amd_iommu.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <jroedel@suse.de>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/acpi.h>
  22. #include <linux/amba/bus.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/pci-ats.h>
  25. #include <linux/bitmap.h>
  26. #include <linux/slab.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/iommu-helper.h>
  31. #include <linux/iommu.h>
  32. #include <linux/delay.h>
  33. #include <linux/amd-iommu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/export.h>
  36. #include <linux/irq.h>
  37. #include <linux/msi.h>
  38. #include <linux/dma-contiguous.h>
  39. #include <linux/irqdomain.h>
  40. #include <linux/percpu.h>
  41. #include <linux/iova.h>
  42. #include <asm/irq_remapping.h>
  43. #include <asm/io_apic.h>
  44. #include <asm/apic.h>
  45. #include <asm/hw_irq.h>
  46. #include <asm/msidef.h>
  47. #include <asm/proto.h>
  48. #include <asm/iommu.h>
  49. #include <asm/gart.h>
  50. #include <asm/dma.h>
  51. #include "amd_iommu_proto.h"
  52. #include "amd_iommu_types.h"
  53. #include "irq_remapping.h"
  54. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  55. #define LOOP_TIMEOUT 100000
  56. /* IO virtual address start page frame number */
  57. #define IOVA_START_PFN (1)
  58. #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
  59. #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
  60. /* Reserved IOVA ranges */
  61. #define MSI_RANGE_START (0xfee00000)
  62. #define MSI_RANGE_END (0xfeefffff)
  63. #define HT_RANGE_START (0xfd00000000ULL)
  64. #define HT_RANGE_END (0xffffffffffULL)
  65. /*
  66. * This bitmap is used to advertise the page sizes our hardware support
  67. * to the IOMMU core, which will then use this information to split
  68. * physically contiguous memory regions it is mapping into page sizes
  69. * that we support.
  70. *
  71. * 512GB Pages are not supported due to a hardware bug
  72. */
  73. #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
  74. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  75. /* List of all available dev_data structures */
  76. static LIST_HEAD(dev_data_list);
  77. static DEFINE_SPINLOCK(dev_data_list_lock);
  78. LIST_HEAD(ioapic_map);
  79. LIST_HEAD(hpet_map);
  80. LIST_HEAD(acpihid_map);
  81. #define FLUSH_QUEUE_SIZE 256
  82. struct flush_queue_entry {
  83. unsigned long iova_pfn;
  84. unsigned long pages;
  85. struct dma_ops_domain *dma_dom;
  86. };
  87. struct flush_queue {
  88. spinlock_t lock;
  89. unsigned next;
  90. struct flush_queue_entry *entries;
  91. };
  92. static DEFINE_PER_CPU(struct flush_queue, flush_queue);
  93. static atomic_t queue_timer_on;
  94. static struct timer_list queue_timer;
  95. /*
  96. * Domain for untranslated devices - only allocated
  97. * if iommu=pt passed on kernel cmd line.
  98. */
  99. static const struct iommu_ops amd_iommu_ops;
  100. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  101. int amd_iommu_max_glx_val = -1;
  102. static struct dma_map_ops amd_iommu_dma_ops;
  103. /*
  104. * This struct contains device specific data for the IOMMU
  105. */
  106. struct iommu_dev_data {
  107. struct list_head list; /* For domain->dev_list */
  108. struct list_head dev_data_list; /* For global dev_data_list */
  109. struct protection_domain *domain; /* Domain the device is bound to */
  110. u16 devid; /* PCI Device ID */
  111. u16 alias; /* Alias Device ID */
  112. bool iommu_v2; /* Device can make use of IOMMUv2 */
  113. bool passthrough; /* Device is identity mapped */
  114. struct {
  115. bool enabled;
  116. int qdep;
  117. } ats; /* ATS state */
  118. bool pri_tlp; /* PASID TLB required for
  119. PPR completions */
  120. u32 errata; /* Bitmap for errata to apply */
  121. bool use_vapic; /* Enable device to use vapic mode */
  122. };
  123. /*
  124. * general struct to manage commands send to an IOMMU
  125. */
  126. struct iommu_cmd {
  127. u32 data[4];
  128. };
  129. struct kmem_cache *amd_iommu_irq_cache;
  130. static void update_domain(struct protection_domain *domain);
  131. static int protection_domain_init(struct protection_domain *domain);
  132. static void detach_device(struct device *dev);
  133. /*
  134. * Data container for a dma_ops specific protection domain
  135. */
  136. struct dma_ops_domain {
  137. /* generic protection domain information */
  138. struct protection_domain domain;
  139. /* IOVA RB-Tree */
  140. struct iova_domain iovad;
  141. };
  142. static struct iova_domain reserved_iova_ranges;
  143. static struct lock_class_key reserved_rbtree_key;
  144. /****************************************************************************
  145. *
  146. * Helper functions
  147. *
  148. ****************************************************************************/
  149. static inline int match_hid_uid(struct device *dev,
  150. struct acpihid_map_entry *entry)
  151. {
  152. const char *hid, *uid;
  153. hid = acpi_device_hid(ACPI_COMPANION(dev));
  154. uid = acpi_device_uid(ACPI_COMPANION(dev));
  155. if (!hid || !(*hid))
  156. return -ENODEV;
  157. if (!uid || !(*uid))
  158. return strcmp(hid, entry->hid);
  159. if (!(*entry->uid))
  160. return strcmp(hid, entry->hid);
  161. return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
  162. }
  163. static inline u16 get_pci_device_id(struct device *dev)
  164. {
  165. struct pci_dev *pdev = to_pci_dev(dev);
  166. return PCI_DEVID(pdev->bus->number, pdev->devfn);
  167. }
  168. static inline int get_acpihid_device_id(struct device *dev,
  169. struct acpihid_map_entry **entry)
  170. {
  171. struct acpihid_map_entry *p;
  172. list_for_each_entry(p, &acpihid_map, list) {
  173. if (!match_hid_uid(dev, p)) {
  174. if (entry)
  175. *entry = p;
  176. return p->devid;
  177. }
  178. }
  179. return -EINVAL;
  180. }
  181. static inline int get_device_id(struct device *dev)
  182. {
  183. int devid;
  184. if (dev_is_pci(dev))
  185. devid = get_pci_device_id(dev);
  186. else
  187. devid = get_acpihid_device_id(dev, NULL);
  188. return devid;
  189. }
  190. static struct protection_domain *to_pdomain(struct iommu_domain *dom)
  191. {
  192. return container_of(dom, struct protection_domain, domain);
  193. }
  194. static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
  195. {
  196. BUG_ON(domain->flags != PD_DMA_OPS_MASK);
  197. return container_of(domain, struct dma_ops_domain, domain);
  198. }
  199. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  200. {
  201. struct iommu_dev_data *dev_data;
  202. unsigned long flags;
  203. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  204. if (!dev_data)
  205. return NULL;
  206. dev_data->devid = devid;
  207. spin_lock_irqsave(&dev_data_list_lock, flags);
  208. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  209. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  210. return dev_data;
  211. }
  212. static struct iommu_dev_data *search_dev_data(u16 devid)
  213. {
  214. struct iommu_dev_data *dev_data;
  215. unsigned long flags;
  216. spin_lock_irqsave(&dev_data_list_lock, flags);
  217. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  218. if (dev_data->devid == devid)
  219. goto out_unlock;
  220. }
  221. dev_data = NULL;
  222. out_unlock:
  223. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  224. return dev_data;
  225. }
  226. static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
  227. {
  228. *(u16 *)data = alias;
  229. return 0;
  230. }
  231. static u16 get_alias(struct device *dev)
  232. {
  233. struct pci_dev *pdev = to_pci_dev(dev);
  234. u16 devid, ivrs_alias, pci_alias;
  235. /* The callers make sure that get_device_id() does not fail here */
  236. devid = get_device_id(dev);
  237. ivrs_alias = amd_iommu_alias_table[devid];
  238. pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
  239. if (ivrs_alias == pci_alias)
  240. return ivrs_alias;
  241. /*
  242. * DMA alias showdown
  243. *
  244. * The IVRS is fairly reliable in telling us about aliases, but it
  245. * can't know about every screwy device. If we don't have an IVRS
  246. * reported alias, use the PCI reported alias. In that case we may
  247. * still need to initialize the rlookup and dev_table entries if the
  248. * alias is to a non-existent device.
