bcmgenet.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604
  1. /*
  2. * Broadcom GENET (Gigabit Ethernet) controller driver
  3. *
  4. * Copyright (c) 2014-2017 Broadcom
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #define pr_fmt(fmt) "bcmgenet: " fmt
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/types.h>
  15. #include <linux/fcntl.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/string.h>
  18. #include <linux/if_ether.h>
  19. #include <linux/init.h>
  20. #include <linux/errno.h>
  21. #include <linux/delay.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/pm.h>
  25. #include <linux/clk.h>
  26. #include <linux/of.h>
  27. #include <linux/of_address.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/of_net.h>
  30. #include <linux/of_platform.h>
  31. #include <net/arp.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/inetdevice.h>
  36. #include <linux/etherdevice.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/in.h>
  39. #include <linux/ip.h>
  40. #include <linux/ipv6.h>
  41. #include <linux/phy.h>
  42. #include <linux/platform_data/bcmgenet.h>
  43. #include <asm/unaligned.h>
  44. #include "bcmgenet.h"
  45. /* Maximum number of hardware queues, downsized if needed */
  46. #define GENET_MAX_MQ_CNT 4
  47. /* Default highest priority queue for multi queue support */
  48. #define GENET_Q0_PRIORITY 0
  49. #define GENET_Q16_RX_BD_CNT \
  50. (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
  51. #define GENET_Q16_TX_BD_CNT \
  52. (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
  53. #define RX_BUF_LENGTH 2048
  54. #define SKB_ALIGNMENT 32
  55. /* Tx/Rx DMA register offset, skip 256 descriptors */
  56. #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
  57. #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
  58. #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
  59. TOTAL_DESC * DMA_DESC_SIZE)
  60. #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
  61. TOTAL_DESC * DMA_DESC_SIZE)
  62. static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
  63. void __iomem *d, u32 value)
  64. {
  65. __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
  66. }
  67. static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
  68. void __iomem *d)
  69. {
  70. return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
  71. }
  72. static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
  73. void __iomem *d,
  74. dma_addr_t addr)
  75. {
  76. __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
  77. /* Register writes to GISB bus can take couple hundred nanoseconds
  78. * and are done for each packet, save these expensive writes unless
  79. * the platform is explicitly configured for 64-bits/LPAE.
  80. */
  81. #ifdef CONFIG_PHYS_ADDR_T_64BIT
  82. if (priv->hw_params->flags & GENET_HAS_40BITS)
  83. __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
  84. #endif
  85. }
  86. /* Combined address + length/status setter */
  87. static inline void dmadesc_set(struct bcmgenet_priv *priv,
  88. void __iomem *d, dma_addr_t addr, u32 val)
  89. {
  90. dmadesc_set_addr(priv, d, addr);
  91. dmadesc_set_length_status(priv, d, val);
  92. }
  93. static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
  94. void __iomem *d)
  95. {
  96. dma_addr_t addr;
  97. addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
  98. /* Register writes to GISB bus can take couple hundred nanoseconds
  99. * and are done for each packet, save these expensive writes unless
  100. * the platform is explicitly configured for 64-bits/LPAE.
  101. */
  102. #ifdef CONFIG_PHYS_ADDR_T_64BIT
  103. if (priv->hw_params->flags & GENET_HAS_40BITS)
  104. addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
  105. #endif
  106. return addr;
  107. }
  108. #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
  109. #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
  110. NETIF_MSG_LINK)
  111. static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
  112. {
  113. if (GENET_IS_V1(priv))
  114. return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
  115. else
  116. return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
  117. }
  118. static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
  119. {
  120. if (GENET_IS_V1(priv))
  121. bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
  122. else
  123. bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
  124. }
  125. /* These macros are defined to deal with register map change
  126. * between GENET1.1 and GENET2. Only those currently being used
  127. * by driver are defined.
  128. */
  129. static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
  130. {
  131. if (GENET_IS_V1(priv))
  132. return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
  133. else
  134. return __raw_readl(priv->base +
  135. priv->hw_params->tbuf_offset + TBUF_CTRL);
  136. }
  137. static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
  138. {
  139. if (GENET_IS_V1(priv))
  140. bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
  141. else
  142. __raw_writel(val, priv->base +
  143. priv->hw_params->tbuf_offset + TBUF_CTRL);
  144. }
  145. static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
  146. {
  147. if (GENET_IS_V1(priv))
  148. return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
  149. else
  150. return __raw_readl(priv->base +
  151. priv->hw_params->tbuf_offset + TBUF_BP_MC);
  152. }
  153. static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
  154. {
  155. if (GENET_IS_V1(priv))
  156. bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
  157. else
  158. __raw_writel(val, priv->base +
  159. priv->hw_params->tbuf_offset + TBUF_BP_MC);
  160. }
  161. /* RX/TX DMA register accessors */
  162. enum dma_reg {
  163. DMA_RING_CFG = 0,
  164. DMA_CTRL,
  165. DMA_STATUS,
  166. DMA_SCB_BURST_SIZE,
  167. DMA_ARB_CTRL,
  168. DMA_PRIORITY_0,
  169. DMA_PRIORITY_1,
  170. DMA_PRIORITY_2,
  171. DMA_INDEX2RING_0,
  172. DMA_INDEX2RING_1,
  173. DMA_INDEX2RING_2,
  174. DMA_INDEX2RING_3,
  175. DMA_INDEX2RING_4,
  176. DMA_INDEX2RING_5,
  177. DMA_INDEX2RING_6,
  178. DMA_INDEX2RING_7,
  179. DMA_RING0_TIMEOUT,
  180. DMA_RING1_TIMEOUT,
  181. DMA_RING2_TIMEOUT,
  182. DMA_RING3_TIMEOUT,
  183. DMA_RING4_TIMEOUT,
  184. DMA_RING5_TIMEOUT,
  185. DMA_RING6_TIMEOUT,
  186. DMA_RING7_TIMEOUT,
  187. DMA_RING8_TIMEOUT,
  188. DMA_RING9_TIMEOUT,
  189. DMA_RING10_TIMEOUT,
  190. DMA_RING11_TIMEOUT,
  191. DMA_RING12_TIMEOUT,
  192. DMA_RING13_TIMEOUT,
  193. DMA_RING14_TIMEOUT,
  194. DMA_RING15_TIMEOUT,
  195. DMA_RING16_TIMEOUT,
  196. };
  197. static const u8 bcmgenet_dma_regs_v3plus[] = {
  198. [DMA_RING_CFG] = 0x00,
  199. [DMA_CTRL] = 0x04,
  200. [DMA_STATUS] = 0x08,
  201. [DMA_SCB_BURST_SIZE] = 0x0C,
  202. [DMA_ARB_CTRL] = 0x2C,
  203. [DMA_PRIORITY_0] = 0x30,
  204. [DMA_PRIORITY_1] = 0x34,
  205. [DMA_PRIORITY_2] = 0x38,
  206. [DMA_RING0_TIMEOUT] = 0x2C,
  207. [DMA_RING1_TIMEOUT] = 0x30,
  208. [DMA_RING2_TIMEOUT] = 0x34,
  209. [DMA_RING3_TIMEOUT] = 0x38,
  210. [DMA_RING4_TIMEOUT] = 0x3c,
  211. [DMA_RING5_TIMEOUT] = 0x40,
  212. [DMA_RING6_TIMEOUT] = 0x44,
  213. [DMA_RING7_TIMEOUT] = 0x48,
  214. [DMA_RING8_TIMEOUT] = 0x4c,
  215. [DMA_RING9_TIMEOUT] = 0x50,
  216. [DMA_RING10_TIMEOUT] = 0x54,
  217. [DMA_RING11_TIMEOUT] = 0x58,
  218. [DMA_RING12_TIMEOUT] = 0x5c,
  219. [DMA_RING13_TIMEOUT] = 0x60,
  220. [DMA_RING14_TIMEOUT] = 0x64,
  221. [DMA_RING15_TIMEOUT] = 0x68,
  222. [DMA_RING16_TIMEOUT] = 0x6C,
  223. [DMA_INDEX2RING_0] = 0x70,
  224. [DMA_INDEX2RING_1] = 0x74,
  225. [DMA_INDEX2RING_2] = 0x78,
  226. [DMA_INDEX2RING_3] = 0x7C,
  227. [DMA_INDEX2RING_4] = 0x80,
  228. [DMA_INDEX2RING_5] = 0x84,
  229. [DMA_INDEX2RING_6] = 0x88,
  230. [DMA_INDEX2RING_7] = 0x8C,
  231. };
  232. static const u8 bcmgenet_dma_regs_v2[] = {
  233. [DMA_RING_CFG] = 0x00,
  234. [DMA_CTRL] = 0x04,
  235. [DMA_STATUS] = 0x08,
  236. [DMA_SCB_BURST_SIZE] = 0x0C,
  237. [DMA_ARB_CTRL] = 0x30,
  238. [DMA_PRIORITY_0] = 0x34,
  239. [DMA_PRIORITY_1] = 0x38,
  240. [DMA_PRIORITY_2] = 0x3C,
  241. [DMA_RING0_TIMEOUT] = 0x2C,
  242. [DMA_RING1_TIMEOUT] = 0x30,
  243. [DMA_RING2_TIMEOUT] = 0x34,
  244. [DMA_RING3_TIMEOUT] = 0x38,
  245. [DMA_RING4_TIMEOUT] = 0x3c,
  246. [DMA_RING5_TIMEOUT] = 0x40,
  247. [DMA_RING6_TIMEOUT] = 0x44,
  248. [DMA_RING7_TIMEOUT] = 0x48,
  249. [DMA_RING8_TIMEOUT] = 0x4c,
  250. [DMA_RING9_TIMEOUT] = 0x50,
  251. [DMA_RING10_TIMEOUT] = 0x54,
  252. [DMA_RING11_TIMEOUT] = 0x58,
  253. [DMA_RING12_TIMEOUT] = 0x5c,
  254. [DMA_RING13_TIMEOUT] = 0x60,
  255. [DMA_RING14_TIMEOUT] = 0x64,
  256. [DMA_RING15_TIMEOUT] = 0x68,
  257. [DMA_RING16_TIMEOUT] = 0x6C,
  258. };
  259. static const u8 bcmgenet_dma_regs_v1[] = {
  260. [DMA_CTRL] = 0x00,
  261. [DMA_STATUS] = 0x04,
  262. [DMA_SCB_BURST_SIZE] = 0x0C,
  263. [DMA_ARB_CTRL] = 0x30,
  264. [DMA_PRIORITY_0] = 0x34,
  265. [DMA_PRIORITY_1] = 0x38,
  266. [DMA_PRIORITY_2] = 0x3C,
  267. [DMA_RING0_TIMEOUT] = 0x2C,
  268. [DMA_RING1_TIMEOUT] = 0x30,
  269. [DMA_RING2_TIMEOUT] = 0x34,
  270. [DMA_RING3_TIMEOUT] = 0x38,
  271. [DMA_RING4_TIMEOUT] = 0x3c,
  272. [DMA_RING5_TIMEOUT] = 0x40,
  273. [DMA_RING6_TIMEOUT] = 0x44,
  274. [DMA_RING7_TIMEOUT] = 0x48,
  275. [DMA_RING8_TIMEOUT] = 0x4c,
  276. [DMA_RING9_TIMEOUT] = 0x50,
  277. [DMA_RING10_TIMEOUT] = 0x54,
  278. [DMA_RING11_TIMEOUT] = 0x58,
  279. [DMA_RING12_TIMEOUT] = 0x5c,
  280. [DMA_RING13_TIMEOUT] = 0x60,
  281. [DMA_RING14_TIMEOUT] = 0x64,
  282. [DMA_RING15_TIMEOUT] = 0x68,
  283. [DMA_RING16_TIMEOUT] = 0x6C,
  284. };
  285. /* Set at runtime once bcmgenet version is known */
  286. static const u8 *bcmgenet_dma_regs;
  287. static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
  288. {
  289. return netdev_priv(dev_get_drvdata(dev));
  290. }
  291. static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
  292. enum dma_reg r)
  293. {
  294. return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
  295. DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
  296. }
  297. static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
  298. u32 val, enum dma_reg r)
  299. {
  300. __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
  301. DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
  302. }
  303. static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
  304. enum dma_reg r)
  305. {
  306. return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
  307. DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
  308. }
  309. static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
  310. u32 val, enum dma_reg r)
  311. {
  312. __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
  313. DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
  314. }
  315. /* RDMA/TDMA ring registers and accessors
  316. * we merge the common fields and just prefix with T/D the registers
  317. * having different meaning depending on the direction
  318. */
  319. enum dma_ring_reg {
  320. TDMA_READ_PTR = 0,
  321. RDMA_WRITE_PTR = TDMA_READ_PTR,
  322. TDMA_READ_PTR_HI,
  323. RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
  324. TDMA_CONS_INDEX,
  325. RDMA_PROD_INDEX = TDMA_CONS_INDEX,
  326. TDMA_PROD_INDEX,
  327. RDMA_CONS_INDEX = TDMA_PROD_INDEX,
  328. DMA_RING_BUF_SIZE,
  329. DMA_START_ADDR,
  330. DMA_START_ADDR_HI,
  331. DMA_END_ADDR,
  332. DMA_END_ADDR_HI,
  333. DMA_MBUF_DONE_THRESH,
  334. TDMA_FLOW_PERIOD,
  335. RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
  336. TDMA_WRITE_PTR,
  337. RDMA_READ_PTR = TDMA_WRITE_PTR,
  338. TDMA_WRITE_PTR_HI,
  339. RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
  340. };
  341. /* GENET v4 supports 40-bits pointer addressing
  342. * for obvious reasons the LO and HI word parts
  343. * are contiguous, but this offsets the other
  344. * registers.
