core.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. /*P:400
  2. * This contains run_guest() which actually calls into the Host<->Guest
  3. * Switcher and analyzes the return, such as determining if the Guest wants the
  4. * Host to do something. This file also contains useful helper routines.
  5. :*/
  6. #include <linux/module.h>
  7. #include <linux/stringify.h>
  8. #include <linux/stddef.h>
  9. #include <linux/io.h>
  10. #include <linux/mm.h>
  11. #include <linux/vmalloc.h>
  12. #include <linux/cpu.h>
  13. #include <linux/freezer.h>
  14. #include <linux/highmem.h>
  15. #include <linux/slab.h>
  16. #include <asm/paravirt.h>
  17. #include <asm/pgtable.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/poll.h>
  20. #include <asm/asm-offsets.h>
  21. #include "lg.h"
  22. unsigned long switcher_addr;
  23. struct page **lg_switcher_pages;
  24. static struct vm_struct *switcher_text_vma;
  25. static struct vm_struct *switcher_stacks_vma;
  26. /* This One Big lock protects all inter-guest data structures. */
  27. DEFINE_MUTEX(lguest_lock);
  28. /*H:010
  29. * We need to set up the Switcher at a high virtual address. Remember the
  30. * Switcher is a few hundred bytes of assembler code which actually changes the
  31. * CPU to run the Guest, and then changes back to the Host when a trap or
  32. * interrupt happens.
  33. *
  34. * The Switcher code must be at the same virtual address in the Guest as the
  35. * Host since it will be running as the switchover occurs.
  36. *
  37. * Trying to map memory at a particular address is an unusual thing to do, so
  38. * it's not a simple one-liner.
  39. */
  40. static __init int map_switcher(void)
  41. {
  42. int i, err;
  43. /*
  44. * Map the Switcher in to high memory.
  45. *
  46. * It turns out that if we choose the address 0xFFC00000 (4MB under the
  47. * top virtual address), it makes setting up the page tables really
  48. * easy.
  49. */
  50. /* We assume Switcher text fits into a single page. */
  51. if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
  52. printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
  53. end_switcher_text - start_switcher_text);
  54. return -EINVAL;
  55. }
  56. /*
  57. * We allocate an array of struct page pointers. map_vm_area() wants
  58. * this, rather than just an array of pages.
  59. */
  60. lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
  61. * TOTAL_SWITCHER_PAGES,
  62. GFP_KERNEL);
  63. if (!lg_switcher_pages) {
  64. err = -ENOMEM;
  65. goto out;
  66. }
  67. /*
  68. * Now we actually allocate the pages. The Guest will see these pages,
  69. * so we make sure they're zeroed.
  70. */
  71. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
  72. lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
  73. if (!lg_switcher_pages[i]) {
  74. err = -ENOMEM;
  75. goto free_some_pages;
  76. }
  77. }
  78. /*
  79. * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
  80. * It goes in the first page, which we map in momentarily.
  81. */
  82. memcpy(kmap(lg_switcher_pages[0]), start_switcher_text,
  83. end_switcher_text - start_switcher_text);
  84. kunmap(lg_switcher_pages[0]);
  85. /*
  86. * We place the Switcher underneath the fixmap area, which is the
  87. * highest virtual address we can get. This is important, since we
  88. * tell the Guest it can't access this memory, so we want its ceiling
  89. * as high as possible.
  90. */
  91. switcher_addr = FIXADDR_START - TOTAL_SWITCHER_PAGES*PAGE_SIZE;
  92. /*
  93. * Now we reserve the "virtual memory area"s we want. We might
  94. * not get them in theory, but in practice it's worked so far.
  95. *
  96. * We want the switcher text to be read-only and executable, and
  97. * the stacks to be read-write and non-executable.
  98. */
  99. switcher_text_vma = __get_vm_area(PAGE_SIZE, VM_ALLOC|VM_NO_GUARD,
  100. switcher_addr,
  101. switcher_addr + PAGE_SIZE);
  102. if (!switcher_text_vma) {
  103. err = -ENOMEM;
  104. printk("lguest: could not map switcher pages high\n");
  105. goto free_pages;
  106. }
  107. switcher_stacks_vma = __get_vm_area(SWITCHER_STACK_PAGES * PAGE_SIZE,
  108. VM_ALLOC|VM_NO_GUARD,
  109. switcher_addr + PAGE_SIZE,
  110. switcher_addr + TOTAL_SWITCHER_PAGES * PAGE_SIZE);
  111. if (!switcher_stacks_vma) {
  112. err = -ENOMEM;
  113. printk("lguest: could not map switcher pages high\n");
  114. goto free_text_vma;
  115. }
  116. /*
  117. * This code actually sets up the pages we've allocated to appear at
  118. * switcher_addr. map_vm_area() takes the vma we allocated above, the
  119. * kind of pages we're mapping (kernel text pages and kernel writable
  120. * pages respectively), and a pointer to our array of struct pages.