  249. */
  250. if (ivrs_alias == devid) {
  251. if (!amd_iommu_rlookup_table[pci_alias]) {
  252. amd_iommu_rlookup_table[pci_alias] =
  253. amd_iommu_rlookup_table[devid];
  254. memcpy(amd_iommu_dev_table[pci_alias].data,
  255. amd_iommu_dev_table[devid].data,
  256. sizeof(amd_iommu_dev_table[pci_alias].data));
  257. }
  258. return pci_alias;
  259. }
  260. pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
  261. "for device %s[%04x:%04x], kernel reported alias "
  262. "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
  263. PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
  264. PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
  265. PCI_FUNC(pci_alias));
  266. /*
  267. * If we don't have a PCI DMA alias and the IVRS alias is on the same
  268. * bus, then the IVRS table may know about a quirk that we don't.
  269. */
  270. if (pci_alias == devid &&
  271. PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
  272. pci_add_dma_alias(pdev, ivrs_alias & 0xff);
  273. pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
  274. PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
  275. dev_name(dev));
  276. }
  277. return ivrs_alias;
  278. }
  279. static struct iommu_dev_data *find_dev_data(u16 devid)
  280. {
  281. struct iommu_dev_data *dev_data;
  282. dev_data = search_dev_data(devid);
  283. if (dev_data == NULL)
  284. dev_data = alloc_dev_data(devid);
  285. return dev_data;
  286. }
  287. static struct iommu_dev_data *get_dev_data(struct device *dev)
  288. {
  289. return dev->archdata.iommu;
  290. }
  291. /*
  292. * Find or create an IOMMU group for a acpihid device.
  293. */
  294. static struct iommu_group *acpihid_device_group(struct device *dev)
  295. {
  296. struct acpihid_map_entry *p, *entry = NULL;
  297. int devid;
  298. devid = get_acpihid_device_id(dev, &entry);
  299. if (devid < 0)
  300. return ERR_PTR(devid);
  301. list_for_each_entry(p, &acpihid_map, list) {
  302. if ((devid == p->devid) && p->group)
  303. entry->group = p->group;
  304. }
  305. if (!entry->group)
  306. entry->group = generic_device_group(dev);
  307. return entry->group;
  308. }
  309. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  310. {
  311. static const int caps[] = {
  312. PCI_EXT_CAP_ID_ATS,
  313. PCI_EXT_CAP_ID_PRI,
  314. PCI_EXT_CAP_ID_PASID,
  315. };
  316. int i, pos;
  317. for (i = 0; i < 3; ++i) {
  318. pos = pci_find_ext_capability(pdev, caps[i]);
  319. if (pos == 0)
  320. return false;
  321. }
  322. return true;
  323. }
  324. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  325. {
  326. struct iommu_dev_data *dev_data;
  327. dev_data = get_dev_data(&pdev->dev);
  328. return dev_data->errata & (1 << erratum) ? true : false;
  329. }
  330. /*
  331. * This function checks if the driver got a valid device from the caller to
  332. * avoid dereferencing invalid pointers.
  333. */
  334. static bool check_device(struct device *dev)
  335. {
  336. int devid;
  337. if (!dev || !dev->dma_mask)
  338. return false;
  339. devid = get_device_id(dev);
  340. if (devid < 0)
  341. return false;
  342. /* Out of our scope? */
  343. if (devid > amd_iommu_last_bdf)
  344. return false;
  345. if (amd_iommu_rlookup_table[devid] == NULL)
  346. return false;
  347. return true;
  348. }
  349. static void init_iommu_group(struct device *dev)
  350. {
  351. struct iommu_group *group;
  352. group = iommu_group_get_for_dev(dev);
  353. if (IS_ERR(group))
  354. return;
  355. iommu_group_put(group);
  356. }
  357. static int iommu_init_device(struct device *dev)
  358. {
  359. struct iommu_dev_data *dev_data;
  360. int devid;
  361. if (dev->archdata.iommu)
  362. return 0;
  363. devid = get_device_id(dev);
  364. if (devid < 0)
  365. return devid;
  366. dev_data = find_dev_data(devid);
  367. if (!dev_data)
  368. return -ENOMEM;
  369. dev_data->alias = get_alias(dev);
  370. if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
  371. struct amd_iommu *iommu;
  372. iommu = amd_iommu_rlookup_table[dev_data->devid];
  373. dev_data->iommu_v2 = iommu->is_iommu_v2;
  374. }
  375. dev->archdata.iommu = dev_data;
  376. iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
  377. dev);
  378. return 0;
  379. }
  380. static void iommu_ignore_device(struct device *dev)
  381. {
  382. u16 alias;
  383. int devid;
  384. devid = get_device_id(dev);
  385. if (devid < 0)
  386. return;
  387. alias = get_alias(dev);
  388. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  389. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  390. amd_iommu_rlookup_table[devid] = NULL;
  391. amd_iommu_rlookup_table[alias] = NULL;
  392. }
  393. static void iommu_uninit_device(struct device *dev)
  394. {
  395. int devid;
  396. struct iommu_dev_data *dev_data;
  397. devid = get_device_id(dev);
  398. if (devid < 0)
  399. return;
  400. dev_data = search_dev_data(devid);
  401. if (!dev_data)
  402. return;
  403. if (dev_data->domain)
  404. detach_device(dev);
  405. iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
  406. dev);
  407. iommu_group_remove_device(dev);
  408. /* Remove dma-ops */
  409. dev->archdata.dma_ops = NULL;
  410. /*
  411. * We keep dev_data around for unplugged devices and reuse it when the
  412. * device is re-plugged - not doing so would introduce a ton of races.
  413. */
  414. }
  415. /****************************************************************************
  416. *
  417. * Interrupt handling functions
  418. *
  419. ****************************************************************************/
  420. static void dump_dte_entry(u16 devid)
  421. {
  422. int i;
  423. for (i = 0; i < 4; ++i)
  424. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  425. amd_iommu_dev_table[devid].data[i]);
  426. }
  427. static void dump_command(unsigned long phys_addr)
  428. {
  429. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  430. int i;
  431. for (i = 0; i < 4; ++i)
  432. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  433. }
  434. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  435. {
  436. int type, devid, domid, flags;
  437. volatile u32 *event = __evt;
  438. int count = 0;
  439. u64 address;
  440. retry:
  441. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  442. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  443. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  444. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  445. address = (u64)(((u64)event[3]) << 32) | event[2];
  446. if (type == 0) {
  447. /* Did we hit the erratum? */
  448. if (++count == LOOP_TIMEOUT) {
  449. pr_err("AMD-Vi: No event written to event log\n");
  450. return;
  451. }
  452. udelay(1);
  453. goto retry;
  454. }
  455. printk(KERN_ERR "AMD-Vi: Event logged [");
  456. switch (type) {
  457. case EVENT_TYPE_ILL_DEV:
  458. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  459. "address=0x%016llx flags=0x%04x]\n",
  460. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  461. address, flags);
  462. dump_dte_entry(devid);
  463. break;
  464. case EVENT_TYPE_IO_FAULT:
  465. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  466. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  467. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  468. domid, address, flags);
  469. break;
  470. case EVENT_TYPE_DEV_TAB_ERR:
  471. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  472. "address=0x%016llx flags=0x%04x]\n",
  473. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  474. address, flags);
  475. break;
  476. case EVENT_TYPE_PAGE_TAB_ERR:
  477. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  478. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  479. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  480. domid, address, flags);
  481. break;
  482. case EVENT_TYPE_ILL_CMD:
  483. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  484. dump_command(address);
  485. break;
  486. case EVENT_TYPE_CMD_HARD_ERR:
  487. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  488. "flags=0x%04x]\n", address, flags);
  489. break;
  490. case EVENT_TYPE_IOTLB_INV_TO:
  491. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  492. "address=0x%016llx]\n",
  493. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  494. address);
  495. break;
  496. case EVENT_TYPE_INV_DEV_REQ:
  497. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  498. "address=0x%016llx flags=0x%04x]\n",
  499. PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  500. address, flags);
  501. break;
  502. default:
  503. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  504. }
  505. memset(__evt, 0, 4 * sizeof(u32));
  506. }
  507. static void iommu_poll_events(struct amd_iommu *iommu)
  508. {
  509. u32 head, tail;
  510. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  511. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  512. while (head != tail) {
  513. iommu_print_event(iommu, iommu->evt_buf + head);
  514. head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
  515. }
  516. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  517. }
  518. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  519. {
  520. struct amd_iommu_fault fault;
  521. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  522. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  523. return;
  524. }
  525. fault.address = raw[1];
  526. fault.pasid = PPR_PASID(raw[0]);
  527. fault.device_id = PPR_DEVID(raw[0]);
  528. fault.tag = PPR_TAG(raw[0]);
  529. fault.flags = PPR_FLAGS(raw[0]);
  530. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  531. }
  532. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  533. {
  534. u32 head, tail;
  535. if (iommu->ppr_log == NULL)
  536. return;
  537. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  538. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  539. while (head != tail) {
  540. volatile u64 *raw;
  541. u64 entry[2];
  542. int i;
  543. raw = (u64 *)(iommu->ppr_log + head);
  544. /*
  545. * Hardware bug: Interrupt may arrive before the entry is
  546. * written to memory. If this happens we need to wait for the
  547. * entry to arrive.
