macmace.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789
  1. /*
  2. * Driver for the Macintosh 68K onboard MACE controller with PSC
  3. * driven DMA. The MACE driver code is derived from mace.c. The
  4. * Mac68k theory of operation is courtesy of the MacBSD wizards.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. *
  11. * Copyright (C) 1996 Paul Mackerras.
  12. * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
  13. *
  14. * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
  15. *
  16. * Copyright (C) 2007 Finn Thain
  17. *
  18. * Converted to DMA API, converted to unified driver model,
  19. * sync'd some routines with mace.c and fixed various bugs.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/string.h>
  27. #include <linux/crc32.h>
  28. #include <linux/bitrev.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/gfp.h>
  32. #include <linux/interrupt.h>
  33. #include <asm/io.h>
  34. #include <asm/macints.h>
  35. #include <asm/mac_psc.h>
  36. #include <asm/page.h>
  37. #include "mace.h"
  38. static char mac_mace_string[] = "macmace";
  39. #define N_TX_BUFF_ORDER 0
  40. #define N_TX_RING (1 << N_TX_BUFF_ORDER)
  41. #define N_RX_BUFF_ORDER 3
  42. #define N_RX_RING (1 << N_RX_BUFF_ORDER)
  43. #define TX_TIMEOUT HZ
  44. #define MACE_BUFF_SIZE 0x800
  45. /* Chip rev needs workaround on HW & multicast addr change */
  46. #define BROKEN_ADDRCHG_REV 0x0941
  47. /* The MACE is simply wired down on a Mac68K box */
  48. #define MACE_BASE (void *)(0x50F1C000)
  49. #define MACE_PROM (void *)(0x50F08001)
  50. struct mace_data {
  51. volatile struct mace *mace;
  52. unsigned char *tx_ring;
  53. dma_addr_t tx_ring_phys;
  54. unsigned char *rx_ring;
  55. dma_addr_t rx_ring_phys;
  56. int dma_intr;
  57. int rx_slot, rx_tail;
  58. int tx_slot, tx_sloti, tx_count;
  59. int chipid;
  60. struct device *device;
  61. };
  62. struct mace_frame {
  63. u8 rcvcnt;
  64. u8 pad1;
  65. u8 rcvsts;
  66. u8 pad2;
  67. u8 rntpc;
  68. u8 pad3;
  69. u8 rcvcc;
  70. u8 pad4;
  71. u32 pad5;
  72. u32 pad6;
  73. u8 data[1];
  74. /* And frame continues.. */
  75. };
  76. #define PRIV_BYTES sizeof(struct mace_data)
  77. static int mace_open(struct net_device *dev);
  78. static int mace_close(struct net_device *dev);
  79. static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
  80. static void mace_set_multicast(struct net_device *dev);
  81. static int mace_set_address(struct net_device *dev, void *addr);
  82. static void mace_reset(struct net_device *dev);
  83. static irqreturn_t mace_interrupt(int irq, void *dev_id);
  84. static irqreturn_t mace_dma_intr(int irq, void *dev_id);
  85. static void mace_tx_timeout(struct net_device *dev);
  86. static void __mace_set_address(struct net_device *dev, void *addr);
  87. /*
  88. * Load a receive DMA channel with a base address and ring length
  89. */
  90. static void mace_load_rxdma_base(struct net_device *dev, int set)
  91. {
  92. struct mace_data *mp = netdev_priv(dev);
  93. psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
  94. psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
  95. psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
  96. psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
  97. mp->rx_tail = 0;
  98. }
  99. /*
  100. * Reset the receive DMA subsystem
  101. */
  102. static void mace_rxdma_reset(struct net_device *dev)
  103. {
  104. struct mace_data *mp = netdev_priv(dev);
  105. volatile struct mace *mace = mp->mace;
  106. u8 maccc = mace->maccc;
  107. mace->maccc = maccc & ~ENRCV;