  345. */
  346. static const u8 genet_dma_ring_regs_v4[] = {
  347. [TDMA_READ_PTR] = 0x00,
  348. [TDMA_READ_PTR_HI] = 0x04,
  349. [TDMA_CONS_INDEX] = 0x08,
  350. [TDMA_PROD_INDEX] = 0x0C,
  351. [DMA_RING_BUF_SIZE] = 0x10,
  352. [DMA_START_ADDR] = 0x14,
  353. [DMA_START_ADDR_HI] = 0x18,
  354. [DMA_END_ADDR] = 0x1C,
  355. [DMA_END_ADDR_HI] = 0x20,
  356. [DMA_MBUF_DONE_THRESH] = 0x24,
  357. [TDMA_FLOW_PERIOD] = 0x28,
  358. [TDMA_WRITE_PTR] = 0x2C,
  359. [TDMA_WRITE_PTR_HI] = 0x30,
  360. };
  361. static const u8 genet_dma_ring_regs_v123[] = {
  362. [TDMA_READ_PTR] = 0x00,
  363. [TDMA_CONS_INDEX] = 0x04,
  364. [TDMA_PROD_INDEX] = 0x08,
  365. [DMA_RING_BUF_SIZE] = 0x0C,
  366. [DMA_START_ADDR] = 0x10,
  367. [DMA_END_ADDR] = 0x14,
  368. [DMA_MBUF_DONE_THRESH] = 0x18,
  369. [TDMA_FLOW_PERIOD] = 0x1C,
  370. [TDMA_WRITE_PTR] = 0x20,
  371. };
  372. /* Set at runtime once GENET version is known */
  373. static const u8 *genet_dma_ring_regs;
  374. static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
  375. unsigned int ring,
  376. enum dma_ring_reg r)
  377. {
  378. return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
  379. (DMA_RING_SIZE * ring) +
  380. genet_dma_ring_regs[r]);
  381. }
  382. static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
  383. unsigned int ring, u32 val,
  384. enum dma_ring_reg r)
  385. {
  386. __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
  387. (DMA_RING_SIZE * ring) +
  388. genet_dma_ring_regs[r]);
  389. }
  390. static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
  391. unsigned int ring,
  392. enum dma_ring_reg r)
  393. {
  394. return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
  395. (DMA_RING_SIZE * ring) +
  396. genet_dma_ring_regs[r]);
  397. }
  398. static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
  399. unsigned int ring, u32 val,
  400. enum dma_ring_reg r)
  401. {
  402. __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
  403. (DMA_RING_SIZE * ring) +
  404. genet_dma_ring_regs[r]);
  405. }
  406. static int bcmgenet_get_link_ksettings(struct net_device *dev,
  407. struct ethtool_link_ksettings *cmd)
  408. {
  409. struct bcmgenet_priv *priv = netdev_priv(dev);
  410. if (!netif_running(dev))
  411. return -EINVAL;
  412. if (!priv->phydev)
  413. return -ENODEV;
  414. return phy_ethtool_ksettings_get(priv->phydev, cmd);
  415. }
  416. static int bcmgenet_set_link_ksettings(struct net_device *dev,
  417. const struct ethtool_link_ksettings *cmd)
  418. {
  419. struct bcmgenet_priv *priv = netdev_priv(dev);
  420. if (!netif_running(dev))
  421. return -EINVAL;
  422. if (!priv->phydev)
  423. return -ENODEV;
  424. return phy_ethtool_ksettings_set(priv->phydev, cmd);
  425. }
  426. static int bcmgenet_set_rx_csum(struct net_device *dev,
  427. netdev_features_t wanted)
  428. {
  429. struct bcmgenet_priv *priv = netdev_priv(dev);
  430. u32 rbuf_chk_ctrl;
  431. bool rx_csum_en;
  432. rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
  433. rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
  434. /* enable rx checksumming */
  435. if (rx_csum_en)
  436. rbuf_chk_ctrl |= RBUF_RXCHK_EN;
  437. else
  438. rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
  439. priv->desc_rxchk_en = rx_csum_en;
  440. /* If UniMAC forwards CRC, we need to skip over it to get
  441. * a valid CHK bit to be set in the per-packet status word
  442. */
  443. if (rx_csum_en && priv->crc_fwd_en)
  444. rbuf_chk_ctrl |= RBUF_SKIP_FCS;
  445. else
  446. rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
  447. bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
  448. return 0;
  449. }
  450. static int bcmgenet_set_tx_csum(struct net_device *dev,
  451. netdev_features_t wanted)
  452. {
  453. struct bcmgenet_priv *priv = netdev_priv(dev);
  454. bool desc_64b_en;
  455. u32 tbuf_ctrl, rbuf_ctrl;
  456. tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
  457. rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
  458. desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
  459. /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
  460. if (desc_64b_en) {
  461. tbuf_ctrl |= RBUF_64B_EN;
  462. rbuf_ctrl |= RBUF_64B_EN;
  463. } else {
  464. tbuf_ctrl &= ~RBUF_64B_EN;
  465. rbuf_ctrl &= ~RBUF_64B_EN;
  466. }
  467. priv->desc_64b_en = desc_64b_en;
  468. bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
  469. bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
  470. return 0;
  471. }
  472. static int bcmgenet_set_features(struct net_device *dev,
  473. netdev_features_t features)
  474. {
  475. netdev_features_t changed = features ^ dev->features;
  476. netdev_features_t wanted = dev->wanted_features;
  477. int ret = 0;
  478. if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
  479. ret = bcmgenet_set_tx_csum(dev, wanted);
  480. if (changed & (NETIF_F_RXCSUM))
  481. ret = bcmgenet_set_rx_csum(dev, wanted);
  482. return ret;
  483. }
  484. static u32 bcmgenet_get_msglevel(struct net_device *dev)
  485. {
  486. struct bcmgenet_priv *priv = netdev_priv(dev);
  487. return priv->msg_enable;
  488. }
  489. static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
  490. {
  491. struct bcmgenet_priv *priv = netdev_priv(dev);
  492. priv->msg_enable = level;
  493. }
  494. static int bcmgenet_get_coalesce(struct net_device *dev,
  495. struct ethtool_coalesce *ec)
  496. {
  497. struct bcmgenet_priv *priv = netdev_priv(dev);
  498. ec->tx_max_coalesced_frames =
  499. bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
  500. DMA_MBUF_DONE_THRESH);
  501. ec->rx_max_coalesced_frames =
  502. bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
  503. DMA_MBUF_DONE_THRESH);
  504. ec->rx_coalesce_usecs =
  505. bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
  506. return 0;
  507. }
  508. static int bcmgenet_set_coalesce(struct net_device *dev,
  509. struct ethtool_coalesce *ec)
  510. {
  511. struct bcmgenet_priv *priv = netdev_priv(dev);
  512. unsigned int i;
  513. u32 reg;
  514. /* Base system clock is 125Mhz, DMA timeout is this reference clock
  515. * divided by 1024, which yields roughly 8.192us, our maximum value
  516. * has to fit in the DMA_TIMEOUT_MASK (16 bits)
  517. */
  518. if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
  519. ec->tx_max_coalesced_frames == 0 ||
  520. ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
  521. ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
  522. return -EINVAL;
  523. if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
  524. return -EINVAL;
  525. /* GENET TDMA hardware does not support a configurable timeout, but will
  526. * always generate an interrupt either after MBDONE packets have been
  527. * transmitted, or when the ring is emtpy.
  528. */
  529. if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
  530. ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
  531. return -EOPNOTSUPP;
  532. /* Program all TX queues with the same values, as there is no
  533. * ethtool knob to do coalescing on a per-queue basis
  534. */
  535. for (i = 0; i < priv->hw_params->tx_queues; i++)
  536. bcmgenet_tdma_ring_writel(priv, i,
  537. ec->tx_max_coalesced_frames,
  538. DMA_MBUF_DONE_THRESH);
  539. bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
  540. ec->tx_max_coalesced_frames,
  541. DMA_MBUF_DONE_THRESH);
  542. for (i = 0; i < priv->hw_params->rx_queues; i++) {
  543. bcmgenet_rdma_ring_writel(priv, i,
  544. ec->rx_max_coalesced_frames,
  545. DMA_MBUF_DONE_THRESH);
  546. reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
  547. reg &= ~DMA_TIMEOUT_MASK;
  548. reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
  549. bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
  550. }
  551. bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
  552. ec->rx_max_coalesced_frames,
  553. DMA_MBUF_DONE_THRESH);
  554. reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
  555. reg &= ~DMA_TIMEOUT_MASK;
  556. reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
  557. bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
  558. return 0;
  559. }
  560. /* standard ethtool support functions. */
  561. enum bcmgenet_stat_type {
  562. BCMGENET_STAT_NETDEV = -1,
  563. BCMGENET_STAT_MIB_RX,
  564. BCMGENET_STAT_MIB_TX,
  565. BCMGENET_STAT_RUNT,
  566. BCMGENET_STAT_MISC,
  567. BCMGENET_STAT_SOFT,
  568. };
  569. struct bcmgenet_stats {
  570. char stat_string[ETH_GSTRING_LEN];
  571. int stat_sizeof;
  572. int stat_offset;
  573. enum bcmgenet_stat_type type;
  574. /* reg offset from UMAC base for misc counters */
  575. u16 reg_offset;
  576. };
  577. #define STAT_NETDEV(m) { \
  578. .stat_string = __stringify(m), \
  579. .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
  580. .stat_offset = offsetof(struct net_device_stats, m), \
  581. .type = BCMGENET_STAT_NETDEV, \
  582. }
  583. #define STAT_GENET_MIB(str, m, _type) { \
  584. .stat_string = str, \
  585. .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
  586. .stat_offset = offsetof(struct bcmgenet_priv, m), \
  587. .type = _type, \
  588. }
  589. #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
  590. #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
  591. #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
  592. #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
  593. #define STAT_GENET_MISC(str, m, offset) { \
  594. .stat_string = str, \
  595. .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
  596. .stat_offset = offsetof(struct bcmgenet_priv, m), \
  597. .type = BCMGENET_STAT_MISC, \
  598. .reg_offset = offset, \
  599. }
  600. /* There is a 0xC gap between the end of RX and beginning of TX stats and then
  601. * between the end of TX stats and the beginning of the RX RUNT
  602. */
  603. #define BCMGENET_STAT_OFFSET 0xc
  604. /* Hardware counters must be kept in sync because the order/offset
  605. * is important here (order in structure declaration = order in hardware)
  606. */
  607. static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
  608. /* general stats */
  609. STAT_NETDEV(rx_packets),
  610. STAT_NETDEV(tx_packets),
  611. STAT_NETDEV(rx_bytes),
  612. STAT_NETDEV(tx_bytes),
  613. STAT_NETDEV(rx_errors),
  614. STAT_NETDEV(tx_errors),
  615. STAT_NETDEV(rx_dropped),
  616. STAT_NETDEV(tx_dropped),
  617. STAT_NETDEV(multicast),
  618. /* UniMAC RSV counters */
  619. STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
  620. STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
  621. STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
  622. STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
  623. STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
  624. STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
  625. STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
  626. STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
  627. STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
  628. STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
  629. STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
  630. STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
  631. STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
  632. STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
  633. STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
  634. STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
  635. STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
  636. STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
  637. STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
  638. STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
  639. STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
  640. STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
  641. STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
  642. STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
  643. STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
  644. STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
  645. STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
  646. STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
  647. STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
  648. /* UniMAC TSV counters */
  649. STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
  650. STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
  651. STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
  652. STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
  653. STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
  654. STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
  655. STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
  656. STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
  657. STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
  658. STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
  659. STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
  660. STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
  661. STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
  662. STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
  663. STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
  664. STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
  665. STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
  666. STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
  667. STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
  668. STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
  669. STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
  670. STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
  671. STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
  672. STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
  673. STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
  674. STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
  675. STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
  676. STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
  677. STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
  678. /* UniMAC RUNT counters */
  679. STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
  680. STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
  681. STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
  682. STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
  683. /* Misc UniMAC counters */
  684. STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
  685. UMAC_RBUF_OVFL_CNT_V1),
  686. STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
  687. UMAC_RBUF_ERR_CNT_V1),
  688. STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
  689. STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
  690. STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
  691. STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
  692. };
  693. #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
  694. static void bcmgenet_get_drvinfo(struct net_device *dev,
  695. struct ethtool_drvinfo *info)
  696. {
  697. strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
  698. strlcpy(info->version, "v2.0", sizeof(info->version));
  699. }
  700. static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
  701. {
  702. switch (string_set) {
  703. case ETH_SS_STATS:
  704. return BCMGENET_STATS_LEN;
  705. default:
  706. return -EOPNOTSUPP;
  707. }
  708. }
  709. static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
  710. u8 *data)
  711. {
  712. int i;
  713. switch (stringset) {
  714. case ETH_SS_STATS:
  715. for (i = 0; i < BCMGENET_STATS_LEN; i++) {
  716. memcpy(data + i * ETH_GSTRING_LEN,
  717. bcmgenet_gstrings_stats[i].stat_string,
  718. ETH_GSTRING_LEN);
  719. }
  720. break;
  721. }
  722. }
  723. static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
  724. {
  725. u16 new_offset;
  726. u32 val;
  727. switch (offset) {
  728. case UMAC_RBUF_OVFL_CNT_V1:
  729. if (GENET_IS_V2(priv))
  730. new_offset = RBUF_OVFL_CNT_V2;
  731. else
  732. new_offset = RBUF_OVFL_CNT_V3PLUS;
  733. val = bcmgenet_rbuf_readl(priv, new_offset);
  734. /* clear if overflowed */
  735. if (val == ~0)
  736. bcmgenet_rbuf_writel(priv, 0, new_offset);
  737. break;
  738. case UMAC_RBUF_ERR_CNT_V1:
  739. if (GENET_IS_V2(priv))
  740. new_offset = RBUF_ERR_CNT_V2;
  741. else
  742. new_offset = RBUF_ERR_CNT_V3PLUS;
  743. val = bcmgenet_rbuf_readl(priv, new_offset);
  744. /* clear if overflowed */
  745. if (val == ~0)
  746. bcmgenet_rbuf_writel(priv, 0, new_offset);
  747. break;
  748. default:
  749. val = bcmgenet_umac_readl(priv, offset);
  750. /* clear if overflowed */
  751. if (val == ~0)
  752. bcmgenet_umac_writel(priv, 0, offset);
  753. break;
  754. }
  755. return val;
  756. }
  757. static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
  758. {