  548. */
  549. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  550. if (PPR_REQ_TYPE(raw[0]) != 0)
  551. break;
  552. udelay(1);
  553. }
  554. /* Avoid memcpy function-call overhead */
  555. entry[0] = raw[0];
  556. entry[1] = raw[1];
  557. /*
  558. * To detect the hardware bug we need to clear the entry
  559. * back to zero.
  560. */
  561. raw[0] = raw[1] = 0UL;
  562. /* Update head pointer of hardware ring-buffer */
  563. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  564. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  565. /* Handle PPR entry */
  566. iommu_handle_ppr_entry(iommu, entry);
  567. /* Refresh ring-buffer information */
  568. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  569. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  570. }
  571. }
  572. #ifdef CONFIG_IRQ_REMAP
  573. static int (*iommu_ga_log_notifier)(u32);
  574. int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
  575. {
  576. iommu_ga_log_notifier = notifier;
  577. return 0;
  578. }
  579. EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
  580. static void iommu_poll_ga_log(struct amd_iommu *iommu)
  581. {
  582. u32 head, tail, cnt = 0;
  583. if (iommu->ga_log == NULL)
  584. return;
  585. head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  586. tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
  587. while (head != tail) {
  588. volatile u64 *raw;
  589. u64 log_entry;
  590. raw = (u64 *)(iommu->ga_log + head);
  591. cnt++;
  592. /* Avoid memcpy function-call overhead */
  593. log_entry = *raw;
  594. /* Update head pointer of hardware ring-buffer */
  595. head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
  596. writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
  597. /* Handle GA entry */
  598. switch (GA_REQ_TYPE(log_entry)) {
  599. case GA_GUEST_NR:
  600. if (!iommu_ga_log_notifier)
  601. break;
  602. pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
  603. __func__, GA_DEVID(log_entry),
  604. GA_TAG(log_entry));
  605. if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
  606. pr_err("AMD-Vi: GA log notifier failed.\n");
  607. break;
  608. default:
  609. break;
  610. }
  611. }
  612. }
  613. #endif /* CONFIG_IRQ_REMAP */
  614. #define AMD_IOMMU_INT_MASK \
  615. (MMIO_STATUS_EVT_INT_MASK | \
  616. MMIO_STATUS_PPR_INT_MASK | \
  617. MMIO_STATUS_GALOG_INT_MASK)
  618. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  619. {
  620. struct amd_iommu *iommu = (struct amd_iommu *) data;
  621. u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  622. while (status & AMD_IOMMU_INT_MASK) {
  623. /* Enable EVT and PPR and GA interrupts again */
  624. writel(AMD_IOMMU_INT_MASK,
  625. iommu->mmio_base + MMIO_STATUS_OFFSET);
  626. if (status & MMIO_STATUS_EVT_INT_MASK) {
  627. pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
  628. iommu_poll_events(iommu);
  629. }
  630. if (status & MMIO_STATUS_PPR_INT_MASK) {
  631. pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
  632. iommu_poll_ppr_log(iommu);
  633. }
  634. #ifdef CONFIG_IRQ_REMAP
  635. if (status & MMIO_STATUS_GALOG_INT_MASK) {
  636. pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
  637. iommu_poll_ga_log(iommu);
  638. }
  639. #endif
  640. /*
  641. * Hardware bug: ERBT1312
  642. * When re-enabling interrupt (by writing 1
  643. * to clear the bit), the hardware might also try to set
  644. * the interrupt bit in the event status register.
  645. * In this scenario, the bit will be set, and disable
  646. * subsequent interrupts.
  647. *
  648. * Workaround: The IOMMU driver should read back the
  649. * status register and check if the interrupt bits are cleared.
  650. * If not, driver will need to go through the interrupt handler
  651. * again and re-clear the bits
  652. */
  653. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  654. }
  655. return IRQ_HANDLED;
  656. }
  657. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  658. {
  659. return IRQ_WAKE_THREAD;
  660. }
  661. /****************************************************************************
  662. *
  663. * IOMMU command queuing functions
  664. *
  665. ****************************************************************************/
  666. static int wait_on_sem(volatile u64 *sem)
  667. {
  668. int i = 0;
  669. while (*sem == 0 && i < LOOP_TIMEOUT) {
  670. udelay(1);
  671. i += 1;
  672. }
  673. if (i == LOOP_TIMEOUT) {
  674. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  675. return -EIO;
  676. }
  677. return 0;
  678. }
  679. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  680. struct iommu_cmd *cmd,
  681. u32 tail)
  682. {
  683. u8 *target;
  684. target = iommu->cmd_buf + tail;
  685. tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
  686. /* Copy command to buffer */
  687. memcpy(target, cmd, sizeof(*cmd));
  688. /* Tell the IOMMU about it */
  689. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  690. }
  691. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  692. {
  693. WARN_ON(address & 0x7ULL);
  694. memset(cmd, 0, sizeof(*cmd));
  695. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  696. cmd->data[1] = upper_32_bits(__pa(address));
  697. cmd->data[2] = 1;
  698. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  699. }
  700. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  701. {
  702. memset(cmd, 0, sizeof(*cmd));
  703. cmd->data[0] = devid;
  704. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  705. }
  706. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  707. size_t size, u16 domid, int pde)
  708. {
  709. u64 pages;
  710. bool s;
  711. pages = iommu_num_pages(address, size, PAGE_SIZE);
  712. s = false;
  713. if (pages > 1) {
  714. /*
  715. * If we have to flush more than one page, flush all
  716. * TLB entries for this domain
  717. */
  718. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  719. s = true;
  720. }
  721. address &= PAGE_MASK;
  722. memset(cmd, 0, sizeof(*cmd));
  723. cmd->data[1] |= domid;
  724. cmd->data[2] = lower_32_bits(address);
  725. cmd->data[3] = upper_32_bits(address);
  726. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  727. if (s) /* size bit - we flush more than one 4kb page */
  728. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  729. if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
  730. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  731. }
  732. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  733. u64 address, size_t size)
  734. {
  735. u64 pages;
  736. bool s;
  737. pages = iommu_num_pages(address, size, PAGE_SIZE);
  738. s = false;
  739. if (pages > 1) {
  740. /*
  741. * If we have to flush more than one page, flush all
  742. * TLB entries for this domain
  743. */
  744. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  745. s = true;
  746. }
  747. address &= PAGE_MASK;
  748. memset(cmd, 0, sizeof(*cmd));
  749. cmd->data[0] = devid;
  750. cmd->data[0] |= (qdep & 0xff) << 24;
  751. cmd->data[1] = devid;
  752. cmd->data[2] = lower_32_bits(address);
  753. cmd->data[3] = upper_32_bits(address);
  754. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  755. if (s)
  756. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  757. }
  758. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  759. u64 address, bool size)