  108. psc_write_word(PSC_ENETRD_CTL, 0x8800);
  109. mace_load_rxdma_base(dev, 0x00);
  110. psc_write_word(PSC_ENETRD_CTL, 0x0400);
  111. psc_write_word(PSC_ENETRD_CTL, 0x8800);
  112. mace_load_rxdma_base(dev, 0x10);
  113. psc_write_word(PSC_ENETRD_CTL, 0x0400);
  114. mace->maccc = maccc;
  115. mp->rx_slot = 0;
  116. psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
  117. psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
  118. }
  119. /*
  120. * Reset the transmit DMA subsystem
  121. */
  122. static void mace_txdma_reset(struct net_device *dev)
  123. {
  124. struct mace_data *mp = netdev_priv(dev);
  125. volatile struct mace *mace = mp->mace;
  126. u8 maccc;
  127. psc_write_word(PSC_ENETWR_CTL, 0x8800);
  128. maccc = mace->maccc;
  129. mace->maccc = maccc & ~ENXMT;
  130. mp->tx_slot = mp->tx_sloti = 0;
  131. mp->tx_count = N_TX_RING;
  132. psc_write_word(PSC_ENETWR_CTL, 0x0400);
  133. mace->maccc = maccc;
  134. }
  135. /*
  136. * Disable DMA
  137. */
  138. static void mace_dma_off(struct net_device *dev)
  139. {
  140. psc_write_word(PSC_ENETRD_CTL, 0x8800);
  141. psc_write_word(PSC_ENETRD_CTL, 0x1000);
  142. psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
  143. psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
  144. psc_write_word(PSC_ENETWR_CTL, 0x8800);
  145. psc_write_word(PSC_ENETWR_CTL, 0x1000);
  146. psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
  147. psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
  148. }
  149. static const struct net_device_ops mace_netdev_ops = {
  150. .ndo_open = mace_open,
  151. .ndo_stop = mace_close,
  152. .ndo_start_xmit = mace_xmit_start,
  153. .ndo_tx_timeout = mace_tx_timeout,
  154. .ndo_set_rx_mode = mace_set_multicast,
  155. .ndo_set_mac_address = mace_set_address,
  156. .ndo_change_mtu = eth_change_mtu,
  157. .ndo_validate_addr = eth_validate_addr,
  158. };
  159. /*
  160. * Not really much of a probe. The hardware table tells us if this
  161. * model of Macintrash has a MACE (AV macintoshes)
  162. */
  163. static int mace_probe(struct platform_device *pdev)
  164. {
  165. int j;
  166. struct mace_data *mp;
  167. unsigned char *addr;
  168. struct net_device *dev;
  169. unsigned char checksum = 0;
  170. int err;
  171. dev = alloc_etherdev(PRIV_BYTES);
  172. if (!dev)
  173. return -ENOMEM;
  174. mp = netdev_priv(dev);
  175. mp->device = &pdev->dev;
  176. platform_set_drvdata(pdev, dev);
  177. SET_NETDEV_DEV(dev, &pdev->dev);
  178. dev->base_addr = (u32)MACE_BASE;
  179. mp->mace = MACE_BASE;
  180. dev->irq = IRQ_MAC_MACE;
  181. mp->dma_intr = IRQ_MAC_MACE_DMA;
  182. mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
  183. /*
  184. * The PROM contains 8 bytes which total 0xFF when XOR'd
  185. * together. Due to the usual peculiar apple brain damage
  186. * the bytes are spaced out in a strange boundary and the
  187. * bits are reversed.
  188. */
  189. addr = MACE_PROM;
  190. for (j = 0; j < 6; ++j) {
  191. u8 v = bitrev8(addr[j<<4]);
  192. checksum ^= v;
  193. dev->dev_addr[j] = v;
  194. }
  195. for (; j < 8; ++j) {
  196. checksum ^= bitrev8(addr[j<<4]);
  197. }
  198. if (checksum != 0xFF) {
  199. free_netdev(dev);
  200. return -ENODEV;
  201. }
  202. dev->netdev_ops = &mace_netdev_ops;
  203. dev->watchdog_timeo = TX_TIMEOUT;
  204. printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
  205. dev->name, dev->dev_addr);
  206. err = register_netdev(dev);
  207. if (!err)
  208. return 0;
  209. free_netdev(dev);
  210. return err;
  211. }
  212. /*
  213. * Reset the chip.
