start];
  1147. txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
  1148. txfd->bd.BDCtl = cpu_to_le32(skb->len);
  1149. txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
  1150. txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
  1151. if (lp->tfd_start == lp->tfd_end) {
  1152. struct tc35815_regs __iomem *tr =
  1153. (struct tc35815_regs __iomem *)dev->base_addr;
  1154. /* Start DMA Transmitter. */
  1155. txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1156. txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1157. if (netif_msg_tx_queued(lp)) {
  1158. printk("%s: starting TxFD.\n", dev->name);
  1159. dump_txfd(txfd);
  1160. }
  1161. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1162. } else {
  1163. txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
  1164. if (netif_msg_tx_queued(lp)) {
  1165. printk("%s: queueing TxFD.\n", dev->name);
  1166. dump_txfd(txfd);
  1167. }
  1168. }
  1169. lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
  1170. /* If we just used up the very last entry in the
  1171. * TX ring on this device, tell the queueing
  1172. * layer to send no more.
  1173. */
  1174. if (tc35815_tx_full(dev)) {
  1175. if (netif_msg_tx_queued(lp))
  1176. printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
  1177. netif_stop_queue(dev);
  1178. }
  1179. /* When the TX completion hw interrupt arrives, this
  1180. * is when the transmit statistics are updated.
  1181. */
  1182. spin_unlock_irqrestore(&lp->lock, flags);
  1183. return NETDEV_TX_OK;
  1184. }
  1185. #define FATAL_ERROR_INT \
  1186. (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
  1187. static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
  1188. {
  1189. static int count;
  1190. printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
  1191. dev->name, status);
  1192. if (status & Int_IntPCI)
  1193. printk(" IntPCI");
  1194. if (status & Int_DmParErr)
  1195. printk(" DmParErr");
  1196. if (status & Int_IntNRAbt)
  1197. printk(" IntNRAbt");
  1198. printk("\n");
  1199. if (count++ > 100)
  1200. panic("%s: Too many fatal errors.", dev->name);
  1201. printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
  1202. /* Try to restart the adaptor. */
  1203. tc35815_schedule_restart(dev);
  1204. }
  1205. static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
  1206. {
  1207. struct tc35815_local *lp = netdev_priv(dev);
  1208. int ret = -1;
  1209. /* Fatal errors... */
  1210. if (status & FATAL_ERROR_INT) {
  1211. tc35815_fatal_error_interrupt(dev, status);
  1212. return 0;
  1213. }
  1214. /* recoverable errors */
  1215. if (status & Int_IntFDAEx) {
  1216. if (netif_msg_rx_err(lp))
  1217. dev_warn(&dev->dev,
  1218. "Free Descriptor Area Exhausted (%#x).\n",
  1219. status);
  1220. dev->stats.rx_dropped++;
  1221. ret = 0;
  1222. }
  1223. if (status & Int_IntBLEx) {
  1224. if (netif_msg_rx_err(lp))
  1225. dev_warn(&dev->dev,
  1226. "Buffer List Exhausted (%#x).\n",
  1227. status);
  1228. dev->stats.rx_dropped++;
  1229. ret = 0;
  1230. }
  1231. if (status & Int_IntExBD) {
  1232. if (netif_msg_rx_err(lp))
  1233. dev_warn(&dev->dev,
  1234. "Excessive Buffer Descriptors (%#x).\n",
  1235. status);
  1236. dev->stats.rx_length_errors++;
  1237. ret = 0;
  1238. }
  1239. /* normal notification */
  1240. if (status & Int_IntMacRx) {
  1241. /* Got a packet(s). */
  1242. ret = tc35815_rx(dev, limit);
  1243. lp->lstats.rx_ints++;
  1244. }
  1245. if (status & Int_IntMacTx) {
  1246. /* Transmit complete. */
  1247. lp->lstats.tx_ints++;
  1248. spin_lock_irq(&lp->lock);
  1249. tc35815_txdone(dev);
  1250. spin_unlock_irq(&lp->lock);
  1251. if (ret < 0)
  1252. ret = 0;
  1253. }
  1254. return ret;
  1255. }
  1256. /*
  1257. * The typical workload of the driver:
  1258. * Handle the network interface interrupts.