  760. {
  761. memset(cmd, 0, sizeof(*cmd));
  762. address &= ~(0xfffULL);
  763. cmd->data[0] = pasid;
  764. cmd->data[1] = domid;
  765. cmd->data[2] = lower_32_bits(address);
  766. cmd->data[3] = upper_32_bits(address);
  767. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  768. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  769. if (size)
  770. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  771. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  772. }
  773. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  774. int qdep, u64 address, bool size)
  775. {
  776. memset(cmd, 0, sizeof(*cmd));
  777. address &= ~(0xfffULL);
  778. cmd->data[0] = devid;
  779. cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
  780. cmd->data[0] |= (qdep & 0xff) << 24;
  781. cmd->data[1] = devid;
  782. cmd->data[1] |= (pasid & 0xff) << 16;
  783. cmd->data[2] = lower_32_bits(address);
  784. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  785. cmd->data[3] = upper_32_bits(address);
  786. if (size)
  787. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  788. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  789. }
  790. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  791. int status, int tag, bool gn)
  792. {
  793. memset(cmd, 0, sizeof(*cmd));
  794. cmd->data[0] = devid;
  795. if (gn) {
  796. cmd->data[1] = pasid;
  797. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  798. }
  799. cmd->data[3] = tag & 0x1ff;
  800. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  801. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  802. }
  803. static void build_inv_all(struct iommu_cmd *cmd)
  804. {
  805. memset(cmd, 0, sizeof(*cmd));
  806. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  807. }
  808. static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
  809. {
  810. memset(cmd, 0, sizeof(*cmd));
  811. cmd->data[0] = devid;
  812. CMD_SET_TYPE(cmd, CMD_INV_IRT);
  813. }
  814. /*
  815. * Writes the command to the IOMMUs command buffer and informs the
  816. * hardware about the new command.
  817. */
  818. static int __iommu_queue_command_sync(struct amd_iommu *iommu,
  819. struct iommu_cmd *cmd,
  820. bool sync)
  821. {
  822. u32 left, tail, head, next_tail;
  823. again:
  824. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  825. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  826. next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
  827. left = (head - next_tail) % CMD_BUFFER_SIZE;
  828. if (left <= 0x20) {
  829. struct iommu_cmd sync_cmd;
  830. int ret;
  831. iommu->cmd_sem = 0;
  832. build_completion_wait(&sync_cmd, (u64)&iommu->cmd_sem);
  833. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  834. if ((ret = wait_on_sem(&iommu->cmd_sem)) != 0)
  835. return ret;
  836. goto again;
  837. }
  838. copy_cmd_to_buffer(iommu, cmd, tail);
  839. /* We need to sync now to make sure all commands are processed */
  840. iommu->need_sync = sync;
  841. return 0;
  842. }
  843. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  844. struct iommu_cmd *cmd,
  845. bool sync)
  846. {
  847. unsigned long flags;
  848. int ret;
  849. spin_lock_irqsave(&iommu->lock, flags);
  850. ret = __iommu_queue_command_sync(iommu, cmd, sync);
  851. spin_unlock_irqrestore(&iommu->lock, flags);
  852. return ret;
  853. }
  854. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  855. {
  856. return iommu_queue_command_sync(iommu, cmd, true);
  857. }
  858. /*
  859. * This function queues a completion wait command into the command
  860. * buffer of an IOMMU
  861. */
  862. static int iommu_completion_wait(struct amd_iommu *iommu)
  863. {
  864. struct iommu_cmd cmd;
  865. unsigned long flags;
  866. int ret;
  867. if (!iommu->need_sync)
  868. return 0;
  869. build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
  870. spin_lock_irqsave(&iommu->lock, flags);
  871. iommu->cmd_sem = 0;
  872. ret = __iommu_queue_command_sync(iommu, &cmd, false);
  873. if (ret)
  874. goto out_unlock;
  875. ret = wait_on_sem(&iommu->cmd_sem);
  876. out_unlock:
  877. spin_unlock_irqrestore(&iommu->lock, flags);
  878. return ret;
  879. }
  880. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  881. {
  882. struct iommu_cmd cmd;
  883. build_inv_dte(&cmd, devid);
  884. return iommu_queue_command(iommu, &cmd);
  885. }
  886. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  887. {
  888. u32 devid;
  889. for (devid = 0; devid <= 0xffff; ++devid)
  890. iommu_flush_dte(iommu, devid);
  891. iommu_completion_wait(iommu);
  892. }
  893. /*
  894. * This function uses heavy locking and may disable irqs for some time. But
  895. * this is no issue because it is only called during resume.
  896. */
  897. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  898. {
  899. u32 dom_id;
  900. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  901. struct iommu_cmd cmd;
  902. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  903. dom_id, 1);
  904. iommu_queue_command(iommu, &cmd);
  905. }
  906. iommu_completion_wait(iommu);
  907. }
  908. static void iommu_flush_all(struct amd_iommu *iommu)
  909. {
  910. struct iommu_cmd cmd;
  911. build_inv_all(&cmd);
  912. iommu_queue_command(iommu, &cmd);
  913. iommu_completion_wait(iommu);
  914. }
  915. static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
  916. {
  917. struct iommu_cmd cmd;
  918. build_inv_irt(&cmd, devid);
  919. iommu_queue_command(iommu, &cmd);
  920. }
  921. static void iommu_flush_irt_all(struct amd_iommu *iommu)
  922. {
  923. u32 devid;
  924. for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
  925. iommu_flush_irt(iommu, devid);
  926. iommu_completion_wait(iommu);
  927. }
  928. void iommu_flush_all_caches(struct amd_iommu *iommu)
  929. {
  930. if (iommu_feature(iommu, FEATURE_IA)) {
  931. iommu_flush_all(iommu);
  932. } else {
  933. iommu_flush_dte_all(iommu);
  934. iommu_flush_irt_all(iommu);
  935. iommu_flush_tlb_all(iommu);
  936. }
  937. }
  938. /*
  939. * Command send function for flushing on-device TLB
  940. */
  941. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  942. u64 address, size_t size)
  943. {
  944. struct amd_iommu *iommu;
  945. struct iommu_cmd cmd;
  946. int qdep;
  947. qdep = dev_data->ats.qdep;
  948. iommu = amd_iommu_rlookup_table[dev_data->devid];
  949. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  950. return iommu_queue_command(iommu, &cmd);
  951. }
  952. /*
  953. * Command send function for invalidating a device table entry
  954. */
  955. static int device_flush_dte(struct iommu_dev_data *dev_data)
  956. {
  957. struct amd_iommu *iommu;
  958. u16 alias;
  959. int ret;
  960. iommu = amd_iommu_rlookup_table[dev_data->devid];
  961. alias = dev_data->alias;
  962. ret = iommu_flush_dte(iommu, dev_data->devid);
  963. if (!ret && alias != dev_data->devid)
  964. ret = iommu_flush_dte(iommu, alias);
  965. if (ret)
  966. return ret;
  967. if (dev_data->ats.enabled)
  968. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  969. return ret;
  970. }
  971. /*
  972. * TLB invalidation function which is called from the mapping functions.
  973. * It invalidates a single PTE if the range to flush is within a single
  974. * page. Otherwise it flushes the whole TLB of the IOMMU.