  214. */
  215. static void mace_reset(struct net_device *dev)
  216. {
  217. struct mace_data *mp = netdev_priv(dev);
  218. volatile struct mace *mb = mp->mace;
  219. int i;
  220. /* soft-reset the chip */
  221. i = 200;
  222. while (--i) {
  223. mb->biucc = SWRST;
  224. if (mb->biucc & SWRST) {
  225. udelay(10);
  226. continue;
  227. }
  228. break;
  229. }
  230. if (!i) {
  231. printk(KERN_ERR "macmace: cannot reset chip!\n");
  232. return;
  233. }
  234. mb->maccc = 0; /* turn off tx, rx */
  235. mb->imr = 0xFF; /* disable all intrs for now */
  236. i = mb->ir;
  237. mb->biucc = XMTSP_64;
  238. mb->utr = RTRD;
  239. mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
  240. mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
  241. mb->rcvfc = 0;
  242. /* load up the hardware address */
  243. __mace_set_address(dev, dev->dev_addr);
  244. /* clear the multicast filter */
  245. if (mp->chipid == BROKEN_ADDRCHG_REV)
  246. mb->iac = LOGADDR;
  247. else {
  248. mb->iac = ADDRCHG | LOGADDR;
  249. while ((mb->iac & ADDRCHG) != 0)
  250. ;
  251. }
  252. for (i = 0; i < 8; ++i)
  253. mb->ladrf = 0;
  254. /* done changing address */
  255. if (mp->chipid != BROKEN_ADDRCHG_REV)
  256. mb->iac = 0;
  257. mb->plscc = PORTSEL_AUI;
  258. }
  259. /*
  260. * Load the address on a mace controller.
  261. */
  262. static void __mace_set_address(struct net_device *dev, void *addr)
  263. {
  264. struct mace_data *mp = netdev_priv(dev);
  265. volatile struct mace *mb = mp->mace;
  266. unsigned char *p = addr;
  267. int i;
  268. /* load up the hardware address */
  269. if (mp->chipid == BROKEN_ADDRCHG_REV)
  270. mb->iac = PHYADDR;
  271. else {
  272. mb->iac = ADDRCHG | PHYADDR;
  273. while ((mb->iac & ADDRCHG) != 0)
  274. ;
  275. }
  276. for (i = 0; i < 6; ++i)
  277. mb->padr = dev->dev_addr[i] = p[i];
  278. if (mp->chipid != BROKEN_ADDRCHG_REV)
  279. mb->iac = 0;
  280. }
  281. static int mace_set_address(struct net_device *dev, void *addr)
  282. {
  283. struct mace_data *mp = netdev_priv(dev);
  284. volatile struct mace *mb = mp->mace;
  285. unsigned long flags;
  286. u8 maccc;
  287. local_irq_save(flags);
  288. maccc = mb->maccc;
  289. __mace_set_address(dev, addr);
  290. mb->maccc = maccc;
  291. local_irq_restore(flags);
  292. return 0;
  293. }
  294. /*
  295. * Open the Macintosh MACE. Most of this is playing with the DMA
  296. * engine. The ethernet chip is quite friendly.