  1259. */
  1260. static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
  1261. {
  1262. struct net_device *dev = dev_id;
  1263. struct tc35815_local *lp = netdev_priv(dev);
  1264. struct tc35815_regs __iomem *tr =
  1265. (struct tc35815_regs __iomem *)dev->base_addr;
  1266. u32 dmactl = tc_readl(&tr->DMA_Ctl);
  1267. if (!(dmactl & DMA_IntMask)) {
  1268. /* disable interrupts */
  1269. tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
  1270. if (napi_schedule_prep(&lp->napi))
  1271. __napi_schedule(&lp->napi);
  1272. else {
  1273. printk(KERN_ERR "%s: interrupt taken in poll\n",
  1274. dev->name);
  1275. BUG();
  1276. }
  1277. (void)tc_readl(&tr->Int_Src); /* flush */
  1278. return IRQ_HANDLED;
  1279. }
  1280. return IRQ_NONE;
  1281. }
  1282. #ifdef CONFIG_NET_POLL_CONTROLLER
  1283. static void tc35815_poll_controller(struct net_device *dev)
  1284. {
  1285. disable_irq(dev->irq);
  1286. tc35815_interrupt(dev->irq, dev);
  1287. enable_irq(dev->irq);
  1288. }
  1289. #endif
  1290. /* We have a good packet(s), get it/them out of the buffers. */
  1291. static int
  1292. tc35815_rx(struct net_device *dev, int limit)
  1293. {
  1294. struct tc35815_local *lp = netdev_priv(dev);
  1295. unsigned int fdctl;
  1296. int i;
  1297. int received = 0;
  1298. while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
  1299. int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
  1300. int pkt_len = fdctl & FD_FDLength_MASK;
  1301. int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
  1302. #ifdef DEBUG
  1303. struct RxFD *next_rfd;
  1304. #endif
  1305. #if (RX_CTL_CMD & Rx_StripCRC) == 0
  1306. pkt_len -= ETH_FCS_LEN;
  1307. #endif
  1308. if (netif_msg_rx_status(lp))
  1309. dump_rxfd(lp->rfd_cur);
  1310. if (status & Rx_Good) {
  1311. struct sk_buff *skb;
  1312. unsigned char *data;
  1313. int cur_bd;
  1314. if (--limit < 0)
  1315. break;
  1316. BUG_ON(bd_count > 1);
  1317. cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
  1318. & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1319. #ifdef DEBUG
  1320. if (cur_bd >= RX_BUF_NUM) {
  1321. printk("%s: invalid BDID.\n", dev->name);
  1322. panic_queues(dev);
  1323. }
  1324. BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
  1325. (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
  1326. if (!lp->rx_skbs[cur_bd].skb) {
  1327. printk("%s: NULL skb.\n", dev->name);
  1328. panic_queues(dev);
  1329. }
  1330. #else
  1331. BUG_ON(cur_bd >= RX_BUF_NUM);
  1332. #endif
  1333. skb = lp->rx_skbs[cur_bd].skb;
  1334. prefetch(skb->data);
  1335. lp->rx_skbs[cur_bd].skb = NULL;
  1336. pci_unmap_single(lp->pci_dev,
  1337. lp->rx_skbs[cur_bd].skb_dma,
  1338. RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  1339. if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
  1340. memmove(skb->data, skb->data - NET_IP_ALIGN,
  1341. pkt_len);
  1342. data = skb_put(skb, pkt_len);
  1343. if (netif_msg_pktdata(lp))
  1344. print_eth(data);
  1345. skb->protocol = eth_type_trans(skb, dev);
  1346. netif_receive_skb(skb);
  1347. received++;
  1348. dev->stats.rx_packets++;
  1349. dev->stats.rx_bytes += pkt_len;
  1350. } else {
  1351. dev->stats.rx_errors++;
  1352. if (netif_msg_rx_err(lp))