  975. */
  976. static void __domain_flush_pages(struct protection_domain *domain,
  977. u64 address, size_t size, int pde)
  978. {
  979. struct iommu_dev_data *dev_data;
  980. struct iommu_cmd cmd;
  981. int ret = 0, i;
  982. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  983. for (i = 0; i < amd_iommus_present; ++i) {
  984. if (!domain->dev_iommu[i])
  985. continue;
  986. /*
  987. * Devices of this domain are behind this IOMMU
  988. * We need a TLB flush
  989. */
  990. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  991. }
  992. list_for_each_entry(dev_data, &domain->dev_list, list) {
  993. if (!dev_data->ats.enabled)
  994. continue;
  995. ret |= device_flush_iotlb(dev_data, address, size);
  996. }
  997. WARN_ON(ret);
  998. }
  999. static void domain_flush_pages(struct protection_domain *domain,
  1000. u64 address, size_t size)
  1001. {
  1002. __domain_flush_pages(domain, address, size, 0);
  1003. }
  1004. /* Flush the whole IO/TLB for a given protection domain */
  1005. static void domain_flush_tlb(struct protection_domain *domain)
  1006. {
  1007. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  1008. }
  1009. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  1010. static void domain_flush_tlb_pde(struct protection_domain *domain)
  1011. {
  1012. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  1013. }
  1014. static void domain_flush_complete(struct protection_domain *domain)
  1015. {
  1016. int i;
  1017. for (i = 0; i < amd_iommus_present; ++i) {
  1018. if (domain && !domain->dev_iommu[i])
  1019. continue;
  1020. /*
  1021. * Devices of this domain are behind this IOMMU
  1022. * We need to wait for completion of all commands.
  1023. */
  1024. iommu_completion_wait(amd_iommus[i]);
  1025. }
  1026. }
  1027. /*
  1028. * This function flushes the DTEs for all devices in domain
  1029. */
  1030. static void domain_flush_devices(struct protection_domain *domain)
  1031. {
  1032. struct iommu_dev_data *dev_data;
  1033. list_for_each_entry(dev_data, &domain->dev_list, list)
  1034. device_flush_dte(dev_data);
  1035. }
  1036. /****************************************************************************
  1037. *
  1038. * The functions below are used the create the page table mappings for
  1039. * unity mapped regions.
  1040. *
  1041. ****************************************************************************/
  1042. /*
  1043. * This function is used to add another level to an IO page table. Adding
  1044. * another level increases the size of the address space by 9 bits to a size up
  1045. * to 64 bits.
  1046. */
  1047. static bool increase_address_space(struct protection_domain *domain,
  1048. gfp_t gfp)
  1049. {
  1050. u64 *pte;
  1051. if (domain->mode == PAGE_MODE_6_LEVEL)
  1052. /* address space already 64 bit large */
  1053. return false;
  1054. pte = (void *)get_zeroed_page(gfp);
  1055. if (!pte)
  1056. return false;
  1057. *pte = PM_LEVEL_PDE(domain->mode,
  1058. virt_to_phys(domain->pt_root));
  1059. domain->pt_root = pte;
  1060. domain->mode += 1;
  1061. domain->updated = true;
  1062. return true;
  1063. }
  1064. static u64 *alloc_pte(struct protection_domain *domain,
  1065. unsigned long address,
  1066. unsigned long page_size,
  1067. u64 **pte_page,
  1068. gfp_t gfp)
  1069. {
  1070. int level, end_lvl;
  1071. u64 *pte, *page;
  1072. BUG_ON(!is_power_of_2(page_size));
  1073. while (address > PM_LEVEL_SIZE(domain->mode))
  1074. increase_address_space(domain, gfp);
  1075. level = domain->mode - 1;
  1076. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1077. address = PAGE_SIZE_ALIGN(address, page_size);
  1078. end_lvl = PAGE_SIZE_LEVEL(page_size);
  1079. while (level > end_lvl) {
  1080. u64 __pte, __npte;
  1081. __pte = *pte;
  1082. if (!IOMMU_PTE_PRESENT(__pte)) {
  1083. page = (u64 *)get_zeroed_page(gfp);
  1084. if (!page)
  1085. return NULL;
  1086. __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
  1087. /* pte could have been changed somewhere. */
  1088. if (cmpxchg64(pte, __pte, __npte) != __pte) {
  1089. free_page((unsigned long)page);
  1090. continue;
  1091. }
  1092. }
  1093. /* No level skipping support yet */
  1094. if (PM_PTE_LEVEL(*pte) != level)
  1095. return NULL;
  1096. level -= 1;
  1097. pte = IOMMU_PTE_PAGE(*pte);
  1098. if (pte_page && level == end_lvl)
  1099. *pte_page = pte;
  1100. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1101. }
  1102. return pte;
  1103. }
  1104. /*
  1105. * This function checks if there is a PTE for a given dma address. If
  1106. * there is one, it returns the pointer to it.
  1107. */
  1108. static u64 *fetch_pte(struct protection_domain *domain,
  1109. unsigned long address,
  1110. unsigned long *page_size)
  1111. {
  1112. int level;
  1113. u64 *pte;
  1114. if (address > PM_LEVEL_SIZE(domain->mode))
  1115. return NULL;
  1116. level = domain->mode - 1;
  1117. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  1118. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1119. while (level > 0) {
  1120. /* Not Present */
  1121. if (!IOMMU_PTE_PRESENT(*pte))
  1122. return NULL;
  1123. /* Large PTE */
  1124. if (PM_PTE_LEVEL(*pte) == 7 ||
  1125. PM_PTE_LEVEL(*pte) == 0)
  1126. break;
  1127. /* No level skipping support yet */
  1128. if (PM_PTE_LEVEL(*pte) != level)
  1129. return NULL;
  1130. level -= 1;
  1131. /* Walk to the next level */
  1132. pte = IOMMU_PTE_PAGE(*pte);
  1133. pte = &pte[PM_LEVEL_INDEX(level, address)];
  1134. *page_size = PTE_LEVEL_PAGE_SIZE(level);
  1135. }
  1136. if (PM_PTE_LEVEL(*pte) == 0x07) {
  1137. unsigned long pte_mask;
  1138. /*
  1139. * If we have a series of large PTEs, make
  1140. * sure to return a pointer to the first one.
  1141. */
  1142. *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
  1143. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  1144. pte = (u64 *)(((unsigned long)pte) & pte_mask);
  1145. }
  1146. return pte;
  1147. }
  1148. /*
  1149. * Generic mapping functions. It maps a physical address into a DMA
  1150. * address space. It allocates the page table pages if necessary.
  1151. * In the future it can be extended to a generic mapping function
  1152. * supporting all features of AMD IOMMU page tables like level skipping
  1153. * and full 64 bit address spaces.
  1154. */
  1155. static int iommu_map_page(struct protection_domain *dom,
  1156. unsigned long bus_addr,
  1157. unsigned long phys_addr,
  1158. unsigned long page_size,
  1159. int prot,
  1160. gfp_t gfp)
  1161. {
  1162. u64 __pte, *pte;
  1163. int i, count;
  1164. BUG_ON(!IS_ALIGNED(bus_addr, page_size));
  1165. BUG_ON(!IS_ALIGNED(phys_addr, page_size));
  1166. if (!(prot & IOMMU_PROT_MASK))
  1167. return -EINVAL;
  1168. count = PAGE_SIZE_PTE_COUNT(page_size);
  1169. pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
  1170. if (!pte)
  1171. return -ENOMEM;
  1172. for (i = 0; i < count; ++i)
  1173. if (IOMMU_PTE_PRESENT(pte[i]))
  1174. return -EBUSY;
  1175. if (count > 1) {
  1176. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  1177. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  1178. } else
  1179. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1180. if (prot & IOMMU_PROT_IR)
  1181. __pte |= IOMMU_PTE_IR;
  1182. if (prot & IOMMU_PROT_IW)
  1183. __pte |= IOMMU_PTE_IW;
  1184. for (i = 0; i < count; ++i)
  1185. pte[i] = __pte;
  1186. update_domain(dom);
  1187. return 0;
  1188. }
  1189. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1190. unsigned long bus_addr,
  1191. unsigned long page_size)
  1192. {
  1193. unsigned long long unmapped;
  1194. unsigned long unmap_size;
  1195. u64 *pte;
  1196. BUG_ON(!is_power_of_2(page_size));
  1197. unmapped = 0;
  1198. while (unmapped < page_size) {
  1199. pte = fetch_pte(dom, bus_addr, &unmap_size);
  1200. if (pte) {
  1201. int i, count;
  1202. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1203. for (i = 0; i < count; i++)
  1204. pte[i] = 0ULL;
  1205. }
  1206. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1207. unmapped += unmap_size;
  1208. }
  1209. BUG_ON(unmapped && !is_power_of_2(unmapped));
  1210. return unmapped;
  1211. }
  1212. /****************************************************************************
  1213. *
  1214. * The next functions belong to the address allocator for the dma_ops
  1215. * interface functions.