  121. */
  122. err = map_vm_area(switcher_text_vma, PAGE_KERNEL_RX, lg_switcher_pages);
  123. if (err) {
  124. printk("lguest: text map_vm_area failed: %i\n", err);
  125. goto free_vmas;
  126. }
  127. err = map_vm_area(switcher_stacks_vma, PAGE_KERNEL,
  128. lg_switcher_pages + SWITCHER_TEXT_PAGES);
  129. if (err) {
  130. printk("lguest: stacks map_vm_area failed: %i\n", err);
  131. goto free_vmas;
  132. }
  133. /*
  134. * Now the Switcher is mapped at the right address, we can't fail!
  135. */
  136. printk(KERN_INFO "lguest: mapped switcher at %p\n",
  137. switcher_text_vma->addr);
  138. /* And we succeeded... */
  139. return 0;
  140. free_vmas:
  141. /* Undoes map_vm_area and __get_vm_area */
  142. vunmap(switcher_stacks_vma->addr);
  143. free_text_vma:
  144. vunmap(switcher_text_vma->addr);
  145. free_pages:
  146. i = TOTAL_SWITCHER_PAGES;
  147. free_some_pages:
  148. for (--i; i >= 0; i--)
  149. __free_pages(lg_switcher_pages[i], 0);
  150. kfree(lg_switcher_pages);
  151. out:
  152. return err;
  153. }
  154. /*:*/
  155. /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
  156. static void unmap_switcher(void)
  157. {
  158. unsigned int i;
  159. /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
  160. vunmap(switcher_text_vma->addr);
  161. vunmap(switcher_stacks_vma->addr);
  162. /* Now we just need to free the pages we copied the switcher into */
  163. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
  164. __free_pages(lg_switcher_pages[i], 0);
  165. kfree(lg_switcher_pages);
  166. }
  167. /*H:032
  168. * Dealing With Guest Memory.
  169. *
  170. * Before we go too much further into the Host, we need to grok the routines
  171. * we use to deal with Guest memory.
  172. *
  173. * When the Guest gives us (what it thinks is) a physical address, we can use
  174. * the normal copy_from_user() & copy_to_user() on the corresponding place in
  175. * the memory region allocated by the Launcher.
  176. *
  177. * But we can't trust the Guest: it might be trying to access the Launcher
  178. * code. We have to check that the range is below the pfn_limit the Launcher
  179. * gave us. We have to make sure that addr + len doesn't give us a false
  180. * positive by overflowing, too.
  181. */
  182. bool lguest_address_ok(const struct lguest *lg,
  183. unsigned long addr, unsigned long len)
  184. {
  185. return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
  186. }
  187. /*
  188. * This routine copies memory from the Guest. Here we can see how useful the
  189. * kill_lguest() routine we met in the Launcher can be: we return a random
  190. * value (all zeroes) instead of needing to return an error.
  191. */
  192. void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
  193. {
  194. if (!lguest_address_ok(cpu->lg, addr, bytes)
  195. || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
  196. /* copy_from_user should do this, but as we rely on it... */
  197. memset(b, 0, bytes);
  198. kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
  199. }
  200. }
  201. /* This is the write (copy into Guest) version. */
  202. void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
  203. unsigned bytes)
  204. {
  205. if (!lguest_address_ok(cpu->lg, addr, bytes)
  206. || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
  207. kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
  208. }
  209. /*:*/
  210. /*H:030
  211. * Let's jump straight to the the main loop which runs the Guest.
  212. * Remember, this is called by the Launcher reading /dev/lguest, and we keep
  213. * going around and around until something interesting happens.