  759. int i, j = 0;
  760. for (i = 0; i < BCMGENET_STATS_LEN; i++) {
  761. const struct bcmgenet_stats *s;
  762. u8 offset = 0;
  763. u32 val = 0;
  764. char *p;
  765. s = &bcmgenet_gstrings_stats[i];
  766. switch (s->type) {
  767. case BCMGENET_STAT_NETDEV:
  768. case BCMGENET_STAT_SOFT:
  769. continue;
  770. case BCMGENET_STAT_RUNT:
  771. offset += BCMGENET_STAT_OFFSET;
  772. /* fall through */
  773. case BCMGENET_STAT_MIB_TX:
  774. offset += BCMGENET_STAT_OFFSET;
  775. /* fall through */
  776. case BCMGENET_STAT_MIB_RX:
  777. val = bcmgenet_umac_readl(priv,
  778. UMAC_MIB_START + j + offset);
  779. offset = 0; /* Reset Offset */
  780. break;
  781. case BCMGENET_STAT_MISC:
  782. if (GENET_IS_V1(priv)) {
  783. val = bcmgenet_umac_readl(priv, s->reg_offset);
  784. /* clear if overflowed */
  785. if (val == ~0)
  786. bcmgenet_umac_writel(priv, 0,
  787. s->reg_offset);
  788. } else {
  789. val = bcmgenet_update_stat_misc(priv,
  790. s->reg_offset);
  791. }
  792. break;
  793. }
  794. j += s->stat_sizeof;
  795. p = (char *)priv + s->stat_offset;
  796. *(u32 *)p = val;
  797. }
  798. }
  799. static void bcmgenet_get_ethtool_stats(struct net_device *dev,
  800. struct ethtool_stats *stats,
  801. u64 *data)
  802. {
  803. struct bcmgenet_priv *priv = netdev_priv(dev);
  804. int i;
  805. if (netif_running(dev))
  806. bcmgenet_update_mib_counters(priv);
  807. for (i = 0; i < BCMGENET_STATS_LEN; i++) {
  808. const struct bcmgenet_stats *s;
  809. char *p;
  810. s = &bcmgenet_gstrings_stats[i];
  811. if (s->type == BCMGENET_STAT_NETDEV)
  812. p = (char *)&dev->stats;
  813. else
  814. p = (char *)priv;
  815. p += s->stat_offset;
  816. if (sizeof(unsigned long) != sizeof(u32) &&
  817. s->stat_sizeof == sizeof(unsigned long))
  818. data[i] = *(unsigned long *)p;
  819. else
  820. data[i] = *(u32 *)p;
  821. }
  822. }
  823. static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
  824. {
  825. struct bcmgenet_priv *priv = netdev_priv(dev);
  826. u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
  827. u32 reg;
  828. if (enable && !priv->clk_eee_enabled) {
  829. clk_prepare_enable(priv->clk_eee);
  830. priv->clk_eee_enabled = true;
  831. }
  832. reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
  833. if (enable)
  834. reg |= EEE_EN;
  835. else
  836. reg &= ~EEE_EN;
  837. bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
  838. /* Enable EEE and switch to a 27Mhz clock automatically */
  839. reg = __raw_readl(priv->base + off);
  840. if (enable)
  841. reg |= TBUF_EEE_EN | TBUF_PM_EN;
  842. else
  843. reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
  844. __raw_writel(reg, priv->base + off);
  845. /* Do the same for thing for RBUF */
  846. reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
  847. if (enable)
  848. reg |= RBUF_EEE_EN | RBUF_PM_EN;
  849. else
  850. reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
  851. bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
  852. if (!enable && priv->clk_eee_enabled) {
  853. clk_disable_unprepare(priv->clk_eee);
  854. priv->clk_eee_enabled = false;
  855. }
  856. priv->eee.eee_enabled = enable;
  857. priv->eee.eee_active = enable;
  858. }
  859. static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
  860. {
  861. struct bcmgenet_priv *priv = netdev_priv(dev);
  862. struct ethtool_eee *p = &priv->eee;
  863. if (GENET_IS_V1(priv))
  864. return -EOPNOTSUPP;
  865. e->eee_enabled = p->eee_enabled;
  866. e->eee_active = p->eee_active;
  867. e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
  868. return phy_ethtool_get_eee(priv->phydev, e);
  869. }
  870. static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
  871. {
  872. struct bcmgenet_priv *priv = netdev_priv(dev);
  873. struct ethtool_eee *p = &priv->eee;
  874. int ret = 0;
  875. if (GENET_IS_V1(priv))
  876. return -EOPNOTSUPP;
  877. p->eee_enabled = e->eee_enabled;
  878. if (!p->eee_enabled) {
  879. bcmgenet_eee_enable_set(dev, false);
  880. } else {
  881. ret = phy_init_eee(priv->phydev, 0);
  882. if (ret) {
  883. netif_err(priv, hw, dev, "EEE initialization failed\n");
  884. return ret;
  885. }
  886. bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
  887. bcmgenet_eee_enable_set(dev, true);
  888. }
  889. return phy_ethtool_set_eee(priv->phydev, e);
  890. }
  891. static int bcmgenet_nway_reset(struct net_device *dev)
  892. {
  893. struct bcmgenet_priv *priv = netdev_priv(dev);
  894. return genphy_restart_aneg(priv->phydev);
  895. }
  896. /* standard ethtool support functions. */
  897. static const struct ethtool_ops bcmgenet_ethtool_ops = {
  898. .get_strings = bcmgenet_get_strings,
  899. .get_sset_count = bcmgenet_get_sset_count,
  900. .get_ethtool_stats = bcmgenet_get_ethtool_stats,
  901. .get_drvinfo = bcmgenet_get_drvinfo,
  902. .get_link = ethtool_op_get_link,
  903. .get_msglevel = bcmgenet_get_msglevel,
  904. .set_msglevel = bcmgenet_set_msglevel,
  905. .get_wol = bcmgenet_get_wol,
  906. .set_wol = bcmgenet_set_wol,
  907. .get_eee = bcmgenet_get_eee,
  908. .set_eee = bcmgenet_set_eee,
  909. .nway_reset = bcmgenet_nway_reset,
  910. .get_coalesce = bcmgenet_get_coalesce,
  911. .set_coalesce = bcmgenet_set_coalesce,
  912. .get_link_ksettings = bcmgenet_get_link_ksettings,
  913. .set_link_ksettings = bcmgenet_set_link_ksettings,
  914. };
  915. /* Power down the unimac, based on mode. */
  916. static int bcmgenet_power_down(struct bcmgenet_priv *priv,
  917. enum bcmgenet_power_mode mode)
  918. {
  919. int ret = 0;
  920. u32 reg;
  921. switch (mode) {
  922. case GENET_POWER_CABLE_SENSE:
  923. phy_detach(priv->phydev);
  924. break;
  925. case GENET_POWER_WOL_MAGIC:
  926. ret = bcmgenet_wol_power_down_cfg(priv, mode);
  927. break;
  928. case GENET_POWER_PASSIVE:
  929. /* Power down LED */
  930. if (priv->hw_params->flags & GENET_HAS_EXT) {
  931. reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
  932. reg |= (EXT_PWR_DOWN_PHY |
  933. EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
  934. bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
  935. bcmgenet_phy_power_set(priv->dev, false);
  936. }
  937. break;
  938. default:
  939. break;
  940. }
  941. return 0;
  942. }
  943. static void bcmgenet_power_up(struct bcmgenet_priv *priv,
  944. enum bcmgenet_power_mode mode)
  945. {
  946. u32 reg;
  947. if (!(priv->hw_params->flags & GENET_HAS_EXT))
  948. return;
  949. reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
  950. switch (mode) {
  951. case GENET_POWER_PASSIVE:
  952. reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
  953. EXT_PWR_DOWN_BIAS);
  954. /* fallthrough */
  955. case GENET_POWER_CABLE_SENSE:
  956. /* enable APD */
  957. reg |= EXT_PWR_DN_EN_LD;
  958. break;
  959. case GENET_POWER_WOL_MAGIC:
  960. bcmgenet_wol_power_up_cfg(priv, mode);
  961. return;
  962. default:
  963. break;
  964. }
  965. bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
  966. if (mode == GENET_POWER_PASSIVE) {
  967. bcmgenet_phy_power_set(priv->dev, true);
  968. bcmgenet_mii_reset(priv->dev);
  969. }
  970. }
  971. /* ioctl handle special commands that are not present in ethtool. */
  972. static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  973. {
  974. struct bcmgenet_priv *priv = netdev_priv(dev);
  975. int val = 0;
  976. if (!netif_running(dev))
  977. return -EINVAL;
  978. switch (cmd) {
  979. case SIOCGMIIPHY:
  980. case SIOCGMIIREG:
  981. case SIOCSMIIREG:
  982. if (!priv->phydev)
  983. val = -ENODEV;
  984. else
  985. val = phy_mii_ioctl(priv->phydev, rq, cmd);
  986. break;
  987. default:
  988. val = -EINVAL;
  989. break;
  990. }
  991. return val;
  992. }
  993. static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
  994. struct bcmgenet_tx_ring *ring)
  995. {
  996. struct enet_cb *tx_cb_ptr;
  997. tx_cb_ptr = ring->cbs;
  998. tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
  999. /* Advancing local write pointer */
  1000. if (ring->write_ptr == ring->end_ptr)
  1001. ring->write_ptr = ring->cb_ptr;
  1002. else
  1003. ring->write_ptr++;
  1004. return tx_cb_ptr;
  1005. }
  1006. /* Simple helper to free a control block's resources */
  1007. static void bcmgenet_free_cb(struct enet_cb *cb)
  1008. {
  1009. dev_kfree_skb_any(cb->skb);
  1010. cb->skb = NULL;
  1011. dma_unmap_addr_set(cb, dma_addr, 0);
  1012. }
  1013. static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
  1014. {
  1015. bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
  1016. INTRL2_CPU_MASK_SET);
  1017. }
  1018. static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
  1019. {
  1020. bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
  1021. INTRL2_CPU_MASK_CLEAR);
  1022. }
  1023. static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
  1024. {
  1025. bcmgenet_intrl2_1_writel(ring->priv,
  1026. 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
  1027. INTRL2_CPU_MASK_SET);
  1028. }
  1029. static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
  1030. {
  1031. bcmgenet_intrl2_1_writel(ring->priv,
  1032. 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
  1033. INTRL2_CPU_MASK_CLEAR);
  1034. }
  1035. static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
  1036. {
  1037. bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
  1038. INTRL2_CPU_MASK_SET);
  1039. }
  1040. static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
  1041. {
  1042. bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
  1043. INTRL2_CPU_MASK_CLEAR);
  1044. }
  1045. static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
  1046. {
  1047. bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
  1048. INTRL2_CPU_MASK_CLEAR);
  1049. }
  1050. static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
  1051. {
  1052. bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
  1053. INTRL2_CPU_MASK_SET);
  1054. }
  1055. /* Unlocked version of the reclaim routine */
  1056. static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
  1057. struct bcmgenet_tx_ring *ring)
  1058. {
  1059. struct bcmgenet_priv *priv = netdev_priv(dev);
  1060. struct device *kdev = &priv->pdev->dev;
  1061. struct enet_cb *tx_cb_ptr;
  1062. struct netdev_queue *txq;
  1063. unsigned int pkts_compl = 0;
  1064. unsigned int bytes_compl = 0;
  1065. unsigned int c_index;
  1066. unsigned int txbds_ready;
  1067. unsigned int txbds_processed = 0;
  1068. /* Compute how many buffers are transmitted since last xmit call */
  1069. c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
  1070. c_index &= DMA_C_INDEX_MASK;
  1071. if (likely(c_index >= ring->c_index))
  1072. txbds_ready = c_index - ring->c_index;
  1073. else
  1074. txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
  1075. netif_dbg(priv, tx_done, dev,
  1076. "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
  1077. __func__, ring->index, ring->c_index, c_index, txbds_ready);
  1078. /* Reclaim transmitted buffers */
  1079. while (txbds_processed < txbds_ready) {
  1080. tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
  1081. if (tx_cb_ptr->skb) {
  1082. pkts_compl++;
  1083. bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
  1084. dma_unmap_single(kdev,
  1085. dma_unmap_addr(tx_cb_ptr, dma_addr),
  1086. dma_unmap_len(tx_cb_ptr, dma_len),
  1087. DMA_TO_DEVICE);
  1088. bcmgenet_free_cb(tx_cb_ptr);
  1089. } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
  1090. dma_unmap_page(kdev,
  1091. dma_unmap_addr(tx_cb_ptr, dma_addr),
  1092. dma_unmap_len(tx_cb_ptr, dma_len),
  1093. DMA_TO_DEVICE);
  1094. dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
  1095. }
  1096. txbds_processed++;
  1097. if (likely(ring->clean_ptr < ring->end_ptr))
  1098. ring->clean_ptr++;
  1099. else
  1100. ring->clean_ptr = ring->cb_ptr;
  1101. }
  1102. ring->free_bds += txbds_processed;
  1103. ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
  1104. dev->stats.tx_packets += pkts_compl;
  1105. dev->stats.tx_bytes += bytes_compl;
  1106. txq = netdev_get_tx_queue(dev, ring->queue);
  1107. netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
  1108. if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
  1109. if (netif_tx_queue_stopped(txq))
  1110. netif_tx_wake_queue(txq);
  1111. }
  1112. return pkts_compl;
  1113. }
  1114. static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
  1115. struct bcmgenet_tx_ring *ring)
  1116. {
  1117. unsigned int released;
  1118. unsigned long flags;
  1119. spin_lock_irqsave(&ring->lock, flags);
  1120. released = __bcmgenet_tx_reclaim(dev, ring);
  1121. spin_unlock_irqrestore(&ring->lock, flags);
  1122. return released;
  1123. }
  1124. static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
  1125. {
  1126. struct bcmgenet_tx_ring *ring =
  1127. container_of(napi, struct bcmgenet_tx_ring, napi);
  1128. unsigned int work_done = 0;
  1129. work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
  1130. if (work_done == 0) {
  1131. napi_complete(napi);
  1132. ring->int_enable(ring);
  1133. return 0;
  1134. }
  1135. return budget;
  1136. }
  1137. static void bcmgenet_tx_reclaim_all(struct net_device *dev)
  1138. {
  1139. struct bcmgenet_priv *priv = netdev_priv(dev);
  1140. int i;
  1141. if (netif_is_multiqueue(dev)) {
  1142. for (i = 0; i < priv->hw_params->tx_queues; i++)
  1143. bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
  1144. }
  1145. bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
  1146. }
  1147. /* Transmits a single SKB (either head of a fragment or a single SKB)
  1148. * caller must hold priv->lock
  1149. */
  1150. static int bcmgenet_xmit_single(struct net_device *dev,
  1151. struct sk_buff *skb,
  1152. u16 dma_desc_flags,
  1153. struct bcmgenet_tx_ring *ring)
  1154. {
  1155. struct bcmgenet_priv *priv = netdev_priv(dev);
  1156. struct device *kdev = &priv->pdev->dev;
  1157. struct enet_cb *tx_cb_ptr;
  1158. unsigned int skb_len;
  1159. dma_addr_t mapping;
  1160. u32 length_status;
  1161. int ret;
  1162. tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
  1163. if (unlikely(!tx_cb_ptr))
  1164. BUG();
  1165. tx_cb_ptr->skb = skb;
  1166. skb_len = skb_headlen(skb);
  1167. mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
  1168. ret = dma_mapping_error(kdev, mapping);
  1169. if (ret) {
  1170. priv->mib.tx_dma_failed++;
  1171. netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
  1172. dev_kfree_skb(skb);
  1173. return ret;
  1174. }
  1175. dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
  1176. dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
  1177. length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
  1178. (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
  1179. DMA_TX_APPEND_CRC;
  1180. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1181. length_status |= DMA_TX_DO_CSUM;
  1182. dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
  1183. return 0;
  1184. }
  1185. /* Transmit a SKB fragment */
  1186. static int bcmgenet_xmit_frag(struct net_device *dev,
  1187. skb_frag_t *frag,
  1188. u16 dma_desc_flags,
  1189. struct bcmgenet_tx_ring *ring)
  1190. {
  1191. struct bcmgenet_priv *priv = netdev_priv(dev);
  1192. struct device *kdev = &priv->pdev->dev;
  1193. struct enet_cb *tx_cb_ptr;
  1194. unsigned int frag_size;
  1195. dma_addr_t mapping;
  1196. int ret;
  1197. tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
  1198. if (unlikely(!tx_cb_ptr))
  1199. BUG();
  1200. tx_cb_ptr->skb = NULL;
  1201. frag_size = skb_frag_size(frag);
  1202. mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
  1203. ret = dma_mapping_error(kdev, mapping);
  1204. if (ret) {
  1205. priv->mib.tx_dma_failed++;
  1206. netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
  1207. __func__);
  1208. return ret;
  1209. }
  1210. dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
  1211. dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
  1212. dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
  1213. (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
  1214. (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
  1215. return 0;
  1216. }
  1217. /* Reallocate the SKB to put enough headroom in front of it and insert
  1218. * the transmit checksum offsets in the descriptors
  1219. */
  1220. static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
  1221. struct sk_buff *skb)
  1222. {
  1223. struct status_64 *status = NULL;
  1224. struct sk_buff *new_skb;
  1225. u16 offset;
  1226. u8 ip_proto;
  1227. u16 ip_ver;
  1228. u32 tx_csum_info;
  1229. if (unlikely(skb_headroom(skb) < sizeof(*status))) {
  1230. /* If 64 byte status block enabled, must make sure skb has
  1231. * enough headroom for us to insert 64B status block.