  1216. *
  1217. ****************************************************************************/
  1218. static unsigned long dma_ops_alloc_iova(struct device *dev,
  1219. struct dma_ops_domain *dma_dom,
  1220. unsigned int pages, u64 dma_mask)
  1221. {
  1222. unsigned long pfn = 0;
  1223. pages = __roundup_pow_of_two(pages);
  1224. if (dma_mask > DMA_BIT_MASK(32))
  1225. pfn = alloc_iova_fast(&dma_dom->iovad, pages,
  1226. IOVA_PFN(DMA_BIT_MASK(32)));
  1227. if (!pfn)
  1228. pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
  1229. return (pfn << PAGE_SHIFT);
  1230. }
  1231. static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
  1232. unsigned long address,
  1233. unsigned int pages)
  1234. {
  1235. pages = __roundup_pow_of_two(pages);
  1236. address >>= PAGE_SHIFT;
  1237. free_iova_fast(&dma_dom->iovad, address, pages);
  1238. }
  1239. /****************************************************************************
  1240. *
  1241. * The next functions belong to the domain allocation. A domain is
  1242. * allocated for every IOMMU as the default domain. If device isolation
  1243. * is enabled, every device get its own domain. The most important thing
  1244. * about domains is the page table mapping the DMA address space they
  1245. * contain.
  1246. *
  1247. ****************************************************************************/
  1248. /*
  1249. * This function adds a protection domain to the global protection domain list
  1250. */
  1251. static void add_domain_to_list(struct protection_domain *domain)
  1252. {
  1253. unsigned long flags;
  1254. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1255. list_add(&domain->list, &amd_iommu_pd_list);
  1256. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1257. }
  1258. /*
  1259. * This function removes a protection domain to the global
  1260. * protection domain list
  1261. */
  1262. static void del_domain_from_list(struct protection_domain *domain)
  1263. {
  1264. unsigned long flags;
  1265. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1266. list_del(&domain->list);
  1267. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1268. }
  1269. static u16 domain_id_alloc(void)
  1270. {
  1271. unsigned long flags;
  1272. int id;
  1273. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1274. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1275. BUG_ON(id == 0);
  1276. if (id > 0 && id < MAX_DOMAIN_ID)
  1277. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1278. else
  1279. id = 0;
  1280. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1281. return id;
  1282. }
  1283. static void domain_id_free(int id)
  1284. {
  1285. unsigned long flags;
  1286. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1287. if (id > 0 && id < MAX_DOMAIN_ID)
  1288. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1289. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1290. }
  1291. #define DEFINE_FREE_PT_FN(LVL, FN) \
  1292. static void free_pt_##LVL (unsigned long __pt) \
  1293. { \
  1294. unsigned long p; \
  1295. u64 *pt; \
  1296. int i; \
  1297. \
  1298. pt = (u64 *)__pt; \
  1299. \
  1300. for (i = 0; i < 512; ++i) { \
  1301. /* PTE present? */ \
  1302. if (!IOMMU_PTE_PRESENT(pt[i])) \
  1303. continue; \
  1304. \
  1305. /* Large PTE? */ \
  1306. if (PM_PTE_LEVEL(pt[i]) == 0 || \
  1307. PM_PTE_LEVEL(pt[i]) == 7) \
  1308. continue; \
  1309. \
  1310. p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
  1311. FN(p); \
  1312. } \
  1313. free_page((unsigned long)pt); \
  1314. }
  1315. DEFINE_FREE_PT_FN(l2, free_page)
  1316. DEFINE_FREE_PT_FN(l3, free_pt_l2)
  1317. DEFINE_FREE_PT_FN(l4, free_pt_l3)
  1318. DEFINE_FREE_PT_FN(l5, free_pt_l4)
  1319. DEFINE_FREE_PT_FN(l6, free_pt_l5)
  1320. static void free_pagetable(struct protection_domain *domain)
  1321. {
  1322. unsigned long root = (unsigned long)domain->pt_root;
  1323. switch (domain->mode) {
  1324. case PAGE_MODE_NONE:
  1325. break;
  1326. case PAGE_MODE_1_LEVEL:
  1327. free_page(root);
  1328. break;
  1329. case PAGE_MODE_2_LEVEL:
  1330. free_pt_l2(root);
  1331. break;
  1332. case PAGE_MODE_3_LEVEL:
  1333. free_pt_l3(root);
  1334. break;
  1335. case PAGE_MODE_4_LEVEL:
  1336. free_pt_l4(root);
  1337. break;
  1338. case PAGE_MODE_5_LEVEL:
  1339. free_pt_l5(root);
  1340. break;
  1341. case PAGE_MODE_6_LEVEL:
  1342. free_pt_l6(root);
  1343. break;
  1344. default:
  1345. BUG();
  1346. }
  1347. }
  1348. static void free_gcr3_tbl_level1(u64 *tbl)
  1349. {
  1350. u64 *ptr;
  1351. int i;
  1352. for (i = 0; i < 512; ++i) {
  1353. if (!(tbl[i] & GCR3_VALID))
  1354. continue;
  1355. ptr = __va(tbl[i] & PAGE_MASK);
  1356. free_page((unsigned long)ptr);
  1357. }
  1358. }
  1359. static void free_gcr3_tbl_level2(u64 *tbl)
  1360. {
  1361. u64 *ptr;
  1362. int i;
  1363. for (i = 0; i < 512; ++i) {
  1364. if (!(tbl[i] & GCR3_VALID))
  1365. continue;
  1366. ptr = __va(tbl[i] & PAGE_MASK);
  1367. free_gcr3_tbl_level1(ptr);
  1368. }
  1369. }
  1370. static void free_gcr3_table(struct protection_domain *domain)
  1371. {
  1372. if (domain->glx == 2)
  1373. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1374. else if (domain->glx == 1)
  1375. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1376. else
  1377. BUG_ON(domain->glx != 0);
  1378. free_page((unsigned long)domain->gcr3_tbl);
  1379. }
  1380. /*
  1381. * Free a domain, only used if something went wrong in the
  1382. * allocation path and we need to free an already allocated page table
  1383. */
  1384. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1385. {
  1386. if (!dom)
  1387. return;
  1388. del_domain_from_list(&dom->domain);
  1389. put_iova_domain(&dom->iovad);
  1390. free_pagetable(&dom->domain);
  1391. if (dom->domain.id)
  1392. domain_id_free(dom->domain.id);
  1393. kfree(dom);
  1394. }
  1395. /*
  1396. * Allocates a new protection domain usable for the dma_ops functions.