  214. */
  215. int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
  216. {
  217. /* If the launcher asked for a register with LHREQ_GETREG */
  218. if (cpu->reg_read) {
  219. if (put_user(*cpu->reg_read, user))
  220. return -EFAULT;
  221. cpu->reg_read = NULL;
  222. return sizeof(*cpu->reg_read);
  223. }
  224. /* We stop running once the Guest is dead. */
  225. while (!cpu->lg->dead) {
  226. unsigned int irq;
  227. bool more;
  228. /* First we run any hypercalls the Guest wants done. */
  229. if (cpu->hcall)
  230. do_hypercalls(cpu);
  231. /* Do we have to tell the Launcher about a trap? */
  232. if (cpu->pending.trap) {
  233. if (copy_to_user(user, &cpu->pending,
  234. sizeof(cpu->pending)))
  235. return -EFAULT;
  236. return sizeof(cpu->pending);
  237. }
  238. /*
  239. * All long-lived kernel loops need to check with this horrible
  240. * thing called the freezer. If the Host is trying to suspend,
  241. * it stops us.
  242. */
  243. try_to_freeze();
  244. /* Check for signals */
  245. if (signal_pending(current))
  246. return -ERESTARTSYS;
  247. /*
  248. * Check if there are any interrupts which can be delivered now:
  249. * if so, this sets up the hander to be executed when we next
  250. * run the Guest.
  251. */
  252. irq = interrupt_pending(cpu, &more);
  253. if (irq < LGUEST_IRQS)
  254. try_deliver_interrupt(cpu, irq, more);
  255. /*
  256. * Just make absolutely sure the Guest is still alive. One of
  257. * those hypercalls could have been fatal, for example.
  258. */
  259. if (cpu->lg->dead)
  260. break;
  261. /*
  262. * If the Guest asked to be stopped, we sleep. The Guest's
  263. * clock timer will wake us.
  264. */
  265. if (cpu->halted) {
  266. set_current_state(TASK_INTERRUPTIBLE);
  267. /*
  268. * Just before we sleep, make sure no interrupt snuck in
  269. * which we should be doing.
  270. */
  271. if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
  272. set_current_state(TASK_RUNNING);
  273. else
  274. schedule();
  275. continue;
  276. }
  277. /*
  278. * OK, now we're ready to jump into the Guest. First we put up
  279. * the "Do Not Disturb" sign:
  280. */
  281. local_irq_disable();
  282. /* Actually run the Guest until something happens. */
  283. lguest_arch_run_guest(cpu);
  284. /* Now we're ready to be interrupted or moved to other CPUs */
  285. local_irq_enable();
  286. /* Now we deal with whatever happened to the Guest. */
  287. lguest_arch_handle_trap(cpu);
  288. }
  289. /* Special case: Guest is 'dead' but wants a reboot. */
  290. if (cpu->lg->dead == ERR_PTR(-ERESTART))
  291. return -ERESTART;
  292. /* The Guest is dead => "No such file or directory" */
  293. return -ENOENT;
  294. }
  295. /*H:000
  296. * Welcome to the Host!
  297. *
  298. * By this point your brain has been tickled by the Guest code and numbed by
  299. * the Launcher code; prepare for it to be stretched by the Host code. This is
  300. * the heart. Let's begin at the initialization routine for the Host's lg
  301. * module.
  302. */
  303. static int __init init(void)
  304. {
  305. int err;
  306. /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
  307. if (get_kernel_rpl() != 0) {
  308. printk("lguest is afraid of being a guest\n");
  309. return -EPERM;
  310. }
  311. /* First we put the Switcher up in very high virtual memory. */
  312. err = map_switcher();
  313. if (err)
  314. goto out;
  315. /* We might need to reserve an interrupt vector. */
  316. err = init_interrupts();
  317. if (err)
  318. goto unmap;
  319. /* /dev/lguest needs to be registered. */
  320. err = lguest_device_init();
  321. if (err)
  322. goto free_interrupts;
  323. /* Finally we do some architecture-specific setup. */
  324. lguest_arch_host_init();
  325. /* All good! */
  326. return 0;
  327. free_interrupts:
  328. free_interrupts();
  329. unmap:
  330. unmap_switcher();
  331. out:
  332. return err;
  333. }
  334. /* Cleaning up is just the same code, backwards. With a little French. */
  335. static void __exit fini(void)
  336. {
  337. lguest_device_remove();
  338. free_interrupts();
  339. unmap_switcher();
  340. lguest_arch_host_fini();
  341. }
  342. /*:*/
  343. /*
  344. * The Host side of lguest can be a module. This is a nice way for people to
  345. * play with it.
  346. */
  347. module_init(init);
  348. module_exit(fini);
  349. MODULE_LICENSE("GPL");
  350. MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");