  1232. */
  1233. new_skb = skb_realloc_headroom(skb, sizeof(*status));
  1234. dev_kfree_skb(skb);
  1235. if (!new_skb) {
  1236. dev->stats.tx_dropped++;
  1237. return NULL;
  1238. }
  1239. skb = new_skb;
  1240. }
  1241. skb_push(skb, sizeof(*status));
  1242. status = (struct status_64 *)skb->data;
  1243. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1244. ip_ver = htons(skb->protocol);
  1245. switch (ip_ver) {
  1246. case ETH_P_IP:
  1247. ip_proto = ip_hdr(skb)->protocol;
  1248. break;
  1249. case ETH_P_IPV6:
  1250. ip_proto = ipv6_hdr(skb)->nexthdr;
  1251. break;
  1252. default:
  1253. return skb;
  1254. }
  1255. offset = skb_checksum_start_offset(skb) - sizeof(*status);
  1256. tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
  1257. (offset + skb->csum_offset);
  1258. /* Set the length valid bit for TCP and UDP and just set
  1259. * the special UDP flag for IPv4, else just set to 0.
  1260. */
  1261. if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
  1262. tx_csum_info |= STATUS_TX_CSUM_LV;
  1263. if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
  1264. tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
  1265. } else {
  1266. tx_csum_info = 0;
  1267. }
  1268. status->tx_csum_info = tx_csum_info;
  1269. }
  1270. return skb;
  1271. }
  1272. static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
  1273. {
  1274. struct bcmgenet_priv *priv = netdev_priv(dev);
  1275. struct bcmgenet_tx_ring *ring = NULL;
  1276. struct netdev_queue *txq;
  1277. unsigned long flags = 0;
  1278. int nr_frags, index;
  1279. u16 dma_desc_flags;
  1280. int ret;
  1281. int i;
  1282. index = skb_get_queue_mapping(skb);
  1283. /* Mapping strategy:
  1284. * queue_mapping = 0, unclassified, packet xmited through ring16
  1285. * queue_mapping = 1, goes to ring 0. (highest priority queue
  1286. * queue_mapping = 2, goes to ring 1.
  1287. * queue_mapping = 3, goes to ring 2.
  1288. * queue_mapping = 4, goes to ring 3.
  1289. */
  1290. if (index == 0)
  1291. index = DESC_INDEX;
  1292. else
  1293. index -= 1;
  1294. ring = &priv->tx_rings[index];
  1295. txq = netdev_get_tx_queue(dev, ring->queue);
  1296. nr_frags = skb_shinfo(skb)->nr_frags;
  1297. spin_lock_irqsave(&ring->lock, flags);
  1298. if (ring->free_bds <= (nr_frags + 1)) {
  1299. if (!netif_tx_queue_stopped(txq)) {
  1300. netif_tx_stop_queue(txq);
  1301. netdev_err(dev,
  1302. "%s: tx ring %d full when queue %d awake\n",
  1303. __func__, index, ring->queue);
  1304. }
  1305. ret = NETDEV_TX_BUSY;
  1306. goto out;
  1307. }
  1308. if (skb_padto(skb, ETH_ZLEN)) {
  1309. ret = NETDEV_TX_OK;
  1310. goto out;
  1311. }
  1312. /* Retain how many bytes will be sent on the wire, without TSB inserted
  1313. * by transmit checksum offload
  1314. */
  1315. GENET_CB(skb)->bytes_sent = skb->len;
  1316. /* set the SKB transmit checksum */
  1317. if (priv->desc_64b_en) {
  1318. skb = bcmgenet_put_tx_csum(dev, skb);
  1319. if (!skb) {
  1320. ret = NETDEV_TX_OK;
  1321. goto out;
  1322. }
  1323. }
  1324. dma_desc_flags = DMA_SOP;
  1325. if (nr_frags == 0)
  1326. dma_desc_flags |= DMA_EOP;
  1327. /* Transmit single SKB or head of fragment list */
  1328. ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
  1329. if (ret) {
  1330. ret = NETDEV_TX_OK;
  1331. goto out;
  1332. }
  1333. /* xmit fragment */
  1334. for (i = 0; i < nr_frags; i++) {
  1335. ret = bcmgenet_xmit_frag(dev,
  1336. &skb_shinfo(skb)->frags[i],
  1337. (i == nr_frags - 1) ? DMA_EOP : 0,
  1338. ring);
  1339. if (ret) {
  1340. ret = NETDEV_TX_OK;
  1341. goto out;
  1342. }
  1343. }
  1344. skb_tx_timestamp(skb);
  1345. /* Decrement total BD count and advance our write pointer */
  1346. ring->free_bds -= nr_frags + 1;
  1347. ring->prod_index += nr_frags + 1;
  1348. ring->prod_index &= DMA_P_INDEX_MASK;
  1349. netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
  1350. if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
  1351. netif_tx_stop_queue(txq);
  1352. if (!skb->xmit_more || netif_xmit_stopped(txq))
  1353. /* Packets are ready, update producer index */
  1354. bcmgenet_tdma_ring_writel(priv, ring->index,
  1355. ring->prod_index, TDMA_PROD_INDEX);
  1356. out:
  1357. spin_unlock_irqrestore(&ring->lock, flags);
  1358. return ret;
  1359. }
  1360. static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
  1361. struct enet_cb *cb)
  1362. {
  1363. struct device *kdev = &priv->pdev->dev;
  1364. struct sk_buff *skb;
  1365. struct sk_buff *rx_skb;
  1366. dma_addr_t mapping;
  1367. /* Allocate a new Rx skb */
  1368. skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
  1369. if (!skb) {
  1370. priv->mib.alloc_rx_buff_failed++;
  1371. netif_err(priv, rx_err, priv->dev,
  1372. "%s: Rx skb allocation failed\n", __func__);
  1373. return NULL;
  1374. }
  1375. /* DMA-map the new Rx skb */
  1376. mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
  1377. DMA_FROM_DEVICE);
  1378. if (dma_mapping_error(kdev, mapping)) {
  1379. priv->mib.rx_dma_failed++;
  1380. dev_kfree_skb_any(skb);
  1381. netif_err(priv, rx_err, priv->dev,
  1382. "%s: Rx skb DMA mapping failed\n", __func__);
  1383. return NULL;
  1384. }
  1385. /* Grab the current Rx skb from the ring and DMA-unmap it */
  1386. rx_skb = cb->skb;
  1387. if (likely(rx_skb))
  1388. dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
  1389. priv->rx_buf_len, DMA_FROM_DEVICE);
  1390. /* Put the new Rx skb on the ring */
  1391. cb->skb = skb;
  1392. dma_unmap_addr_set(cb, dma_addr, mapping);
  1393. dmadesc_set_addr(priv, cb->bd_addr, mapping);
  1394. /* Return the current Rx skb to caller */
  1395. return rx_skb;
  1396. }
  1397. /* bcmgenet_desc_rx - descriptor based rx process.
  1398. * this could be called from bottom half, or from NAPI polling method.
  1399. */
  1400. static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
  1401. unsigned int budget)
  1402. {
  1403. struct bcmgenet_priv *priv = ring->priv;
  1404. struct net_device *dev = priv->dev;
  1405. struct enet_cb *cb;
  1406. struct sk_buff *skb;
  1407. u32 dma_length_status;
  1408. unsigned long dma_flag;
  1409. int len;
  1410. unsigned int rxpktprocessed = 0, rxpkttoprocess;
  1411. unsigned int p_index;
  1412. unsigned int discards;
  1413. unsigned int chksum_ok = 0;
  1414. p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
  1415. discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
  1416. DMA_P_INDEX_DISCARD_CNT_MASK;
  1417. if (discards > ring->old_discards) {
  1418. discards = discards - ring->old_discards;
  1419. dev->stats.rx_missed_errors += discards;
  1420. dev->stats.rx_errors += discards;
  1421. ring->old_discards += discards;
  1422. /* Clear HW register when we reach 75% of maximum 0xFFFF */
  1423. if (ring->old_discards >= 0xC000) {
  1424. ring->old_discards = 0;
  1425. bcmgenet_rdma_ring_writel(priv, ring->index, 0,
  1426. RDMA_PROD_INDEX);
  1427. }
  1428. }
  1429. p_index &= DMA_P_INDEX_MASK;
  1430. if (likely(p_index >= ring->c_index))
  1431. rxpkttoprocess = p_index - ring->c_index;
  1432. else
  1433. rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
  1434. p_index;
  1435. netif_dbg(priv, rx_status, dev,
  1436. "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
  1437. while ((rxpktprocessed < rxpkttoprocess) &&
  1438. (rxpktprocessed < budget)) {
  1439. cb = &priv->rx_cbs[ring->read_ptr];
  1440. skb = bcmgenet_rx_refill(priv, cb);
  1441. if (unlikely(!skb)) {
  1442. dev->stats.rx_dropped++;
  1443. goto next;
  1444. }
  1445. if (!priv->desc_64b_en) {
  1446. dma_length_status =
  1447. dmadesc_get_length_status(priv, cb->bd_addr);
  1448. } else {
  1449. struct status_64 *status;
  1450. status = (struct status_64 *)skb->data;
  1451. dma_length_status = status->length_status;
  1452. }
  1453. /* DMA flags and length are still valid no matter how
  1454. * we got the Receive Status Vector (64B RSB or register)
  1455. */
  1456. dma_flag = dma_length_status & 0xffff;
  1457. len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
  1458. netif_dbg(priv, rx_status, dev,
  1459. "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
  1460. __func__, p_index, ring->c_index,
  1461. ring->read_ptr, dma_length_status);
  1462. if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
  1463. netif_err(priv, rx_status, dev,
  1464. "dropping fragmented packet!\n");
  1465. dev->stats.rx_errors++;
  1466. dev_kfree_skb_any(skb);
  1467. goto next;
  1468. }
  1469. /* report errors */
  1470. if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
  1471. DMA_RX_OV |
  1472. DMA_RX_NO |
  1473. DMA_RX_LG |
  1474. DMA_RX_RXER))) {
  1475. netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
  1476. (unsigned int)dma_flag);
  1477. if (dma_flag & DMA_RX_CRC_ERROR)
  1478. dev->stats.rx_crc_errors++;
  1479. if (dma_flag & DMA_RX_OV)
  1480. dev->stats.rx_over_errors++;
  1481. if (dma_flag & DMA_RX_NO)
  1482. dev->stats.rx_frame_errors++;
  1483. if (dma_flag & DMA_RX_LG)
  1484. dev->stats.rx_length_errors++;
  1485. dev->stats.rx_errors++;
  1486. dev_kfree_skb_any(skb);
  1487. goto next;
  1488. } /* error packet */
  1489. chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
  1490. priv->desc_rxchk_en;
  1491. skb_put(skb, len);
  1492. if (priv->desc_64b_en) {
  1493. skb_pull(skb, 64);
  1494. len -= 64;
  1495. }
  1496. if (likely(chksum_ok))
  1497. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1498. /* remove hardware 2bytes added for IP alignment */
  1499. skb_pull(skb, 2);
  1500. len -= 2;
  1501. if (priv->crc_fwd_en) {
  1502. skb_trim(skb, len - ETH_FCS_LEN);
  1503. len -= ETH_FCS_LEN;
  1504. }
  1505. /*Finish setting up the received SKB and send it to the kernel*/
  1506. skb->protocol = eth_type_trans(skb, priv->dev);
  1507. dev->stats.rx_packets++;
  1508. dev->stats.rx_bytes += len;
  1509. if (dma_flag & DMA_RX_MULT)
  1510. dev->stats.multicast++;
  1511. /* Notify kernel */
  1512. napi_gro_receive(&ring->napi, skb);
  1513. netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
  1514. next:
  1515. rxpktprocessed++;
  1516. if (likely(ring->read_ptr < ring->end_ptr))
  1517. ring->read_ptr++;
  1518. else
  1519. ring->read_ptr = ring->cb_ptr;
  1520. ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
  1521. bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
  1522. }
  1523. return rxpktprocessed;
  1524. }
  1525. /* Rx NAPI polling method */
  1526. static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
  1527. {
  1528. struct bcmgenet_rx_ring *ring = container_of(napi,
  1529. struct bcmgenet_rx_ring, napi);
  1530. unsigned int work_done;
  1531. work_done = bcmgenet_desc_rx(ring, budget);
  1532. if (work_done < budget) {
  1533. napi_complete_done(napi, work_done);
  1534. ring->int_enable(ring);
  1535. }
  1536. return work_done;
  1537. }
  1538. /* Assign skb to RX DMA descriptor. */
  1539. static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
  1540. struct bcmgenet_rx_ring *ring)
  1541. {
  1542. struct enet_cb *cb;
  1543. struct sk_buff *skb;
  1544. int i;
  1545. netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
  1546. /* loop here for each buffer needing assign */
  1547. for (i = 0; i < ring->size; i++) {
  1548. cb = ring->cbs + i;
  1549. skb = bcmgenet_rx_refill(priv, cb);
  1550. if (skb)
  1551. dev_kfree_skb_any(skb);
  1552. if (!cb->skb)
  1553. return -ENOMEM;
  1554. }
  1555. return 0;
  1556. }
  1557. static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
  1558. {
  1559. struct device *kdev = &priv->pdev->dev;
  1560. struct enet_cb *cb;
  1561. int i;
  1562. for (i = 0; i < priv->num_rx_bds; i++) {
  1563. cb = &priv->rx_cbs[i];
  1564. if (dma_unmap_addr(cb, dma_addr)) {
  1565. dma_unmap_single(kdev,
  1566. dma_unmap_addr(cb, dma_addr),
  1567. priv->rx_buf_len, DMA_FROM_DEVICE);
  1568. dma_unmap_addr_set(cb, dma_addr, 0);
  1569. }
  1570. if (cb->skb)
  1571. bcmgenet_free_cb(cb);
  1572. }
  1573. }
  1574. static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
  1575. {
  1576. u32 reg;
  1577. reg = bcmgenet_umac_readl(priv, UMAC_CMD);
  1578. if (enable)
  1579. reg |= mask;
  1580. else
  1581. reg &= ~mask;
  1582. bcmgenet_umac_writel(priv, reg, UMAC_CMD);
  1583. /* UniMAC stops on a packet boundary, wait for a full-size packet
  1584. * to be processed
  1585. */
  1586. if (enable == 0)
  1587. usleep_range(1000, 2000);
  1588. }
  1589. static int reset_umac(struct bcmgenet_priv *priv)
  1590. {
  1591. struct device *kdev = &priv->pdev->dev;
  1592. unsigned int timeout = 0;
  1593. u32 reg;
  1594. /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
  1595. bcmgenet_rbuf_ctrl_set(priv, 0);
  1596. udelay(10);
  1597. /* disable MAC while updating its registers */
  1598. bcmgenet_umac_writel(priv, 0, UMAC_CMD);
  1599. /* issue soft reset, wait for it to complete */
  1600. bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
  1601. while (timeout++ < 1000) {
  1602. reg = bcmgenet_umac_readl(priv, UMAC_CMD);
  1603. if (!(reg & CMD_SW_RESET))
  1604. return 0;
  1605. udelay(1);
  1606. }
  1607. if (timeout == 1000) {
  1608. dev_err(kdev,
  1609. "timeout waiting for MAC to come out of reset\n");
  1610. return -ETIMEDOUT;
  1611. }
  1612. return 0;
  1613. }
  1614. static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
  1615. {
  1616. /* Mask all interrupts.*/