  297. */
  298. static int mace_open(struct net_device *dev)
  299. {
  300. struct mace_data *mp = netdev_priv(dev);
  301. volatile struct mace *mb = mp->mace;
  302. /* reset the chip */
  303. mace_reset(dev);
  304. if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
  305. printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
  306. return -EAGAIN;
  307. }
  308. if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
  309. printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
  310. free_irq(dev->irq, dev);
  311. return -EAGAIN;
  312. }
  313. /* Allocate the DMA ring buffers */
  314. mp->tx_ring = dma_alloc_coherent(mp->device,
  315. N_TX_RING * MACE_BUFF_SIZE,
  316. &mp->tx_ring_phys, GFP_KERNEL);
  317. if (mp->tx_ring == NULL)
  318. goto out1;
  319. mp->rx_ring = dma_alloc_coherent(mp->device,
  320. N_RX_RING * MACE_BUFF_SIZE,
  321. &mp->rx_ring_phys, GFP_KERNEL);
  322. if (mp->rx_ring == NULL)
  323. goto out2;
  324. mace_dma_off(dev);
  325. /* Not sure what these do */
  326. psc_write_word(PSC_ENETWR_CTL, 0x9000);
  327. psc_write_word(PSC_ENETRD_CTL, 0x9000);
  328. psc_write_word(PSC_ENETWR_CTL, 0x0400);
  329. psc_write_word(PSC_ENETRD_CTL, 0x0400);
  330. mace_rxdma_reset(dev);
  331. mace_txdma_reset(dev);
  332. /* turn it on! */
  333. mb->maccc = ENXMT | ENRCV;
  334. /* enable all interrupts except receive interrupts */
  335. mb->imr = RCVINT;
  336. return 0;
  337. out2:
  338. dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
  339. mp->tx_ring, mp->tx_ring_phys);
  340. out1:
  341. free_irq(dev->irq, dev);
  342. free_irq(mp->dma_intr, dev);
  343. return -ENOMEM;
  344. }
  345. /*
  346. * Shut down the mace and its interrupt channel
  347. */
  348. static int mace_close(struct net_device *dev)
  349. {
  350. struct mace_data *mp = netdev_priv(dev);
  351. volatile struct mace *mb = mp->mace;
  352. mb->maccc = 0; /* disable rx and tx */
  353. mb->imr = 0xFF; /* disable all irqs */
  354. mace_dma_off(dev); /* disable rx and tx dma */
  355. return 0;
  356. }
  357. /*
  358. * Transmit a frame
  359. */
  360. static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
  361. {
  362. struct mace_data *mp = netdev_priv(dev);
  363. unsigned long flags;
  364. /* Stop the queue since there's only the one buffer */
  365. local_irq_save(flags);
  366. netif_stop_queue(dev);
  367. if (!mp->tx_count) {
  368. printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
  369. local_irq_restore(flags);
  370. return NETDEV_TX_BUSY;
  371. }
  372. mp->tx_count--;
  373. local_irq_restore(flags);
  374. dev->stats.tx_packets++;
  375. dev->stats.tx_bytes += skb->len;
  376. /* We need to copy into our xmit buffer to take care of alignment and caching issues */
  377. skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
  378. /* load the Tx DMA and fire it off */
  379. psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
  380. psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
  381. psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
  382. mp->tx_slot ^= 0x10;
  383. dev_kfree_skb(skb);
  384. return NETDEV_TX_OK;
  385. }
  386. static void mace_set_multicast(struct net_device *dev)
  387. {
  388. struct mace_data *mp = netdev_priv(dev);
  389. volatile struct mace *mb = mp->mace;
  390. int i;
  391. u32 crc;
  392. u8 maccc;
  393. unsigned long flags;
  394. local_irq_save(flags);
  395. maccc = mb->maccc;
  396. mb->maccc &= ~PROM;
  397. if (dev->flags & IFF_PROMISC) {
  398. mb->maccc |= PROM;
  399. } else {
  400. unsigned char multicast_filter[8];
  401. struct netdev_hw_addr *ha;
  402. if (dev->flags & IFF_ALLMULTI) {
  403. for (i = 0; i < 8; i++) {
  404. multicast_filter[i] = 0xFF;
  405. }
  406. } else {
  407. for (i = 0; i < 8; i++)
  408. multicast_filter[i] = 0;
  409. netdev_for_each_mc_addr(ha, dev) {
  410. crc = ether_crc_le(6, ha->addr);
  411. /* bit number in multicast_filter */
  412. i = crc >> 26;
  413. multicast_filter[i >> 3] |= 1 << (i & 7);
  414. }
  415. }
  416. if (mp->chipid == BROKEN_ADDRCHG_REV)
  417. mb->iac = LOGADDR;
  418. else {
  419. mb->iac = ADDRCHG | LOGADDR;
  420. while ((mb->iac & ADDRCHG) != 0)
  421. ;
  422. }
  423. for (i = 0; i < 8; ++i)
  424. mb->ladrf = multicast_filter[i];