  1353. dev_info(&dev->dev, "Rx error (status %x)\n",
  1354. status & Rx_Stat_Mask);
  1355. /* WORKAROUND: LongErr and CRCErr means Overflow. */
  1356. if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
  1357. status &= ~(Rx_LongErr|Rx_CRCErr);
  1358. status |= Rx_Over;
  1359. }
  1360. if (status & Rx_LongErr)
  1361. dev->stats.rx_length_errors++;
  1362. if (status & Rx_Over)
  1363. dev->stats.rx_fifo_errors++;
  1364. if (status & Rx_CRCErr)
  1365. dev->stats.rx_crc_errors++;
  1366. if (status & Rx_Align)
  1367. dev->stats.rx_frame_errors++;
  1368. }
  1369. if (bd_count > 0) {
  1370. /* put Free Buffer back to controller */
  1371. int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
  1372. unsigned char id =
  1373. (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
  1374. #ifdef DEBUG
  1375. if (id >= RX_BUF_NUM) {
  1376. printk("%s: invalid BDID.\n", dev->name);
  1377. panic_queues(dev);
  1378. }
  1379. #else
  1380. BUG_ON(id >= RX_BUF_NUM);
  1381. #endif
  1382. /* free old buffers */
  1383. lp->fbl_count--;
  1384. while (lp->fbl_count < RX_BUF_NUM)
  1385. {
  1386. unsigned char curid =
  1387. (id + 1 + lp->fbl_count) % RX_BUF_NUM;
  1388. struct BDesc *bd = &lp->fbl_ptr->bd[curid];
  1389. #ifdef DEBUG
  1390. bdctl = le32_to_cpu(bd->BDCtl);
  1391. if (bdctl & BD_CownsBD) {
  1392. printk("%s: Freeing invalid BD.\n",
  1393. dev->name);
  1394. panic_queues(dev);
  1395. }
  1396. #endif
  1397. /* pass BD to controller */
  1398. if (!lp->rx_skbs[curid].skb) {
  1399. lp->rx_skbs[curid].skb =
  1400. alloc_rxbuf_skb(dev,
  1401. lp->pci_dev,
  1402. &lp->rx_skbs[curid].skb_dma);
  1403. if (!lp->rx_skbs[curid].skb)
  1404. break; /* try on next reception */
  1405. bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
  1406. }
  1407. /* Note: BDLength was modified by chip. */
  1408. bd->BDCtl = cpu_to_le32(BD_CownsBD |
  1409. (curid << BD_RxBDID_SHIFT) |
  1410. RX_BUF_SIZE);
  1411. lp->fbl_count++;
  1412. }
  1413. }
  1414. /* put RxFD back to controller */
  1415. #ifdef DEBUG
  1416. next_rfd = fd_bus_to_virt(lp,
  1417. le32_to_cpu(lp->rfd_cur->fd.FDNext));
  1418. if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
  1419. printk("%s: RxFD FDNext invalid.\n", dev->name);
  1420. panic_queues(dev);
  1421. }
  1422. #endif
  1423. for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
  1424. /* pass FD to controller */
  1425. #ifdef DEBUG
  1426. lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
  1427. #else
  1428. lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
  1429. #endif
  1430. lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
  1431. lp->rfd_cur++;
  1432. }
  1433. if (lp->rfd_cur > lp->rfd_limit)
  1434. lp->rfd_cur = lp->rfd_base;
  1435. #ifdef DEBUG
  1436. if (lp->rfd_cur != next_rfd)
  1437. printk("rfd_cur = %p, next_rfd %p\n",
  1438. lp->rfd_cur, next_rfd);
  1439. #endif
  1440. }
  1441. return received;
  1442. }
  1443. static int tc35815_poll(struct napi_struct *napi, int budget)
  1444. {
  1445. struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
  1446. struct net_device *dev = lp->dev;
  1447. struct tc35815_regs __iomem *tr =
  1448. (struct tc35815_regs __iomem *)dev->base_addr;