  1617. bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
  1618. bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
  1619. bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
  1620. bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
  1621. bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
  1622. bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
  1623. }
  1624. static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
  1625. {
  1626. u32 int0_enable = 0;
  1627. /* Monitor cable plug/unplugged event for internal PHY, external PHY
  1628. * and MoCA PHY
  1629. */
  1630. if (priv->internal_phy) {
  1631. int0_enable |= UMAC_IRQ_LINK_EVENT;
  1632. } else if (priv->ext_phy) {
  1633. int0_enable |= UMAC_IRQ_LINK_EVENT;
  1634. } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
  1635. if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
  1636. int0_enable |= UMAC_IRQ_LINK_EVENT;
  1637. }
  1638. bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
  1639. }
  1640. static int init_umac(struct bcmgenet_priv *priv)
  1641. {
  1642. struct device *kdev = &priv->pdev->dev;
  1643. int ret;
  1644. u32 reg;
  1645. u32 int0_enable = 0;
  1646. u32 int1_enable = 0;
  1647. int i;
  1648. dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
  1649. ret = reset_umac(priv);
  1650. if (ret)
  1651. return ret;
  1652. bcmgenet_umac_writel(priv, 0, UMAC_CMD);
  1653. /* clear tx/rx counter */
  1654. bcmgenet_umac_writel(priv,
  1655. MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
  1656. UMAC_MIB_CTRL);
  1657. bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
  1658. bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
  1659. /* init rx registers, enable ip header optimization */
  1660. reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
  1661. reg |= RBUF_ALIGN_2B;
  1662. bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
  1663. if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
  1664. bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
  1665. bcmgenet_intr_disable(priv);
  1666. /* Enable Rx default queue 16 interrupts */
  1667. int0_enable |= UMAC_IRQ_RXDMA_DONE;
  1668. /* Enable Tx default queue 16 interrupts */
  1669. int0_enable |= UMAC_IRQ_TXDMA_DONE;
  1670. /* Configure backpressure vectors for MoCA */
  1671. if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
  1672. reg = bcmgenet_bp_mc_get(priv);
  1673. reg |= BIT(priv->hw_params->bp_in_en_shift);
  1674. /* bp_mask: back pressure mask */
  1675. if (netif_is_multiqueue(priv->dev))
  1676. reg |= priv->hw_params->bp_in_mask;
  1677. else
  1678. reg &= ~priv->hw_params->bp_in_mask;
  1679. bcmgenet_bp_mc_set(priv, reg);
  1680. }
  1681. /* Enable MDIO interrupts on GENET v3+ */
  1682. if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
  1683. int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
  1684. /* Enable Rx priority queue interrupts */
  1685. for (i = 0; i < priv->hw_params->rx_queues; ++i)
  1686. int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
  1687. /* Enable Tx priority queue interrupts */
  1688. for (i = 0; i < priv->hw_params->tx_queues; ++i)
  1689. int1_enable |= (1 << i);
  1690. bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
  1691. bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
  1692. /* Enable rx/tx engine.*/
  1693. dev_dbg(kdev, "done init umac\n");
  1694. return 0;
  1695. }
  1696. /* Initialize a Tx ring along with corresponding hardware registers */
  1697. static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
  1698. unsigned int index, unsigned int size,
  1699. unsigned int start_ptr, unsigned int end_ptr)
  1700. {
  1701. struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
  1702. u32 words_per_bd = WORDS_PER_BD(priv);
  1703. u32 flow_period_val = 0;
  1704. spin_lock_init(&ring->lock);
  1705. ring->priv = priv;
  1706. ring->index = index;
  1707. if (index == DESC_INDEX) {
  1708. ring->queue = 0;
  1709. ring->int_enable = bcmgenet_tx_ring16_int_enable;
  1710. ring->int_disable = bcmgenet_tx_ring16_int_disable;
  1711. } else {
  1712. ring->queue = index + 1;
  1713. ring->int_enable = bcmgenet_tx_ring_int_enable;
  1714. ring->int_disable = bcmgenet_tx_ring_int_disable;
  1715. }
  1716. ring->cbs = priv->tx_cbs + start_ptr;
  1717. ring->size = size;
  1718. ring->clean_ptr = start_ptr;
  1719. ring->c_index = 0;
  1720. ring->free_bds = size;
  1721. ring->write_ptr = start_ptr;
  1722. ring->cb_ptr = start_ptr;
  1723. ring->end_ptr = end_ptr - 1;
  1724. ring->prod_index = 0;
  1725. /* Set flow period for ring != 16 */
  1726. if (index != DESC_INDEX)
  1727. flow_period_val = ENET_MAX_MTU_SIZE << 16;
  1728. bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
  1729. bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
  1730. bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
  1731. /* Disable rate control for now */
  1732. bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
  1733. TDMA_FLOW_PERIOD);
  1734. bcmgenet_tdma_ring_writel(priv, index,
  1735. ((size << DMA_RING_SIZE_SHIFT) |
  1736. RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
  1737. /* Set start and end address, read and write pointers */
  1738. bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
  1739. DMA_START_ADDR);
  1740. bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
  1741. TDMA_READ_PTR);
  1742. bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
  1743. TDMA_WRITE_PTR);
  1744. bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
  1745. DMA_END_ADDR);
  1746. }
  1747. /* Initialize a RDMA ring */
  1748. static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
  1749. unsigned int index, unsigned int size,
  1750. unsigned int start_ptr, unsigned int end_ptr)
  1751. {
  1752. struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
  1753. u32 words_per_bd = WORDS_PER_BD(priv);
  1754. int ret;
  1755. ring->priv = priv;
  1756. ring->index = index;
  1757. if (index == DESC_INDEX) {
  1758. ring->int_enable = bcmgenet_rx_ring16_int_enable;
  1759. ring->int_disable = bcmgenet_rx_ring16_int_disable;
  1760. } else {
  1761. ring->int_enable = bcmgenet_rx_ring_int_enable;
  1762. ring->int_disable = bcmgenet_rx_ring_int_disable;
  1763. }
  1764. ring->cbs = priv->rx_cbs + start_ptr;
  1765. ring->size = size;
  1766. ring->c_index = 0;
  1767. ring->read_ptr = start_ptr;
  1768. ring->cb_ptr = start_ptr;
  1769. ring->end_ptr = end_ptr - 1;
  1770. ret = bcmgenet_alloc_rx_buffers(priv, ring);
  1771. if (ret)
  1772. return ret;
  1773. bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
  1774. bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
  1775. bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
  1776. bcmgenet_rdma_ring_writel(priv, index,
  1777. ((size << DMA_RING_SIZE_SHIFT) |
  1778. RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
  1779. bcmgenet_rdma_ring_writel(priv, index,
  1780. (DMA_FC_THRESH_LO <<
  1781. DMA_XOFF_THRESHOLD_SHIFT) |
  1782. DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
  1783. /* Set start and end address, read and write pointers */
  1784. bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
  1785. DMA_START_ADDR);
  1786. bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
  1787. RDMA_READ_PTR);
  1788. bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
  1789. RDMA_WRITE_PTR);
  1790. bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
  1791. DMA_END_ADDR);
  1792. return ret;
  1793. }
  1794. static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
  1795. {
  1796. unsigned int i;
  1797. struct bcmgenet_tx_ring *ring;
  1798. for (i = 0; i < priv->hw_params->tx_queues; ++i) {
  1799. ring = &priv->tx_rings[i];
  1800. netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
  1801. }
  1802. ring = &priv->tx_rings[DESC_INDEX];
  1803. netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
  1804. }
  1805. static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
  1806. {
  1807. unsigned int i;
  1808. struct bcmgenet_tx_ring *ring;
  1809. for (i = 0; i < priv->hw_params->tx_queues; ++i) {
  1810. ring = &priv->tx_rings[i];
  1811. napi_enable(&ring->napi);
  1812. }
  1813. ring = &priv->tx_rings[DESC_INDEX];
  1814. napi_enable(&ring->napi);
  1815. }
  1816. static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
  1817. {
  1818. unsigned int i;
  1819. struct bcmgenet_tx_ring *ring;
  1820. for (i = 0; i < priv->hw_params->tx_queues; ++i) {
  1821. ring = &priv->tx_rings[i];
  1822. napi_disable(&ring->napi);
  1823. }
  1824. ring = &priv->tx_rings[DESC_INDEX];
  1825. napi_disable(&ring->napi);
  1826. }
  1827. static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
  1828. {
  1829. unsigned int i;
  1830. struct bcmgenet_tx_ring *ring;
  1831. for (i = 0; i < priv->hw_params->tx_queues; ++i) {
  1832. ring = &priv->tx_rings[i];
  1833. netif_napi_del(&ring->napi);
  1834. }
  1835. ring = &priv->tx_rings[DESC_INDEX];
  1836. netif_napi_del(&ring->napi);
  1837. }
  1838. /* Initialize Tx queues
  1839. *
  1840. * Queues 0-3 are priority-based, each one has 32 descriptors,
  1841. * with queue 0 being the highest priority queue.
  1842. *
  1843. * Queue 16 is the default Tx queue with
  1844. * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
  1845. *
  1846. * The transmit control block pool is then partitioned as follows:
  1847. * - Tx queue 0 uses tx_cbs[0..31]
  1848. * - Tx queue 1 uses tx_cbs[32..63]
  1849. * - Tx queue 2 uses tx_cbs[64..95]
  1850. * - Tx queue 3 uses tx_cbs[96..127]
  1851. * - Tx queue 16 uses tx_cbs[128..255]
  1852. */
  1853. static void bcmgenet_init_tx_queues(struct net_device *dev)
  1854. {
  1855. struct bcmgenet_priv *priv = netdev_priv(dev);
  1856. u32 i, dma_enable;
  1857. u32 dma_ctrl, ring_cfg;
  1858. u32 dma_priority[3] = {0, 0, 0};
  1859. dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
  1860. dma_enable = dma_ctrl & DMA_EN;
  1861. dma_ctrl &= ~DMA_EN;
  1862. bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
  1863. dma_ctrl = 0;
  1864. ring_cfg = 0;
  1865. /* Enable strict priority arbiter mode */
  1866. bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
  1867. /* Initialize Tx priority queues */
  1868. for (i = 0; i < priv->hw_params->tx_queues; i++) {
  1869. bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
  1870. i * priv->hw_params->tx_bds_per_q,
  1871. (i + 1) * priv->hw_params->tx_bds_per_q);
  1872. ring_cfg |= (1 << i);
  1873. dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
  1874. dma_priority[DMA_PRIO_REG_INDEX(i)] |=
  1875. ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
  1876. }
  1877. /* Initialize Tx default queue 16 */
  1878. bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
  1879. priv->hw_params->tx_queues *
  1880. priv->hw_params->tx_bds_per_q,
  1881. TOTAL_DESC);
  1882. ring_cfg |= (1 << DESC_INDEX);
  1883. dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
  1884. dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
  1885. ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
  1886. DMA_PRIO_REG_SHIFT(DESC_INDEX));
  1887. /* Set Tx queue priorities */
  1888. bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
  1889. bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
  1890. bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
  1891. /* Initialize Tx NAPI */
  1892. bcmgenet_init_tx_napi(priv);
  1893. /* Enable Tx queues */
  1894. bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
  1895. /* Enable Tx DMA */
  1896. if (dma_enable)
  1897. dma_ctrl |= DMA_EN;
  1898. bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
  1899. }
  1900. static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
  1901. {
  1902. unsigned int i;
  1903. struct bcmgenet_rx_ring *ring;
  1904. for (i = 0; i < priv->hw_params->rx_queues; ++i) {
  1905. ring = &priv->rx_rings[i];
  1906. netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
  1907. }
  1908. ring = &priv->rx_rings[DESC_INDEX];
  1909. netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
  1910. }
  1911. static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
  1912. {
  1913. unsigned int i;
  1914. struct bcmgenet_rx_ring *ring;
  1915. for (i = 0; i < priv->hw_params->rx_queues; ++i) {
  1916. ring = &priv->rx_rings[i];
  1917. napi_enable(&ring->napi);
  1918. }
  1919. ring = &priv->rx_rings[DESC_INDEX];
  1920. napi_enable(&ring->napi);
  1921. }
  1922. static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
  1923. {
  1924. unsigned int i;
  1925. struct bcmgenet_rx_ring *ring;
  1926. for (i = 0; i < priv->hw_params->rx_queues; ++i) {
  1927. ring = &priv->rx_rings[i];
  1928. napi_disable(&ring->napi);
  1929. }
  1930. ring = &priv->rx_rings[DESC_INDEX];
  1931. napi_disable(&ring->napi);
  1932. }
  1933. static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
  1934. {
  1935. unsigned int i;
  1936. struct bcmgenet_rx_ring *ring;
  1937. for (i = 0; i < priv->hw_params->rx_queues; ++i) {
  1938. ring = &priv->rx_rings[i];
  1939. netif_napi_del(&ring->napi);
  1940. }
  1941. ring = &priv->rx_rings[DESC_INDEX];
  1942. netif_napi_del(&ring->napi);
  1943. }
  1944. /* Initialize Rx queues
  1945. *
  1946. * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
  1947. * used to direct traffic to these queues.