  1397. * It also initializes the page table and the address allocator data
  1398. * structures required for the dma_ops interface
  1399. */
  1400. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1401. {
  1402. struct dma_ops_domain *dma_dom;
  1403. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1404. if (!dma_dom)
  1405. return NULL;
  1406. if (protection_domain_init(&dma_dom->domain))
  1407. goto free_dma_dom;
  1408. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  1409. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1410. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1411. if (!dma_dom->domain.pt_root)
  1412. goto free_dma_dom;
  1413. init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
  1414. IOVA_START_PFN, DMA_32BIT_PFN);
  1415. /* Initialize reserved ranges */
  1416. copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
  1417. add_domain_to_list(&dma_dom->domain);
  1418. return dma_dom;
  1419. free_dma_dom:
  1420. dma_ops_domain_free(dma_dom);
  1421. return NULL;
  1422. }
  1423. /*
  1424. * little helper function to check whether a given protection domain is a
  1425. * dma_ops domain
  1426. */
  1427. static bool dma_ops_domain(struct protection_domain *domain)
  1428. {
  1429. return domain->flags & PD_DMA_OPS_MASK;
  1430. }
  1431. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1432. {
  1433. u64 pte_root = 0;
  1434. u64 flags = 0;
  1435. if (domain->mode != PAGE_MODE_NONE)
  1436. pte_root = virt_to_phys(domain->pt_root);
  1437. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1438. << DEV_ENTRY_MODE_SHIFT;
  1439. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1440. flags = amd_iommu_dev_table[devid].data[1];
  1441. if (ats)
  1442. flags |= DTE_FLAG_IOTLB;
  1443. if (domain->flags & PD_IOMMUV2_MASK) {
  1444. u64 gcr3 = __pa(domain->gcr3_tbl);
  1445. u64 glx = domain->glx;
  1446. u64 tmp;
  1447. pte_root |= DTE_FLAG_GV;
  1448. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1449. /* First mask out possible old values for GCR3 table */
  1450. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1451. flags &= ~tmp;
  1452. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1453. flags &= ~tmp;
  1454. /* Encode GCR3 table into DTE */
  1455. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1456. pte_root |= tmp;
  1457. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1458. flags |= tmp;
  1459. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1460. flags |= tmp;
  1461. }
  1462. flags &= ~(0xffffUL);
  1463. flags |= domain->id;
  1464. amd_iommu_dev_table[devid].data[1] = flags;
  1465. amd_iommu_dev_table[devid].data[0] = pte_root;
  1466. }
  1467. static void clear_dte_entry(u16 devid)
  1468. {
  1469. /* remove entry from the device table seen by the hardware */
  1470. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1471. amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
  1472. amd_iommu_apply_erratum_63(devid);
  1473. }
  1474. static void do_attach(struct iommu_dev_data *dev_data,
  1475. struct protection_domain *domain)
  1476. {
  1477. struct amd_iommu *iommu;
  1478. u16 alias;
  1479. bool ats;
  1480. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1481. alias = dev_data->alias;
  1482. ats = dev_data->ats.enabled;
  1483. /* Update data structures */
  1484. dev_data->domain = domain;
  1485. list_add(&dev_data->list, &domain->dev_list);
  1486. /* Do reference counting */
  1487. domain->dev_iommu[iommu->index] += 1;
  1488. domain->dev_cnt += 1;
  1489. /* Update device table */
  1490. set_dte_entry(dev_data->devid, domain, ats);
  1491. if (alias != dev_data->devid)
  1492. set_dte_entry(alias, domain, ats);
  1493. device_flush_dte(dev_data);
  1494. }
  1495. static void do_detach(struct iommu_dev_data *dev_data)
  1496. {
  1497. struct amd_iommu *iommu;
  1498. u16 alias;
  1499. /*
  1500. * First check if the device is still attached. It might already
  1501. * be detached from its domain because the generic
  1502. * iommu_detach_group code detached it and we try again here in
  1503. * our alias handling.
  1504. */
  1505. if (!dev_data->domain)
  1506. return;
  1507. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1508. alias = dev_data->alias;
  1509. /* decrease reference counters */
  1510. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1511. dev_data->domain->dev_cnt -= 1;
  1512. /* Update data structures */
  1513. dev_data->domain = NULL;
  1514. list_del(&dev_data->list);
  1515. clear_dte_entry(dev_data->devid);
  1516. if (alias != dev_data->devid)
  1517. clear_dte_entry(alias);
  1518. /* Flush the DTE entry */
  1519. device_flush_dte(dev_data);
  1520. }
  1521. /*
  1522. * If a device is not yet associated with a domain, this function does
  1523. * assigns it visible for the hardware
  1524. */
  1525. static int __attach_device(struct iommu_dev_data *dev_data,
  1526. struct protection_domain *domain)
  1527. {
  1528. int ret;
  1529. /*
  1530. * Must be called with IRQs disabled. Warn here to detect early
  1531. * when its not.
  1532. */
  1533. WARN_ON(!irqs_disabled());
  1534. /* lock domain */
  1535. spin_lock(&domain->lock);
  1536. ret = -EBUSY;
  1537. if (dev_data->domain != NULL)
  1538. goto out_unlock;
  1539. /* Attach alias group root */
  1540. do_attach(dev_data, domain);
  1541. ret = 0;
  1542. out_unlock:
  1543. /* ready */
  1544. spin_unlock(&domain->lock);
  1545. return ret;
  1546. }
  1547. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1548. {
  1549. pci_disable_ats(pdev);
  1550. pci_disable_pri(pdev);
  1551. pci_disable_pasid(pdev);
  1552. }
  1553. /* FIXME: Change generic reset-function to do the same */
  1554. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1555. {
  1556. u16 control;
  1557. int pos;
  1558. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1559. if (!pos)
  1560. return -EINVAL;
  1561. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1562. control |= PCI_PRI_CTRL_RESET;
  1563. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1564. return 0;
  1565. }
  1566. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1567. {
  1568. bool reset_enable;
  1569. int reqs, ret;
  1570. /* FIXME: Hardcode number of outstanding requests for now */
  1571. reqs = 32;
  1572. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1573. reqs = 1;
  1574. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1575. /* Only allow access to user-accessible pages */
  1576. ret = pci_enable_pasid(pdev, 0);
  1577. if (ret)
  1578. goto out_err;
  1579. /* First reset the PRI state of the device */
  1580. ret = pci_reset_pri(pdev);
  1581. if (ret)
  1582. goto out_err;
  1583. /* Enable PRI */
  1584. ret = pci_enable_pri(pdev, reqs);
  1585. if (ret)
  1586. goto out_err;
  1587. if (reset_enable) {
  1588. ret = pri_reset_while_enabled(pdev);
  1589. if (ret)
  1590. goto out_err;
  1591. }
  1592. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1593. if (ret)
  1594. goto out_err;
  1595. return 0;
  1596. out_err:
  1597. pci_disable_pri(pdev);
  1598. pci_disable_pasid(pdev);
  1599. return ret;
  1600. }
  1601. /* FIXME: Move this to PCI code */
  1602. #define PCI_PRI_TLP_OFF (1 << 15)
  1603. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1604. {
  1605. u16 status;
  1606. int pos;
  1607. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1608. if (!pos)
  1609. return false;
  1610. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1611. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1612. }
  1613. /*
  1614. * If a device is not yet associated with a domain, this function
  1615. * assigns it visible for the hardware
  1616. */
  1617. static int attach_device(struct device *dev,
  1618. struct protection_domain *domain)
  1619. {
  1620. struct pci_dev *pdev;
  1621. struct iommu_dev_data *dev_data;
  1622. unsigned long flags;
  1623. int ret;
  1624. dev_data = get_dev_data(dev);
  1625. if (!dev_is_pci(dev))
  1626. goto skip_ats_check;
  1627. pdev = to_pci_dev(dev);
  1628. if (domain->flags & PD_IOMMUV2_MASK) {
  1629. if (!dev_data->passthrough)
  1630. return -EINVAL;
  1631. if (dev_data->iommu_v2) {
  1632. if (pdev_iommuv2_enable(pdev) != 0)
  1633. return -EINVAL;
  1634. dev_data->ats.enabled = true;
  1635. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1636. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1637. }
  1638. } else if (amd_iommu_iotlb_sup &&
  1639. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1640. dev_data->ats.enabled = true;
  1641. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1642. }
  1643. skip_ats_check:
  1644. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1645. ret = __attach_device(dev_data, domain);
  1646. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1647. /*
  1648. * We might boot into a crash-kernel here. The crashed kernel
  1649. * left the caches in the IOMMU dirty. So we have to flush
  1650. * here to evict all dirty stuff.