  1449. int received = 0, handled;
  1450. u32 status;
  1451. if (budget <= 0)
  1452. return received;
  1453. spin_lock(&lp->rx_lock);
  1454. status = tc_readl(&tr->Int_Src);
  1455. do {
  1456. /* BLEx, FDAEx will be cleared later */
  1457. tc_writel(status & ~(Int_BLEx | Int_FDAEx),
  1458. &tr->Int_Src); /* write to clear */
  1459. handled = tc35815_do_interrupt(dev, status, budget - received);
  1460. if (status & (Int_BLEx | Int_FDAEx))
  1461. tc_writel(status & (Int_BLEx | Int_FDAEx),
  1462. &tr->Int_Src);
  1463. if (handled >= 0) {
  1464. received += handled;
  1465. if (received >= budget)
  1466. break;
  1467. }
  1468. status = tc_readl(&tr->Int_Src);
  1469. } while (status);
  1470. spin_unlock(&lp->rx_lock);
  1471. if (received < budget) {
  1472. napi_complete(napi);
  1473. /* enable interrupts */
  1474. tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
  1475. }
  1476. return received;
  1477. }
  1478. #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
  1479. static void
  1480. tc35815_check_tx_stat(struct net_device *dev, int status)
  1481. {
  1482. struct tc35815_local *lp = netdev_priv(dev);
  1483. const char *msg = NULL;
  1484. /* count collisions */
  1485. if (status & Tx_ExColl)
  1486. dev->stats.collisions += 16;
  1487. if (status & Tx_TxColl_MASK)
  1488. dev->stats.collisions += status & Tx_TxColl_MASK;
  1489. /* TX4939 does not have NCarr */
  1490. if (lp->chiptype == TC35815_TX4939)
  1491. status &= ~Tx_NCarr;
  1492. /* WORKAROUND: ignore LostCrS in full duplex operation */
  1493. if (!lp->link || lp->duplex == DUPLEX_FULL)
  1494. status &= ~Tx_NCarr;
  1495. if (!(status & TX_STA_ERR)) {
  1496. /* no error. */
  1497. dev->stats.tx_packets++;
  1498. return;
  1499. }
  1500. dev->stats.tx_errors++;
  1501. if (status & Tx_ExColl) {
  1502. dev->stats.tx_aborted_errors++;
  1503. msg = "Excessive Collision.";
  1504. }
  1505. if (status & Tx_Under) {
  1506. dev->stats.tx_fifo_errors++;
  1507. msg = "Tx FIFO Underrun.";
  1508. if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
  1509. lp->lstats.tx_underrun++;
  1510. if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
  1511. struct tc35815_regs __iomem *tr =
  1512. (struct tc35815_regs __iomem *)dev->base_addr;
  1513. tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
  1514. msg = "Tx FIFO Underrun.Change Tx threshold to max.";
  1515. }
  1516. }
  1517. }
  1518. if (status & Tx_Defer) {
  1519. dev->stats.tx_fifo_errors++;
  1520. msg = "Excessive Deferral.";
  1521. }
  1522. if (status & Tx_NCarr) {
  1523. dev->stats.tx_carrier_errors++;
  1524. msg = "Lost Carrier Sense.";
  1525. }
  1526. if (status & Tx_LateColl) {
  1527. dev->stats.tx_aborted_errors++;
  1528. msg = "Late Collision.";
  1529. }
  1530. if (status & Tx_TxPar) {
  1531. dev->stats.tx_fifo_errors++;
  1532. msg = "Transmit Parity Error.";
  1533. }
  1534. if (status & Tx_SQErr) {
  1535. dev->stats.tx_heartbeat_errors++;
  1536. msg = "Signal Quality Error.";
  1537. }
  1538. if (msg && netif_msg_tx_err(lp))
  1539. printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
  1540. }
  1541. /* This handles TX complete events posted by the device
  1542. * via interrupts.