  1948. *
  1949. * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
  1950. */
  1951. static int bcmgenet_init_rx_queues(struct net_device *dev)
  1952. {
  1953. struct bcmgenet_priv *priv = netdev_priv(dev);
  1954. u32 i;
  1955. u32 dma_enable;
  1956. u32 dma_ctrl;
  1957. u32 ring_cfg;
  1958. int ret;
  1959. dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
  1960. dma_enable = dma_ctrl & DMA_EN;
  1961. dma_ctrl &= ~DMA_EN;
  1962. bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
  1963. dma_ctrl = 0;
  1964. ring_cfg = 0;
  1965. /* Initialize Rx priority queues */
  1966. for (i = 0; i < priv->hw_params->rx_queues; i++) {
  1967. ret = bcmgenet_init_rx_ring(priv, i,
  1968. priv->hw_params->rx_bds_per_q,
  1969. i * priv->hw_params->rx_bds_per_q,
  1970. (i + 1) *
  1971. priv->hw_params->rx_bds_per_q);
  1972. if (ret)
  1973. return ret;
  1974. ring_cfg |= (1 << i);
  1975. dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
  1976. }
  1977. /* Initialize Rx default queue 16 */
  1978. ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
  1979. priv->hw_params->rx_queues *
  1980. priv->hw_params->rx_bds_per_q,
  1981. TOTAL_DESC);
  1982. if (ret)
  1983. return ret;
  1984. ring_cfg |= (1 << DESC_INDEX);
  1985. dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
  1986. /* Initialize Rx NAPI */
  1987. bcmgenet_init_rx_napi(priv);
  1988. /* Enable rings */
  1989. bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
  1990. /* Configure ring as descriptor ring and re-enable DMA if enabled */
  1991. if (dma_enable)
  1992. dma_ctrl |= DMA_EN;
  1993. bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
  1994. return 0;
  1995. }
  1996. static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
  1997. {
  1998. int ret = 0;
  1999. int timeout = 0;
  2000. u32 reg;
  2001. u32 dma_ctrl;
  2002. int i;
  2003. /* Disable TDMA to stop add more frames in TX DMA */
  2004. reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
  2005. reg &= ~DMA_EN;
  2006. bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
  2007. /* Check TDMA status register to confirm TDMA is disabled */
  2008. while (timeout++ < DMA_TIMEOUT_VAL) {
  2009. reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
  2010. if (reg & DMA_DISABLED)
  2011. break;
  2012. udelay(1);
  2013. }
  2014. if (timeout == DMA_TIMEOUT_VAL) {
  2015. netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
  2016. ret = -ETIMEDOUT;
  2017. }
  2018. /* Wait 10ms for packet drain in both tx and rx dma */
  2019. usleep_range(10000, 20000);
  2020. /* Disable RDMA */
  2021. reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
  2022. reg &= ~DMA_EN;
  2023. bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
  2024. timeout = 0;
  2025. /* Check RDMA status register to confirm RDMA is disabled */
  2026. while (timeout++ < DMA_TIMEOUT_VAL) {
  2027. reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
  2028. if (reg & DMA_DISABLED)
  2029. break;
  2030. udelay(1);
  2031. }
  2032. if (timeout == DMA_TIMEOUT_VAL) {
  2033. netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
  2034. ret = -ETIMEDOUT;
  2035. }
  2036. dma_ctrl = 0;
  2037. for (i = 0; i < priv->hw_params->rx_queues; i++)
  2038. dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
  2039. reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
  2040. reg &= ~dma_ctrl;
  2041. bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
  2042. dma_ctrl = 0;
  2043. for (i = 0; i < priv->hw_params->tx_queues; i++)
  2044. dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
  2045. reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
  2046. reg &= ~dma_ctrl;
  2047. bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
  2048. return ret;
  2049. }
  2050. static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
  2051. {
  2052. int i;
  2053. struct netdev_queue *txq;
  2054. bcmgenet_fini_rx_napi(priv);
  2055. bcmgenet_fini_tx_napi(priv);
  2056. /* disable DMA */
  2057. bcmgenet_dma_teardown(priv);
  2058. for (i = 0; i < priv->num_tx_bds; i++) {
  2059. if (priv->tx_cbs[i].skb != NULL) {
  2060. dev_kfree_skb(priv->tx_cbs[i].skb);
  2061. priv->tx_cbs[i].skb = NULL;
  2062. }
  2063. }
  2064. for (i = 0; i < priv->hw_params->tx_queues; i++) {
  2065. txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
  2066. netdev_tx_reset_queue(txq);
  2067. }
  2068. txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
  2069. netdev_tx_reset_queue(txq);
  2070. bcmgenet_free_rx_buffers(priv);
  2071. kfree(priv->rx_cbs);
  2072. kfree(priv->tx_cbs);
  2073. }
  2074. /* init_edma: Initialize DMA control register */
  2075. static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
  2076. {
  2077. int ret;
  2078. unsigned int i;
  2079. struct enet_cb *cb;
  2080. netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
  2081. /* Initialize common Rx ring structures */
  2082. priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
  2083. priv->num_rx_bds = TOTAL_DESC;
  2084. priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
  2085. GFP_KERNEL);
  2086. if (!priv->rx_cbs)
  2087. return -ENOMEM;
  2088. for (i = 0; i < priv->num_rx_bds; i++) {
  2089. cb = priv->rx_cbs + i;
  2090. cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
  2091. }
  2092. /* Initialize common TX ring structures */
  2093. priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
  2094. priv->num_tx_bds = TOTAL_DESC;
  2095. priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
  2096. GFP_KERNEL);
  2097. if (!priv->tx_cbs) {
  2098. kfree(priv->rx_cbs);
  2099. return -ENOMEM;
  2100. }
  2101. for (i = 0; i < priv->num_tx_bds; i++) {
  2102. cb = priv->tx_cbs + i;
  2103. cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
  2104. }
  2105. /* Init rDma */
  2106. bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
  2107. /* Initialize Rx queues */
  2108. ret = bcmgenet_init_rx_queues(priv->dev);
  2109. if (ret) {
  2110. netdev_err(priv->dev, "failed to initialize Rx queues\n");
  2111. bcmgenet_free_rx_buffers(priv);
  2112. kfree(priv->rx_cbs);
  2113. kfree(priv->tx_cbs);
  2114. return ret;
  2115. }
  2116. /* Init tDma */
  2117. bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
  2118. /* Initialize Tx queues */
  2119. bcmgenet_init_tx_queues(priv->dev);
  2120. return 0;
  2121. }
  2122. /* Interrupt bottom half */
  2123. static void bcmgenet_irq_task(struct work_struct *work)
  2124. {
  2125. unsigned long flags;
  2126. unsigned int status;
  2127. struct bcmgenet_priv *priv = container_of(
  2128. work, struct bcmgenet_priv, bcmgenet_irq_work);
  2129. netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
  2130. spin_lock_irqsave(&priv->lock, flags);
  2131. status = priv->irq0_stat;
  2132. priv->irq0_stat = 0;
  2133. spin_unlock_irqrestore(&priv->lock, flags);
  2134. if (status & UMAC_IRQ_MPD_R) {
  2135. netif_dbg(priv, wol, priv->dev,
  2136. "magic packet detected, waking up\n");
  2137. bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
  2138. }
  2139. /* Link UP/DOWN event */
  2140. if (status & UMAC_IRQ_LINK_EVENT)
  2141. phy_mac_interrupt(priv->phydev,
  2142. !!(status & UMAC_IRQ_LINK_UP));
  2143. }
  2144. /* bcmgenet_isr1: handle Rx and Tx priority queues */
  2145. static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
  2146. {
  2147. struct bcmgenet_priv *priv = dev_id;
  2148. struct bcmgenet_rx_ring *rx_ring;
  2149. struct bcmgenet_tx_ring *tx_ring;
  2150. unsigned int index, status;
  2151. /* Read irq status */
  2152. status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
  2153. ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
  2154. /* clear interrupts */
  2155. bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
  2156. netif_dbg(priv, intr, priv->dev,
  2157. "%s: IRQ=0x%x\n", __func__, status);
  2158. /* Check Rx priority queue interrupts */
  2159. for (index = 0; index < priv->hw_params->rx_queues; index++) {
  2160. if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
  2161. continue;
  2162. rx_ring = &priv->rx_rings[index];
  2163. if (likely(napi_schedule_prep(&rx_ring->napi))) {
  2164. rx_ring->int_disable(rx_ring);
  2165. __napi_schedule_irqoff(&rx_ring->napi);
  2166. }
  2167. }
  2168. /* Check Tx priority queue interrupts */
  2169. for (index = 0; index < priv->hw_params->tx_queues; index++) {
  2170. if (!(status & BIT(index)))
  2171. continue;
  2172. tx_ring = &priv->tx_rings[index];
  2173. if (likely(napi_schedule_prep(&tx_ring->napi))) {
  2174. tx_ring->int_disable(tx_ring);
  2175. __napi_schedule_irqoff(&tx_ring->napi);
  2176. }
  2177. }
  2178. return IRQ_HANDLED;
  2179. }
  2180. /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
  2181. static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
  2182. {
  2183. struct bcmgenet_priv *priv = dev_id;
  2184. struct bcmgenet_rx_ring *rx_ring;
  2185. struct bcmgenet_tx_ring *tx_ring;
  2186. unsigned int status;
  2187. unsigned long flags;
  2188. /* Read irq status */
  2189. status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
  2190. ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
  2191. /* clear interrupts */
  2192. bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
  2193. netif_dbg(priv, intr, priv->dev,
  2194. "IRQ=0x%x\n", status);
  2195. if (status & UMAC_IRQ_RXDMA_DONE) {
  2196. rx_ring = &priv->rx_rings[DESC_INDEX];
  2197. if (likely(napi_schedule_prep(&rx_ring->napi))) {
  2198. rx_ring->int_disable(rx_ring);
  2199. __napi_schedule_irqoff(&rx_ring->napi);
  2200. }
  2201. }
  2202. if (status & UMAC_IRQ_TXDMA_DONE) {
  2203. tx_ring = &priv->tx_rings[DESC_INDEX];
  2204. if (likely(napi_schedule_prep(&tx_ring->napi))) {
  2205. tx_ring->int_disable(tx_ring);
  2206. __napi_schedule_irqoff(&tx_ring->napi);
  2207. }
  2208. }
  2209. if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
  2210. status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
  2211. wake_up(&priv->wq);
  2212. }
  2213. /* all other interested interrupts handled in bottom half */
  2214. status &= (UMAC_IRQ_LINK_EVENT |
  2215. UMAC_IRQ_MPD_R);
  2216. if (status) {
  2217. /* Save irq status for bottom-half processing. */
  2218. spin_lock_irqsave(&priv->lock, flags);
  2219. priv->irq0_stat |= status;
  2220. spin_unlock_irqrestore(&priv->lock, flags);
  2221. schedule_work(&priv->bcmgenet_irq_work);
  2222. }
  2223. return IRQ_HANDLED;
  2224. }
  2225. static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
  2226. {
  2227. struct bcmgenet_priv *priv = dev_id;
  2228. pm_wakeup_event(&priv->pdev->dev, 0);
  2229. return IRQ_HANDLED;
  2230. }
  2231. #ifdef CONFIG_NET_POLL_CONTROLLER
  2232. static void bcmgenet_poll_controller(struct net_device *dev)
  2233. {
  2234. struct bcmgenet_priv *priv = netdev_priv(dev);
  2235. /* Invoke the main RX/TX interrupt handler */
  2236. disable_irq(priv->irq0);
  2237. bcmgenet_isr0(priv->irq0, priv);
  2238. enable_irq(priv->irq0);
  2239. /* And the interrupt handler for RX/TX priority queues */
  2240. disable_irq(priv->irq1);
  2241. bcmgenet_isr1(priv->irq1, priv);
  2242. enable_irq(priv->irq1);
  2243. }
  2244. #endif
  2245. static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
  2246. {
  2247. u32 reg;
  2248. reg = bcmgenet_rbuf_ctrl_get(priv);
  2249. reg |= BIT(1);
  2250. bcmgenet_rbuf_ctrl_set(priv, reg);
  2251. udelay(10);
  2252. reg &= ~BIT(1);
  2253. bcmgenet_rbuf_ctrl_set(priv, reg);
  2254. udelay(10);
  2255. }
  2256. static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
  2257. unsigned char *addr)
  2258. {
  2259. bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
  2260. (addr[2] << 8) | addr[3], UMAC_MAC0);
  2261. bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
  2262. }
  2263. /* Returns a reusable dma control register value */
  2264. static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
  2265. {
  2266. u32 reg;
  2267. u32 dma_ctrl;
  2268. /* disable DMA */
  2269. dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
  2270. reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
  2271. reg &= ~dma_ctrl;
  2272. bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
  2273. reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
  2274. reg &= ~dma_ctrl;
  2275. bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
  2276. bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
  2277. udelay(10);
  2278. bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
  2279. return dma_ctrl;
  2280. }
  2281. static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
  2282. {
  2283. u32 reg;
  2284. reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
  2285. reg |= dma_ctrl;
  2286. bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
  2287. reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
  2288. reg |= dma_ctrl;
  2289. bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
  2290. }
  2291. /* bcmgenet_hfb_clear
  2292. *
  2293. * Clear Hardware Filter Block and disable all filtering.