  425. if (mp->chipid != BROKEN_ADDRCHG_REV)
  426. mb->iac = 0;
  427. }
  428. mb->maccc = maccc;
  429. local_irq_restore(flags);
  430. }
  431. static void mace_handle_misc_intrs(struct net_device *dev, int intr)
  432. {
  433. struct mace_data *mp = netdev_priv(dev);
  434. volatile struct mace *mb = mp->mace;
  435. static int mace_babbles, mace_jabbers;
  436. if (intr & MPCO)
  437. dev->stats.rx_missed_errors += 256;
  438. dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
  439. if (intr & RNTPCO)
  440. dev->stats.rx_length_errors += 256;
  441. dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
  442. if (intr & CERR)
  443. ++dev->stats.tx_heartbeat_errors;
  444. if (intr & BABBLE)
  445. if (mace_babbles++ < 4)
  446. printk(KERN_DEBUG "macmace: babbling transmitter\n");
  447. if (intr & JABBER)
  448. if (mace_jabbers++ < 4)
  449. printk(KERN_DEBUG "macmace: jabbering transceiver\n");
  450. }
  451. static irqreturn_t mace_interrupt(int irq, void *dev_id)
  452. {
  453. struct net_device *dev = (struct net_device *) dev_id;
  454. struct mace_data *mp = netdev_priv(dev);
  455. volatile struct mace *mb = mp->mace;
  456. int intr, fs;
  457. unsigned long flags;
  458. /* don't want the dma interrupt handler to fire */
  459. local_irq_save(flags);
  460. intr = mb->ir; /* read interrupt register */
  461. mace_handle_misc_intrs(dev, intr);
  462. if (intr & XMTINT) {
  463. fs = mb->xmtfs;
  464. if ((fs & XMTSV) == 0) {
  465. printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
  466. mace_reset(dev);
  467. /*
  468. * XXX mace likes to hang the machine after a xmtfs error.
  469. * This is hard to reproduce, resetting *may* help
  470. */
  471. }
  472. /* dma should have finished */
  473. if (!mp->tx_count) {
  474. printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
  475. }
  476. /* Update stats */
  477. if (fs & (UFLO|LCOL|LCAR|RTRY)) {
  478. ++dev->stats.tx_errors;
  479. if (fs & LCAR)
  480. ++dev->stats.tx_carrier_errors;
  481. else if (fs & (UFLO|LCOL|RTRY)) {
  482. ++dev->stats.tx_aborted_errors;
  483. if (mb->xmtfs & UFLO) {
  484. printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
  485. dev->stats.tx_fifo_errors++;
  486. mace_txdma_reset(dev);
  487. }
  488. }
  489. }
  490. }
  491. if (mp->tx_count)
  492. netif_wake_queue(dev);
  493. local_irq_restore(flags);
  494. return IRQ_HANDLED;
  495. }
  496. static void mace_tx_timeout(struct net_device *dev)
  497. {
  498. struct mace_data *mp = netdev_priv(dev);
  499. volatile struct mace *mb = mp->mace;
  500. unsigned long flags;
  501. local_irq_save(flags);
  502. /* turn off both tx and rx and reset the chip */
  503. mb->maccc = 0;
  504. printk(KERN_ERR "macmace: transmit timeout - resetting\n");
  505. mace_txdma_reset(dev);
  506. mace_reset(dev);
  507. /* restart rx dma */
  508. mace_rxdma_reset(dev);
  509. mp->tx_count = N_TX_RING;
  510. netif_wake_queue(dev);
  511. /* turn it on! */
  512. mb->maccc = ENXMT | ENRCV;
  513. /* enable all interrupts except receive interrupts */
  514. mb->imr = RCVINT;
  515. local_irq_restore(flags);
  516. }
  517. /*
  518. * Handle a newly arrived frame
  519. */
  520. static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
  521. {
  522. struct sk_buff *skb;
  523. unsigned int frame_status = mf->rcvsts;
  524. if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
  525. dev->stats.rx_errors++;
  526. if (frame_status & RS_OFLO) {
  527. printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
  528. dev->stats.rx_fifo_errors++;
  529. }
  530. if (frame_status & RS_CLSN)
  531. dev->stats.collisions++;
  532. if (frame_status & RS_FRAMERR)
  533. dev->stats.rx_frame_errors++;
  534. if (frame_status & RS_FCSERR)
  535. dev->stats.rx_crc_errors++;
  536. } else {
  537. unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
  538. skb = netdev_alloc_skb(dev, frame_length + 2);
  539. if (!skb) {
  540. dev->stats.rx_dropped++;
  541. return;
  542. }
  543. skb_reserve(skb, 2);
  544. memcpy(skb_put(skb, frame_length), mf->data, frame_length);
  545. skb->protocol = eth_type_trans(skb, dev);
  546. netif_rx(skb);
  547. dev->stats.rx_packets++;
  548. dev->stats.rx_bytes += frame_length;
  549. }
  550. }
  551. /*
  552. * The PSC has passed us a DMA interrupt event.