  1543. */
  1544. static void
  1545. tc35815_txdone(struct net_device *dev)
  1546. {
  1547. struct tc35815_local *lp = netdev_priv(dev);
  1548. struct TxFD *txfd;
  1549. unsigned int fdctl;
  1550. txfd = &lp->tfd_base[lp->tfd_end];
  1551. while (lp->tfd_start != lp->tfd_end &&
  1552. !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
  1553. int status = le32_to_cpu(txfd->fd.FDStat);
  1554. struct sk_buff *skb;
  1555. unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
  1556. u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
  1557. if (netif_msg_tx_done(lp)) {
  1558. printk("%s: complete TxFD.\n", dev->name);
  1559. dump_txfd(txfd);
  1560. }
  1561. tc35815_check_tx_stat(dev, status);
  1562. skb = fdsystem != 0xffffffff ?
  1563. lp->tx_skbs[fdsystem].skb : NULL;
  1564. #ifdef DEBUG
  1565. if (lp->tx_skbs[lp->tfd_end].skb != skb) {
  1566. printk("%s: tx_skbs mismatch.\n", dev->name);
  1567. panic_queues(dev);
  1568. }
  1569. #else
  1570. BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
  1571. #endif
  1572. if (skb) {
  1573. dev->stats.tx_bytes += skb->len;
  1574. pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
  1575. lp->tx_skbs[lp->tfd_end].skb = NULL;
  1576. lp->tx_skbs[lp->tfd_end].skb_dma = 0;
  1577. dev_kfree_skb_any(skb);
  1578. }
  1579. txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
  1580. lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
  1581. txfd = &lp->tfd_base[lp->tfd_end];
  1582. #ifdef DEBUG
  1583. if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
  1584. printk("%s: TxFD FDNext invalid.\n", dev->name);
  1585. panic_queues(dev);
  1586. }
  1587. #endif
  1588. if (fdnext & FD_Next_EOL) {
  1589. /* DMA Transmitter has been stopping... */
  1590. if (lp->tfd_end != lp->tfd_start) {
  1591. struct tc35815_regs __iomem *tr =
  1592. (struct tc35815_regs __iomem *)dev->base_addr;
  1593. int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
  1594. struct TxFD *txhead = &lp->tfd_base[head];
  1595. int qlen = (lp->tfd_start + TX_FD_NUM
  1596. - lp->tfd_end) % TX_FD_NUM;
  1597. #ifdef DEBUG
  1598. if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
  1599. printk("%s: TxFD FDCtl invalid.\n", dev->name);
  1600. panic_queues(dev);
  1601. }
  1602. #endif
  1603. /* log max queue length */
  1604. if (lp->lstats.max_tx_qlen < qlen)
  1605. lp->lstats.max_tx_qlen = qlen;
  1606. /* start DMA Transmitter again */
  1607. txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
  1608. txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
  1609. if (netif_msg_tx_queued(lp)) {
  1610. printk("%s: start TxFD on queue.\n",
  1611. dev->name);
  1612. dump_txfd(txfd);
  1613. }
  1614. tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
  1615. }
  1616. break;
  1617. }
  1618. }
  1619. /* If we had stopped the queue due to a "tx full"
  1620. * condition, and space has now been made available,
  1621. * wake up the queue.
  1622. */
  1623. if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
  1624. netif_wake_queue(dev);
  1625. }
  1626. /* The inverse routine to tc35815_open(). */
  1627. static int
  1628. tc35815_close(struct net_device *dev)
  1629. {
  1630. struct tc35815_local *lp = netdev_priv(dev);
  1631. netif_stop_queue(dev);
  1632. napi_disable(&lp->napi);
  1633. if (dev->phydev)
  1634. phy_stop(dev->phydev);
  1635. cancel_work_sync(&lp->restart_work);
  1636. /* Flush the Tx and disable Rx here. */
  1637. tc35815_chip_reset(dev);
  1638. free_irq(dev->irq, dev);
  1639. tc35815_free_queues(dev);
  1640. return 0;
  1641. }
  1642. /*
  1643. * Get the current statistics.
  1644. * This may be called with the card open or closed.