  2294. */
  2295. static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
  2296. {
  2297. u32 i;
  2298. bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
  2299. bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
  2300. bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
  2301. for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
  2302. bcmgenet_rdma_writel(priv, 0x0, i);
  2303. for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
  2304. bcmgenet_hfb_reg_writel(priv, 0x0,
  2305. HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
  2306. for (i = 0; i < priv->hw_params->hfb_filter_cnt *
  2307. priv->hw_params->hfb_filter_size; i++)
  2308. bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
  2309. }
  2310. static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
  2311. {
  2312. if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
  2313. return;
  2314. bcmgenet_hfb_clear(priv);
  2315. }
  2316. static void bcmgenet_netif_start(struct net_device *dev)
  2317. {
  2318. struct bcmgenet_priv *priv = netdev_priv(dev);
  2319. /* Start the network engine */
  2320. bcmgenet_enable_rx_napi(priv);
  2321. bcmgenet_enable_tx_napi(priv);
  2322. umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
  2323. netif_tx_start_all_queues(dev);
  2324. /* Monitor link interrupts now */
  2325. bcmgenet_link_intr_enable(priv);
  2326. phy_start(priv->phydev);
  2327. }
  2328. static int bcmgenet_open(struct net_device *dev)
  2329. {
  2330. struct bcmgenet_priv *priv = netdev_priv(dev);
  2331. unsigned long dma_ctrl;
  2332. u32 reg;
  2333. int ret;
  2334. netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
  2335. /* Turn on the clock */
  2336. clk_prepare_enable(priv->clk);
  2337. /* If this is an internal GPHY, power it back on now, before UniMAC is
  2338. * brought out of reset as absolutely no UniMAC activity is allowed
  2339. */
  2340. if (priv->internal_phy)
  2341. bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
  2342. /* take MAC out of reset */
  2343. bcmgenet_umac_reset(priv);
  2344. ret = init_umac(priv);
  2345. if (ret)
  2346. goto err_clk_disable;
  2347. /* disable ethernet MAC while updating its registers */
  2348. umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
  2349. /* Make sure we reflect the value of CRC_CMD_FWD */
  2350. reg = bcmgenet_umac_readl(priv, UMAC_CMD);
  2351. priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
  2352. bcmgenet_set_hw_addr(priv, dev->dev_addr);
  2353. if (priv->internal_phy) {
  2354. reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
  2355. reg |= EXT_ENERGY_DET_MASK;
  2356. bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
  2357. }
  2358. /* Disable RX/TX DMA and flush TX queues */
  2359. dma_ctrl = bcmgenet_dma_disable(priv);
  2360. /* Reinitialize TDMA and RDMA and SW housekeeping */
  2361. ret = bcmgenet_init_dma(priv);
  2362. if (ret) {
  2363. netdev_err(dev, "failed to initialize DMA\n");
  2364. goto err_clk_disable;
  2365. }
  2366. /* Always enable ring 16 - descriptor ring */
  2367. bcmgenet_enable_dma(priv, dma_ctrl);
  2368. /* HFB init */
  2369. bcmgenet_hfb_init(priv);
  2370. ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
  2371. dev->name, priv);
  2372. if (ret < 0) {
  2373. netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
  2374. goto err_fini_dma;
  2375. }
  2376. ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
  2377. dev->name, priv);
  2378. if (ret < 0) {
  2379. netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
  2380. goto err_irq0;
  2381. }
  2382. ret = bcmgenet_mii_probe(dev);
  2383. if (ret) {
  2384. netdev_err(dev, "failed to connect to PHY\n");
  2385. goto err_irq1;
  2386. }
  2387. bcmgenet_netif_start(dev);
  2388. return 0;
  2389. err_irq1:
  2390. free_irq(priv->irq1, priv);
  2391. err_irq0:
  2392. free_irq(priv->irq0, priv);
  2393. err_fini_dma:
  2394. bcmgenet_fini_dma(priv);
  2395. err_clk_disable:
  2396. if (priv->internal_phy)
  2397. bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
  2398. clk_disable_unprepare(priv->clk);
  2399. return ret;
  2400. }
  2401. static void bcmgenet_netif_stop(struct net_device *dev)
  2402. {
  2403. struct bcmgenet_priv *priv = netdev_priv(dev);
  2404. netif_tx_stop_all_queues(dev);
  2405. phy_stop(priv->phydev);
  2406. bcmgenet_intr_disable(priv);
  2407. bcmgenet_disable_rx_napi(priv);
  2408. bcmgenet_disable_tx_napi(priv);
  2409. /* Wait for pending work items to complete. Since interrupts are
  2410. * disabled no new work will be scheduled.
  2411. */
  2412. cancel_work_sync(&priv->bcmgenet_irq_work);
  2413. priv->old_link = -1;
  2414. priv->old_speed = -1;
  2415. priv->old_duplex = -1;
  2416. priv->old_pause = -1;
  2417. }
  2418. static int bcmgenet_close(struct net_device *dev)
  2419. {
  2420. struct bcmgenet_priv *priv = netdev_priv(dev);
  2421. int ret;
  2422. netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
  2423. bcmgenet_netif_stop(dev);
  2424. /* Really kill the PHY state machine and disconnect from it */
  2425. phy_disconnect(priv->phydev);
  2426. /* Disable MAC receive */
  2427. umac_enable_set(priv, CMD_RX_EN, false);
  2428. ret = bcmgenet_dma_teardown(priv);
  2429. if (ret)
  2430. return ret;
  2431. /* Disable MAC transmit. TX DMA disabled have to done before this */
  2432. umac_enable_set(priv, CMD_TX_EN, false);
  2433. /* tx reclaim */
  2434. bcmgenet_tx_reclaim_all(dev);
  2435. bcmgenet_fini_dma(priv);
  2436. free_irq(priv->irq0, priv);
  2437. free_irq(priv->irq1, priv);
  2438. if (priv->internal_phy)
  2439. ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
  2440. clk_disable_unprepare(priv->clk);
  2441. return ret;
  2442. }
  2443. static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
  2444. {
  2445. struct bcmgenet_priv *priv = ring->priv;
  2446. u32 p_index, c_index, intsts, intmsk;
  2447. struct netdev_queue *txq;
  2448. unsigned int free_bds;
  2449. unsigned long flags;
  2450. bool txq_stopped;
  2451. if (!netif_msg_tx_err(priv))
  2452. return;
  2453. txq = netdev_get_tx_queue(priv->dev, ring->queue);
  2454. spin_lock_irqsave(&ring->lock, flags);
  2455. if (ring->index == DESC_INDEX) {
  2456. intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
  2457. intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
  2458. } else {
  2459. intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
  2460. intmsk = 1 << ring->index;
  2461. }
  2462. c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
  2463. p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
  2464. txq_stopped = netif_tx_queue_stopped(txq);
  2465. free_bds = ring->free_bds;
  2466. spin_unlock_irqrestore(&ring->lock, flags);
  2467. netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
  2468. "TX queue status: %s, interrupts: %s\n"
  2469. "(sw)free_bds: %d (sw)size: %d\n"
  2470. "(sw)p_index: %d (hw)p_index: %d\n"
  2471. "(sw)c_index: %d (hw)c_index: %d\n"
  2472. "(sw)clean_p: %d (sw)write_p: %d\n"
  2473. "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
  2474. ring->index, ring->queue,
  2475. txq_stopped ? "stopped" : "active",
  2476. intsts & intmsk ? "enabled" : "disabled",
  2477. free_bds, ring->size,
  2478. ring->prod_index, p_index & DMA_P_INDEX_MASK,
  2479. ring->c_index, c_index & DMA_C_INDEX_MASK,
  2480. ring->clean_ptr, ring->write_ptr,
  2481. ring->cb_ptr, ring->end_ptr);
  2482. }
  2483. static void bcmgenet_timeout(struct net_device *dev)
  2484. {
  2485. struct bcmgenet_priv *priv = netdev_priv(dev);
  2486. u32 int0_enable = 0;
  2487. u32 int1_enable = 0;
  2488. unsigned int q;
  2489. netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
  2490. for (q = 0; q < priv->hw_params->tx_queues; q++)
  2491. bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
  2492. bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
  2493. bcmgenet_tx_reclaim_all(dev);
  2494. for (q = 0; q < priv->hw_params->tx_queues; q++)
  2495. int1_enable |= (1 << q);
  2496. int0_enable = UMAC_IRQ_TXDMA_DONE;
  2497. /* Re-enable TX interrupts if disabled */
  2498. bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
  2499. bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
  2500. netif_trans_update(dev);
  2501. dev->stats.tx_errors++;
  2502. netif_tx_wake_all_queues(dev);
  2503. }
  2504. #define MAX_MC_COUNT 16
  2505. static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
  2506. unsigned char *addr,
  2507. int *i,
  2508. int *mc)
  2509. {
  2510. u32 reg;
  2511. bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
  2512. UMAC_MDF_ADDR + (*i * 4));
  2513. bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
  2514. addr[4] << 8 | addr[5],
  2515. UMAC_MDF_ADDR + ((*i + 1) * 4));
  2516. reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
  2517. reg |= (1 << (MAX_MC_COUNT - *mc));
  2518. bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
  2519. *i += 2;
  2520. (*mc)++;
  2521. }
  2522. static void bcmgenet_set_rx_mode(struct net_device *dev)
  2523. {
  2524. struct bcmgenet_priv *priv = netdev_priv(dev);
  2525. struct netdev_hw_addr *ha;
  2526. int i, mc;
  2527. u32 reg;
  2528. netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
  2529. /* Promiscuous mode */
  2530. reg = bcmgenet_umac_readl(priv, UMAC_CMD);
  2531. if (dev->flags & IFF_PROMISC) {
  2532. reg |= CMD_PROMISC;
  2533. bcmgenet_umac_writel(priv, reg, UMAC_CMD);
  2534. bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
  2535. return;
  2536. } else {
  2537. reg &= ~CMD_PROMISC;
  2538. bcmgenet_umac_writel(priv, reg, UMAC_CMD);
  2539. }
  2540. /* UniMac doesn't support ALLMULTI */
  2541. if (dev->flags & IFF_ALLMULTI) {
  2542. netdev_warn(dev, "ALLMULTI is not supported\n");
  2543. return;
  2544. }
  2545. /* update MDF filter */
  2546. i = 0;
  2547. mc = 0;
  2548. /* Broadcast */
  2549. bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
  2550. /* my own address.*/
  2551. bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
  2552. /* Unicast list*/
  2553. if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
  2554. return;
  2555. if (!netdev_uc_empty(dev))
  2556. netdev_for_each_uc_addr(ha, dev)
  2557. bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
  2558. /* Multicast */
  2559. if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
  2560. return;
  2561. netdev_for_each_mc_addr(ha, dev)
  2562. bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
  2563. }
  2564. /* Set the hardware MAC address. */
  2565. static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
  2566. {
  2567. struct sockaddr *addr = p;
  2568. /* Setting the MAC address at the hardware level is not possible
  2569. * without disabling the UniMAC RX/TX enable bits.
  2570. */
  2571. if (netif_running(dev))
  2572. return -EBUSY;
  2573. ether_addr_copy(dev->dev_addr, addr->sa_data);
  2574. return 0;
  2575. }
  2576. static const struct net_device_ops bcmgenet_netdev_ops = {
  2577. .ndo_open = bcmgenet_open,
  2578. .ndo_stop = bcmgenet_close,
  2579. .ndo_start_xmit = bcmgenet_xmit,
  2580. .ndo_tx_timeout = bcmgenet_timeout,
  2581. .ndo_set_rx_mode = bcmgenet_set_rx_mode,
  2582. .ndo_set_mac_address = bcmgenet_set_mac_addr,
  2583. .ndo_do_ioctl = bcmgenet_ioctl,
  2584. .ndo_set_features = bcmgenet_set_features,
  2585. #ifdef CONFIG_NET_POLL_CONTROLLER
  2586. .ndo_poll_controller = bcmgenet_poll_controller,
  2587. #endif
  2588. };
  2589. /* Array of GENET hardware parameters/characteristics */
  2590. static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
  2591. [GENET_V1] = {
  2592. .tx_queues = 0,
  2593. .tx_bds_per_q = 0,
  2594. .rx_queues = 0,
  2595. .rx_bds_per_q = 0,
  2596. .bp_in_en_shift = 16,
  2597. .bp_in_mask = 0xffff,
  2598. .hfb_filter_cnt = 16,
  2599. .qtag_mask = 0x1F,
  2600. .hfb_offset = 0x1000,
  2601. .rdma_offset = 0x2000,
  2602. .tdma_offset = 0x3000,
  2603. .words_per_bd = 2,
  2604. },
  2605. [GENET_V2] = {
  2606. .tx_queues = 4,
  2607. .tx_bds_per_q = 32,
  2608. .rx_queues = 0,
  2609. .rx_bds_per_q = 0,
  2610. .bp_in_en_shift = 16,
  2611. .bp_in_mask = 0xffff,
  2612. .hfb_filter_cnt = 16,
  2613. .qtag_mask = 0x1F,
  2614. .tbuf_offset = 0x0600,
  2615. .hfb_offset = 0x1000,
  2616. .hfb_reg_offset = 0x2000,
  2617. .rdma_offset = 0x3000,
  2618. .tdma_offset = 0x4000,
  2619. .words_per_bd = 2,
  2620. .flags = GENET_HAS_EXT,
  2621. },
  2622. [GENET_V3] = {
  2623. .tx_queues = 4,
  2624. .tx_bds_per_q = 32,
  2625. .rx_queues = 0,
  2626. .rx_bds_per_q = 0,
  2627. .bp_in_en_shift = 17,
  2628. .bp_in_mask = 0x1ffff,
  2629. .hfb_filter_cnt = 48,
  2630. .hfb_filter_size = 128,
  2631. .qtag_mask = 0x3F,
  2632. .tbuf_offset = 0x0600,
  2633. .hfb_offset = 0x8000,
  2634. .hfb_reg_offset = 0xfc00,
  2635. .rdma_offset = 0x10000,
  2636. .tdma_offset = 0x11000,
  2637. .words_per_bd = 2,
  2638. .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
  2639. GENET_HAS_MOCA_LINK_DET,
  2640. },
  2641. [GENET_V4] = {
  2642. .tx_queues = 4,
  2643. .tx_bds_per_q = 32,
  2644. .rx_queues = 0,
  2645. .rx_bds_per_q = 0,
  2646. .bp_in_en_shift = 17,
  2647. .bp_in_mask = 0x1ffff,
  2648. .hfb_filter_cnt = 48,
  2649. .hfb_filter_size = 128,
  2650. .qtag_mask = 0x3F,
  2651. .tbuf_offset = 0x0600,
  2652. .hfb_offset = 0x8000,
  2653. .hfb_reg_offset = 0xfc00,
  2654. .rdma_offset = 0x2000,
  2655. .tdma_offset = 0x4000,
  2656. .words_per_bd = 3,
  2657. .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
  2658. GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
  2659. },
  2660. };
  2661. /* Infer hardware parameters from the detected GENET version */
  2662. static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
  2663. {
  2664. struct bcmgenet_hw_params *params;
  2665. u32 reg;
  2666. u8 major;
  2667. u16 gphy_rev;
  2668. if (GENET_IS_V4(priv)) {
  2669. bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
  2670. genet_dma_ring_regs = genet_dma_ring_regs_v4;
  2671. priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
  2672. priv->version = GENET_V4;
  2673. } else if (GENET_IS_V3(priv)) {
  2674. bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
  2675. genet_dma_ring_regs = genet_dma_ring_regs_v123;
  2676. priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
  2677. priv->version = GENET_V3;
  2678. } else if (GENET_IS_V2(priv)) {
  2679. bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
  2680. genet_dma_ring_regs = genet_dma_ring_regs_v123;
  2681. priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
  2682. priv->version = GENET_V2;
  2683. } else if (GENET_IS_V1(priv)) {
  2684. bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
  2685. genet_dma_ring_regs = genet_dma_ring_regs_v123;
  2686. priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
  2687. priv->version = GENET_V1;
  2688. }
  2689. /* enum genet_version starts at 1 */
  2690. priv->hw_params = &bcmgenet_hw_params[priv->version];
  2691. params = priv->hw_params;
  2692. /* Read GENET HW version */
  2693. reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
  2694. major = (reg >> 24 & 0x0f);
  2695. if (major == 5)
  2696. major = 4;
  2697. else if (major == 0)
  2698. major = 1;
  2699. if (major != priv->version) {
  2700. dev_err(&priv->pdev->dev,
  2701. "GENET version mismatch, got: %d, configured for: %d\n",
  2702. major, priv->version);
  2703. }
  2704. /* Print the GENET core version */
  2705. dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
  2706. major, (reg >> 16) & 0x0f, reg & 0xffff);
  2707. /* Store the integrated PHY revision for the MDIO probing function
  2708. * to pass this information to the PHY driver. The PHY driver expects
  2709. * to find the PHY major revision in bits 15:8 while the GENET register
  2710. * stores that information in bits 7:0, account for that.