  553. */
  554. static irqreturn_t mace_dma_intr(int irq, void *dev_id)
  555. {
  556. struct net_device *dev = (struct net_device *) dev_id;
  557. struct mace_data *mp = netdev_priv(dev);
  558. int left, head;
  559. u16 status;
  560. u32 baka;
  561. /* Not sure what this does */
  562. while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
  563. if (!(baka & 0x60000000)) return IRQ_NONE;
  564. /*
  565. * Process the read queue
  566. */
  567. status = psc_read_word(PSC_ENETRD_CTL);
  568. if (status & 0x2000) {
  569. mace_rxdma_reset(dev);
  570. } else if (status & 0x0100) {
  571. psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
  572. left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
  573. head = N_RX_RING - left;
  574. /* Loop through the ring buffer and process new packages */
  575. while (mp->rx_tail < head) {
  576. mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
  577. + (mp->rx_tail * MACE_BUFF_SIZE)));
  578. mp->rx_tail++;
  579. }
  580. /* If we're out of buffers in this ring then switch to */
  581. /* the other set, otherwise just reactivate this one. */
  582. if (!left) {
  583. mace_load_rxdma_base(dev, mp->rx_slot);
  584. mp->rx_slot ^= 0x10;
  585. } else {
  586. psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
  587. }
  588. }
  589. /*
  590. * Process the write queue
  591. */
  592. status = psc_read_word(PSC_ENETWR_CTL);
  593. if (status & 0x2000) {
  594. mace_txdma_reset(dev);
  595. } else if (status & 0x0100) {
  596. psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
  597. mp->tx_sloti ^= 0x10;
  598. mp->tx_count++;
  599. }
  600. return IRQ_HANDLED;
  601. }
  602. MODULE_LICENSE("GPL");
  603. MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
  604. MODULE_ALIAS("platform:macmace");
  605. static int mac_mace_device_remove(struct platform_device *pdev)
  606. {
  607. struct net_device *dev = platform_get_drvdata(pdev);
  608. struct mace_data *mp = netdev_priv(dev);
  609. unregister_netdev(dev);
  610. free_irq(dev->irq, dev);
  611. free_irq(IRQ_MAC_MACE_DMA, dev);
  612. dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
  613. mp->rx_ring, mp->rx_ring_phys);
  614. dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
  615. mp->tx_ring, mp->tx_ring_phys);
  616. free_netdev(dev);
  617. return 0;
  618. }
  619. static struct platform_driver mac_mace_driver = {
  620. .probe = mace_probe,
  621. .remove = mac_mace_device_remove,
  622. .driver = {
  623. .name = mac_mace_string,
  624. },
  625. };
  626. static int __init mac_mace_init_module(void)
  627. {
  628. if (!MACH_IS_MAC)
  629. return -ENODEV;
  630. return platform_driver_register(&mac_mace_driver);
  631. }
  632. static void __exit mac_mace_cleanup_module(void)
  633. {
  634. platform_driver_unregister(&mac_mace_driver);
  635. }
  636. module_init(mac_mace_init_module);
  637. module_exit(mac_mace_cleanup_module);