  1645. */
  1646. static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
  1647. {
  1648. struct tc35815_regs __iomem *tr =
  1649. (struct tc35815_regs __iomem *)dev->base_addr;
  1650. if (netif_running(dev))
  1651. /* Update the statistics from the device registers. */
  1652. dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
  1653. return &dev->stats;
  1654. }
  1655. static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
  1656. {
  1657. struct tc35815_local *lp = netdev_priv(dev);
  1658. struct tc35815_regs __iomem *tr =
  1659. (struct tc35815_regs __iomem *)dev->base_addr;
  1660. int cam_index = index * 6;
  1661. u32 cam_data;
  1662. u32 saved_addr;
  1663. saved_addr = tc_readl(&tr->CAM_Adr);
  1664. if (netif_msg_hw(lp))
  1665. printk(KERN_DEBUG "%s: CAM %d: %pM\n",
  1666. dev->name, index, addr);
  1667. if (index & 1) {
  1668. /* read modify write */
  1669. tc_writel(cam_index - 2, &tr->CAM_Adr);
  1670. cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
  1671. cam_data |= addr[0] << 8 | addr[1];
  1672. tc_writel(cam_data, &tr->CAM_Data);
  1673. /* write whole word */
  1674. tc_writel(cam_index + 2, &tr->CAM_Adr);
  1675. cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
  1676. tc_writel(cam_data, &tr->CAM_Data);
  1677. } else {
  1678. /* write whole word */
  1679. tc_writel(cam_index, &tr->CAM_Adr);
  1680. cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
  1681. tc_writel(cam_data, &tr->CAM_Data);
  1682. /* read modify write */
  1683. tc_writel(cam_index + 4, &tr->CAM_Adr);
  1684. cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
  1685. cam_data |= addr[4] << 24 | (addr[5] << 16);
  1686. tc_writel(cam_data, &tr->CAM_Data);
  1687. }
  1688. tc_writel(saved_addr, &tr->CAM_Adr);
  1689. }
  1690. /*
  1691. * Set or clear the multicast filter for this adaptor.
  1692. * num_addrs == -1 Promiscuous mode, receive all packets
  1693. * num_addrs == 0 Normal mode, clear multicast list
  1694. * num_addrs > 0 Multicast mode, receive normal and MC packets,
  1695. * and do best-effort filtering.
  1696. */
  1697. static void
  1698. tc35815_set_multicast_list(struct net_device *dev)
  1699. {
  1700. struct tc35815_regs __iomem *tr =
  1701. (struct tc35815_regs __iomem *)dev->base_addr;
  1702. if (dev->flags & IFF_PROMISC) {
  1703. /* With some (all?) 100MHalf HUB, controller will hang
  1704. * if we enabled promiscuous mode before linkup... */
  1705. struct tc35815_local *lp = netdev_priv(dev);
  1706. if (!lp->link)
  1707. return;
  1708. /* Enable promiscuous mode */
  1709. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
  1710. } else if ((dev->flags & IFF_ALLMULTI) ||
  1711. netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
  1712. /* CAM 0, 1, 20 are reserved. */
  1713. /* Disable promiscuous mode, use normal mode. */
  1714. tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
  1715. } else if (!netdev_mc_empty(dev)) {
  1716. struct netdev_hw_addr *ha;
  1717. int i;
  1718. int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
  1719. tc_writel(0, &tr->CAM_Ctl);
  1720. /* Walk the address list, and load the filter */
  1721. i = 0;
  1722. netdev_for_each_mc_addr(ha, dev) {
  1723. /* entry 0,1 is reserved. */
  1724. tc35815_set_cam_entry(dev, i + 2, ha->addr);
  1725. ena_bits |= CAM_Ena_Bit(i + 2);
  1726. i++;
  1727. }
  1728. tc_writel(ena_bits, &tr->CAM_Ena);
  1729. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1730. } else {
  1731. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  1732. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1733. }
  1734. }