  2711. *
  2712. * On newer chips, starting with PHY revision G0, a new scheme is
  2713. * deployed similar to the Starfighter 2 switch with GPHY major
  2714. * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
  2715. * is reserved as well as special value 0x01ff, we have a small
  2716. * heuristic to check for the new GPHY revision and re-arrange things
  2717. * so the GPHY driver is happy.
  2718. */
  2719. gphy_rev = reg & 0xffff;
  2720. /* This is reserved so should require special treatment */
  2721. if (gphy_rev == 0 || gphy_rev == 0x01ff) {
  2722. pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
  2723. return;
  2724. }
  2725. /* This is the good old scheme, just GPHY major, no minor nor patch */
  2726. if ((gphy_rev & 0xf0) != 0)
  2727. priv->gphy_rev = gphy_rev << 8;
  2728. /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
  2729. else if ((gphy_rev & 0xff00) != 0)
  2730. priv->gphy_rev = gphy_rev;
  2731. #ifdef CONFIG_PHYS_ADDR_T_64BIT
  2732. if (!(params->flags & GENET_HAS_40BITS))
  2733. pr_warn("GENET does not support 40-bits PA\n");
  2734. #endif
  2735. pr_debug("Configuration for version: %d\n"
  2736. "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
  2737. "BP << en: %2d, BP msk: 0x%05x\n"
  2738. "HFB count: %2d, QTAQ msk: 0x%05x\n"
  2739. "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
  2740. "RDMA: 0x%05x, TDMA: 0x%05x\n"
  2741. "Words/BD: %d\n",
  2742. priv->version,
  2743. params->tx_queues, params->tx_bds_per_q,
  2744. params->rx_queues, params->rx_bds_per_q,
  2745. params->bp_in_en_shift, params->bp_in_mask,
  2746. params->hfb_filter_cnt, params->qtag_mask,
  2747. params->tbuf_offset, params->hfb_offset,
  2748. params->hfb_reg_offset,
  2749. params->rdma_offset, params->tdma_offset,
  2750. params->words_per_bd);
  2751. }
  2752. static const struct of_device_id bcmgenet_match[] = {
  2753. { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
  2754. { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
  2755. { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
  2756. { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
  2757. { },
  2758. };
  2759. MODULE_DEVICE_TABLE(of, bcmgenet_match);
  2760. static int bcmgenet_probe(struct platform_device *pdev)
  2761. {
  2762. struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
  2763. struct device_node *dn = pdev->dev.of_node;
  2764. const struct of_device_id *of_id = NULL;
  2765. struct bcmgenet_priv *priv;
  2766. struct net_device *dev;
  2767. const void *macaddr;
  2768. struct resource *r;
  2769. int err = -EIO;
  2770. const char *phy_mode_str;
  2771. /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
  2772. dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
  2773. GENET_MAX_MQ_CNT + 1);
  2774. if (!dev) {
  2775. dev_err(&pdev->dev, "can't allocate net device\n");
  2776. return -ENOMEM;
  2777. }
  2778. if (dn) {
  2779. of_id = of_match_node(bcmgenet_match, dn);
  2780. if (!of_id)
  2781. return -EINVAL;
  2782. }
  2783. priv = netdev_priv(dev);
  2784. priv->irq0 = platform_get_irq(pdev, 0);
  2785. priv->irq1 = platform_get_irq(pdev, 1);
  2786. priv->wol_irq = platform_get_irq(pdev, 2);
  2787. if (!priv->irq0 || !priv->irq1) {
  2788. dev_err(&pdev->dev, "can't find IRQs\n");
  2789. err = -EINVAL;
  2790. goto err;
  2791. }
  2792. if (dn) {
  2793. macaddr = of_get_mac_address(dn);
  2794. if (!macaddr) {
  2795. dev_err(&pdev->dev, "can't find MAC address\n");
  2796. err = -EINVAL;
  2797. goto err;
  2798. }
  2799. } else {
  2800. macaddr = pd->mac_address;
  2801. }
  2802. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2803. priv->base = devm_ioremap_resource(&pdev->dev, r);
  2804. if (IS_ERR(priv->base)) {
  2805. err = PTR_ERR(priv->base);
  2806. goto err;
  2807. }
  2808. spin_lock_init(&priv->lock);
  2809. SET_NETDEV_DEV(dev, &pdev->dev);
  2810. dev_set_drvdata(&pdev->dev, dev);
  2811. ether_addr_copy(dev->dev_addr, macaddr);
  2812. dev->watchdog_timeo = 2 * HZ;
  2813. dev->ethtool_ops = &bcmgenet_ethtool_ops;
  2814. dev->netdev_ops = &bcmgenet_netdev_ops;
  2815. priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
  2816. /* Set hardware features */
  2817. dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
  2818. NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
  2819. /* Request the WOL interrupt and advertise suspend if available */
  2820. priv->wol_irq_disabled = true;
  2821. err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
  2822. dev->name, priv);
  2823. if (!err)
  2824. device_set_wakeup_capable(&pdev->dev, 1);
  2825. /* Set the needed headroom to account for any possible
  2826. * features enabling/disabling at runtime
  2827. */
  2828. dev->needed_headroom += 64;
  2829. netdev_boot_setup_check(dev);
  2830. priv->dev = dev;
  2831. priv->pdev = pdev;
  2832. if (of_id)
  2833. priv->version = (enum bcmgenet_version)of_id->data;
  2834. else
  2835. priv->version = pd->genet_version;
  2836. priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
  2837. if (IS_ERR(priv->clk)) {
  2838. dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
  2839. priv->clk = NULL;
  2840. }
  2841. clk_prepare_enable(priv->clk);
  2842. bcmgenet_set_hw_params(priv);
  2843. /* Mii wait queue */
  2844. init_waitqueue_head(&priv->wq);
  2845. /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
  2846. priv->rx_buf_len = RX_BUF_LENGTH;
  2847. INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
  2848. priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
  2849. if (IS_ERR(priv->clk_wol)) {
  2850. dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
  2851. priv->clk_wol = NULL;
  2852. }
  2853. priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
  2854. if (IS_ERR(priv->clk_eee)) {
  2855. dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
  2856. priv->clk_eee = NULL;
  2857. }
  2858. /* If this is an internal GPHY, power it on now, before UniMAC is
  2859. * brought out of reset as absolutely no UniMAC activity is allowed
  2860. */
  2861. if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
  2862. !strcasecmp(phy_mode_str, "internal"))
  2863. bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
  2864. err = reset_umac(priv);
  2865. if (err)
  2866. goto err_clk_disable;
  2867. err = bcmgenet_mii_init(dev);
  2868. if (err)
  2869. goto err_clk_disable;
  2870. /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
  2871. * just the ring 16 descriptor based TX
  2872. */
  2873. netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
  2874. netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
  2875. /* libphy will determine the link state */
  2876. netif_carrier_off(dev);
  2877. /* Turn off the main clock, WOL clock is handled separately */
  2878. clk_disable_unprepare(priv->clk);
  2879. err = register_netdev(dev);
  2880. if (err)
  2881. goto err;
  2882. return err;
  2883. err_clk_disable:
  2884. clk_disable_unprepare(priv->clk);
  2885. err:
  2886. free_netdev(dev);
  2887. return err;
  2888. }
  2889. static int bcmgenet_remove(struct platform_device *pdev)
  2890. {
  2891. struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
  2892. dev_set_drvdata(&pdev->dev, NULL);
  2893. unregister_netdev(priv->dev);
  2894. bcmgenet_mii_exit(priv->dev);
  2895. free_netdev(priv->dev);
  2896. return 0;
  2897. }
  2898. #ifdef CONFIG_PM_SLEEP
  2899. static int bcmgenet_suspend(struct device *d)
  2900. {
  2901. struct net_device *dev = dev_get_drvdata(d);
  2902. struct bcmgenet_priv *priv = netdev_priv(dev);
  2903. int ret;
  2904. if (!netif_running(dev))
  2905. return 0;
  2906. bcmgenet_netif_stop(dev);
  2907. if (!device_may_wakeup(d))
  2908. phy_suspend(priv->phydev);
  2909. netif_device_detach(dev);
  2910. /* Disable MAC receive */
  2911. umac_enable_set(priv, CMD_RX_EN, false);
  2912. ret = bcmgenet_dma_teardown(priv);
  2913. if (ret)
  2914. return ret;
  2915. /* Disable MAC transmit. TX DMA disabled have to done before this */
  2916. umac_enable_set(priv, CMD_TX_EN, false);
  2917. /* tx reclaim */
  2918. bcmgenet_tx_reclaim_all(dev);
  2919. bcmgenet_fini_dma(priv);
  2920. /* Prepare the device for Wake-on-LAN and switch to the slow clock */
  2921. if (device_may_wakeup(d) && priv->wolopts) {
  2922. ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
  2923. clk_prepare_enable(priv->clk_wol);
  2924. } else if (priv->internal_phy) {
  2925. ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
  2926. }
  2927. /* Turn off the clocks */
  2928. clk_disable_unprepare(priv->clk);
  2929. return ret;
  2930. }
  2931. static int bcmgenet_resume(struct device *d)
  2932. {
  2933. struct net_device *dev = dev_get_drvdata(d);
  2934. struct bcmgenet_priv *priv = netdev_priv(dev);
  2935. unsigned long dma_ctrl;
  2936. int ret;
  2937. u32 reg;
  2938. if (!netif_running(dev))
  2939. return 0;
  2940. /* Turn on the clock */
  2941. ret = clk_prepare_enable(priv->clk);
  2942. if (ret)
  2943. return ret;
  2944. /* If this is an internal GPHY, power it back on now, before UniMAC is
  2945. * brought out of reset as absolutely no UniMAC activity is allowed
  2946. */
  2947. if (priv->internal_phy)
  2948. bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
  2949. bcmgenet_umac_reset(priv);
  2950. ret = init_umac(priv);
  2951. if (ret)
  2952. goto out_clk_disable;
  2953. /* From WOL-enabled suspend, switch to regular clock */
  2954. if (priv->wolopts)
  2955. clk_disable_unprepare(priv->clk_wol);
  2956. phy_init_hw(priv->phydev);
  2957. /* Speed settings must be restored */
  2958. bcmgenet_mii_config(priv->dev);
  2959. /* disable ethernet MAC while updating its registers */
  2960. umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
  2961. bcmgenet_set_hw_addr(priv, dev->dev_addr);
  2962. if (priv->internal_phy) {
  2963. reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
  2964. reg |= EXT_ENERGY_DET_MASK;
  2965. bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
  2966. }
  2967. if (priv->wolopts)
  2968. bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
  2969. /* Disable RX/TX DMA and flush TX queues */
  2970. dma_ctrl = bcmgenet_dma_disable(priv);
  2971. /* Reinitialize TDMA and RDMA and SW housekeeping */
  2972. ret = bcmgenet_init_dma(priv);
  2973. if (ret) {
  2974. netdev_err(dev, "failed to initialize DMA\n");
  2975. goto out_clk_disable;
  2976. }
  2977. /* Always enable ring 16 - descriptor ring */
  2978. bcmgenet_enable_dma(priv, dma_ctrl);
  2979. netif_device_attach(dev);
  2980. if (!device_may_wakeup(d))
  2981. phy_resume(priv->phydev);
  2982. if (priv->eee.eee_enabled)
  2983. bcmgenet_eee_enable_set(dev, true);
  2984. bcmgenet_netif_start(dev);
  2985. return 0;
  2986. out_clk_disable:
  2987. if (priv->internal_phy)
  2988. bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
  2989. clk_disable_unprepare(priv->clk);
  2990. return ret;
  2991. }
  2992. #endif /* CONFIG_PM_SLEEP */
  2993. static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
  2994. static struct platform_driver bcmgenet_driver = {
  2995. .probe = bcmgenet_probe,
  2996. .remove = bcmgenet_remove,
  2997. .driver = {
  2998. .name = "bcmgenet",
  2999. .of_match_table = bcmgenet_match,
  3000. .pm = &bcmgenet_pm_ops,
  3001. },
  3002. };
  3003. module_platform_driver(bcmgenet_driver);
  3004. MODULE_AUTHOR("Broadcom Corporation");
  3005. MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
  3006. MODULE_ALIAS("platform:bcmgenet");
  3007. MODULE_LICENSE("GPL");