  1735. static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1736. {
  1737. struct tc35815_local *lp = netdev_priv(dev);
  1738. strlcpy(info->driver, MODNAME, sizeof(info->driver));
  1739. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  1740. strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
  1741. }
  1742. static u32 tc35815_get_msglevel(struct net_device *dev)
  1743. {
  1744. struct tc35815_local *lp = netdev_priv(dev);
  1745. return lp->msg_enable;
  1746. }
  1747. static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
  1748. {
  1749. struct tc35815_local *lp = netdev_priv(dev);
  1750. lp->msg_enable = datum;
  1751. }
  1752. static int tc35815_get_sset_count(struct net_device *dev, int sset)
  1753. {
  1754. struct tc35815_local *lp = netdev_priv(dev);
  1755. switch (sset) {
  1756. case ETH_SS_STATS:
  1757. return sizeof(lp->lstats) / sizeof(int);
  1758. default:
  1759. return -EOPNOTSUPP;
  1760. }
  1761. }
  1762. static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
  1763. {
  1764. struct tc35815_local *lp = netdev_priv(dev);
  1765. data[0] = lp->lstats.max_tx_qlen;
  1766. data[1] = lp->lstats.tx_ints;
  1767. data[2] = lp->lstats.rx_ints;
  1768. data[3] = lp->lstats.tx_underrun;
  1769. }
  1770. static struct {
  1771. const char str[ETH_GSTRING_LEN];
  1772. } ethtool_stats_keys[] = {
  1773. { "max_tx_qlen" },
  1774. { "tx_ints" },
  1775. { "rx_ints" },
  1776. { "tx_underrun" },
  1777. };
  1778. static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  1779. {
  1780. memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
  1781. }
  1782. static const struct ethtool_ops tc35815_ethtool_ops = {
  1783. .get_drvinfo = tc35815_get_drvinfo,
  1784. .get_link = ethtool_op_get_link,
  1785. .get_msglevel = tc35815_get_msglevel,
  1786. .set_msglevel = tc35815_set_msglevel,
  1787. .get_strings = tc35815_get_strings,
  1788. .get_sset_count = tc35815_get_sset_count,
  1789. .get_ethtool_stats = tc35815_get_ethtool_stats,
  1790. .get_link_ksettings = phy_ethtool_get_link_ksettings,
  1791. .set_link_ksettings = phy_ethtool_set_link_ksettings,
  1792. };
  1793. static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  1794. {
  1795. if (!netif_running(dev))
  1796. return -EINVAL;
  1797. if (!dev->phydev)
  1798. return -ENODEV;
  1799. return phy_mii_ioctl(dev->phydev, rq, cmd);
  1800. }
  1801. static void tc35815_chip_reset(struct net_device *dev)
  1802. {
  1803. struct tc35815_regs __iomem *tr =
  1804. (struct tc35815_regs __iomem *)dev->base_addr;
  1805. int i;
  1806. /* reset the controller */
  1807. tc_writel(MAC_Reset, &tr->MAC_Ctl);
  1808. udelay(4); /* 3200ns */
  1809. i = 0;
  1810. while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
  1811. if (i++ > 100) {
  1812. printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
  1813. break;
  1814. }
  1815. mdelay(1);
  1816. }
  1817. tc_writel(0, &tr->MAC_Ctl);
  1818. /* initialize registers to default value */
  1819. tc_writel(0, &tr->DMA_Ctl);
  1820. tc_writel(0, &tr->TxThrsh);
  1821. tc_writel(0, &tr->TxPollCtr);
  1822. tc_writel(0, &tr->RxFragSize);
  1823. tc_writel(0, &tr->Int_En);
  1824. tc_writel(0, &tr->FDA_Bas);
  1825. tc_writel(0, &tr->FDA_Lim);
  1826. tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
  1827. tc_writel(0, &tr->CAM_Ctl);
  1828. tc_writel(0, &tr->Tx_Ctl);
  1829. tc_writel(0, &tr->Rx_Ctl);
  1830. tc_writel(0, &tr->CAM_Ena);
  1831. (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
  1832. /* initialize internal SRAM */
  1833. tc_writel(DMA_TestMode, &tr->DMA_Ctl);
  1834. for (i = 0; i < 0x1000; i += 4) {
  1835. tc_writel(i, &tr->CAM_Adr);
  1836. tc_writel(0, &tr->CAM_Data);
  1837. }
  1838. tc_writel(0, &tr->DMA_Ctl);
  1839. }
  1840. static void tc35815_chip_init(struct net_device *dev)
  1841. {
  1842. struct tc35815_local *lp = netdev_priv(dev);
  1843. struct tc35815_regs __iomem *tr =
  1844. (struct tc35815_regs __iomem *)dev->base_addr;
  1845. unsigned long txctl = TX_CTL_CMD;
  1846. /* load station address to CAM */
  1847. tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
  1848. /* Enable CAM (broadcast and unicast) */
  1849. tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
  1850. tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
  1851. /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
  1852. if (HAVE_DMA_RXALIGN(lp))
  1853. tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
  1854. else
  1855. tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
  1856. tc_writel(0, &tr->TxPollCtr); /* Batch mode */
  1857. tc_writel(TX_THRESHOLD, &tr->TxThrsh);
  1858. tc_writel(INT_EN_CMD, &tr->Int_En);
  1859. /* set queues */
  1860. tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
  1861. tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
  1862. &tr->FDA_Lim);
  1863. /*
  1864. * Activation method:
  1865. * First, enable the MAC Transmitter and the DMA Receive circuits.
  1866. * Then enable the DMA Transmitter and the MAC Receive circuits.
  1867. */
  1868. tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
  1869. tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
  1870. /* start MAC transmitter */
  1871. /* TX4939 does not have EnLCarr */
  1872. if (lp->chiptype == TC35815_TX4939)
  1873. txctl &= ~Tx_EnLCarr;
  1874. /* WORKAROUND: ignore LostCrS in full duplex operation */
  1875. if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
  1876. txctl &= ~Tx_EnLCarr;
  1877. tc_writel(txctl, &tr->Tx_Ctl);
  1878. }
  1879. #ifdef CONFIG_PM
  1880. static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
  1881. {
  1882. struct net_device *dev = pci_get_drvdata(pdev);
  1883. struct tc35815_local *lp = netdev_priv(dev);
  1884. unsigned long flags;
  1885. pci_save_state(pdev);
  1886. if (!netif_running(dev))
  1887. return 0;
  1888. netif_device_detach(dev);
  1889. if (dev->phydev)
  1890. phy_stop(dev->phydev);
  1891. spin_lock_irqsave(&lp->lock, flags);
  1892. tc35815_chip_reset(dev);
  1893. spin_unlock_irqrestore(&lp->lock, flags);
  1894. pci_set_power_state(pdev, PCI_D3hot);
  1895. return 0;
  1896. }
  1897. static int tc35815_resume(struct pci_dev *pdev)
  1898. {
  1899. struct net_device *dev = pci_get_drvdata(pdev);
  1900. pci_restore_state(pdev);
  1901. if (!netif_running(dev))
  1902. return 0;
  1903. pci_set_power_state(pdev, PCI_D0);
  1904. tc35815_restart(dev);
  1905. netif_carrier_off(dev);
  1906. if (dev->phydev)
  1907. phy_start(dev->phydev);
  1908. netif_device_attach(dev);
  1909. return 0;
  1910. }
  1911. #endif /* CONFIG_PM */
  1912. static struct pci_driver tc35815_pci_driver = {
  1913. .name = MODNAME,
  1914. .id_table = tc35815_pci_tbl,
  1915. .probe = tc35815_init_one,
  1916. .remove = tc35815_remove_one,
  1917. #ifdef CONFIG_PM
  1918. .suspend = tc35815_suspend,
  1919. .resume = tc35815_resume,
  1920. #endif
  1921. };
  1922. module_param_named(speed, options.speed, int, 0);
  1923. MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
  1924. module_param_named(duplex, options.duplex, int, 0);
  1925. MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
  1926. module_pci_driver(tc35815_pci_driver);
  1927. MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
  1928. MODULE_LICENSE("GPL");