  1651. */
  1652. domain_flush_tlb_pde(domain);
  1653. return ret;
  1654. }
  1655. /*
  1656. * Removes a device from a protection domain (unlocked)
  1657. */
  1658. static void __detach_device(struct iommu_dev_data *dev_data)
  1659. {
  1660. struct protection_domain *domain;
  1661. /*
  1662. * Must be called with IRQs disabled. Warn here to detect early
  1663. * when its not.
  1664. */
  1665. WARN_ON(!irqs_disabled());
  1666. if (WARN_ON(!dev_data->domain))
  1667. return;
  1668. domain = dev_data->domain;
  1669. spin_lock(&domain->lock);
  1670. do_detach(dev_data);
  1671. spin_unlock(&domain->lock);
  1672. }
  1673. /*
  1674. * Removes a device from a protection domain (with devtable_lock held)
  1675. */
  1676. static void detach_device(struct device *dev)
  1677. {
  1678. struct protection_domain *domain;
  1679. struct iommu_dev_data *dev_data;
  1680. unsigned long flags;
  1681. dev_data = get_dev_data(dev);
  1682. domain = dev_data->domain;
  1683. /* lock device table */
  1684. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1685. __detach_device(dev_data);
  1686. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1687. if (!dev_is_pci(dev))
  1688. return;
  1689. if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
  1690. pdev_iommuv2_disable(to_pci_dev(dev));
  1691. else if (dev_data->ats.enabled)
  1692. pci_disable_ats(to_pci_dev(dev));
  1693. dev_data->ats.enabled = false;
  1694. }
  1695. static int amd_iommu_add_device(struct device *dev)
  1696. {
  1697. struct iommu_dev_data *dev_data;
  1698. struct iommu_domain *domain;
  1699. struct amd_iommu *iommu;
  1700. int ret, devid;
  1701. if (!check_device(dev) || get_dev_data(dev))
  1702. return 0;
  1703. devid = get_device_id(dev);
  1704. if (devid < 0)
  1705. return devid;
  1706. iommu = amd_iommu_rlookup_table[devid];
  1707. ret = iommu_init_device(dev);
  1708. if (ret) {
  1709. if (ret != -ENOTSUPP)
  1710. pr_err("Failed to initialize device %s - trying to proceed anyway\n",
  1711. dev_name(dev));
  1712. iommu_ignore_device(dev);
  1713. dev->archdata.dma_ops = &nommu_dma_ops;
  1714. goto out;
  1715. }
  1716. init_iommu_group(dev);
  1717. dev_data = get_dev_data(dev);
  1718. BUG_ON(!dev_data);
  1719. if (iommu_pass_through || dev_data->iommu_v2)
  1720. iommu_request_dm_for_dev(dev);
  1721. /* Domains are initialized for this device - have a look what we ended up with */
  1722. domain = iommu_get_domain_for_dev(dev);
  1723. if (domain->type == IOMMU_DOMAIN_IDENTITY)
  1724. dev_data->passthrough = true;
  1725. else
  1726. dev->archdata.dma_ops = &amd_iommu_dma_ops;
  1727. out:
  1728. iommu_completion_wait(iommu);
  1729. return 0;
  1730. }
  1731. static void amd_iommu_remove_device(struct device *dev)
  1732. {
  1733. struct amd_iommu *iommu;
  1734. int devid;
  1735. if (!check_device(dev))
  1736. return;
  1737. devid = get_device_id(dev);
  1738. if (devid < 0)
  1739. return;
  1740. iommu = amd_iommu_rlookup_table[devid];
  1741. iommu_uninit_device(dev);
  1742. iommu_completion_wait(iommu);
  1743. }
  1744. static struct iommu_group *amd_iommu_device_group(struct device *dev)
  1745. {
  1746. if (dev_is_pci(dev))
  1747. return pci_device_group(dev);
  1748. return acpihid_device_group(dev);
  1749. }
  1750. /*****************************************************************************
  1751. *
  1752. * The next functions belong to the dma_ops mapping/unmapping code.
  1753. *
  1754. *****************************************************************************/
  1755. static void __queue_flush(struct flush_queue *queue)
  1756. {
  1757. struct protection_domain *domain;
  1758. unsigned long flags;
  1759. int idx;
  1760. /* First flush TLB of all known domains */
  1761. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1762. list_for_each_entry(domain, &amd_iommu_pd_list, list)
  1763. domain_flush_tlb(domain);
  1764. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1765. /* Wait until flushes have completed */
  1766. domain_flush_complete(NULL);
  1767. for (idx = 0; idx < queue->next; ++idx) {
  1768. struct flush_queue_entry *entry;
  1769. entry = queue->entries + idx;
  1770. free_iova_fast(&entry->dma_dom->iovad,
  1771. entry->iova_pfn,
  1772. entry->pages);
  1773. /* Not really necessary, just to make sure we catch any bugs */
  1774. entry->dma_dom = NULL;
  1775. }
  1776. queue->next = 0;
  1777. }
  1778. static void queue_flush_all(void)
  1779. {
  1780. int cpu;
  1781. for_each_possible_cpu(cpu) {
  1782. struct flush_queue *queue;
  1783. unsigned long flags;
  1784. queue = per_cpu_ptr(&flush_queue, cpu);
  1785. spin_lock_irqsave(&queue->lock, flags);
  1786. if (queue->next > 0)
  1787. __queue_flush(queue);
  1788. spin_unlock_irqrestore(&queue->lock, flags);
  1789. }
  1790. }
  1791. static void queue_flush_timeout(unsigned long unsused)
  1792. {
  1793. atomic_set(&queue_timer_on, 0);
  1794. queue_flush_all();
  1795. }
  1796. static void queue_add(struct dma_ops_domain *dma_dom,
  1797. unsigned long address, unsigned long pages)
  1798. {
  1799. struct flush_queue_entry *entry;
  1800. struct flush_queue *queue;
  1801. unsigned long flags;
  1802. int idx;
  1803. pages = __roundup_pow_of_two(pages);
  1804. address >>= PAGE_SHIFT;
  1805. queue = get_cpu_ptr(&flush_queue);
  1806. spin_lock_irqsave(&queue->lock, flags);
  1807. if (queue->next == FLUSH_QUEUE_SIZE)
  1808. __queue_flush(queue);
  1809. idx = queue->next++;
  1810. entry = queue->entries + idx;
  1811. entry->iova_pfn = address;
  1812. entry->pages = pages;
  1813. entry->dma_dom = dma_dom;
  1814. spin_unlock_irqrestore(&queue->lock, flags);
  1815. if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
  1816. mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));
  1817. put_cpu_ptr(&flush_queue);
  1818. }
  1819. /*
  1820. * In the dma_ops path we only have the struct device. This function
  1821. * finds the corresponding IOMMU, the protection domain and the
  1822. * requestor id for a given device.
  1823. * If the device is not yet associated with a domain this is also done
  1824. * in this function.
  1825. */
  1826. static struct protection_domain *get_domain(struct device *dev)
  1827. {
  1828. struct protection_domain *domain;
  1829. if (!check_device(dev))
  1830. return ERR_PTR(-EINVAL);
  1831. domain = get_dev_data(dev)->domain;
  1832. if (!dma_ops_domain(domain))
  1833. return ERR_PTR(-EBUSY);
  1834. return domain;
  1835. }
  1836. static void update_device_table(struct protection_domain *domain)
  1837. {
  1838. struct iommu_dev_data *dev_data;
  1839. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1840. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  1841. if (dev_data->devid == dev_data->alias)
  1842. continue;
  1843. /* There is an alias, update device table entry for it */
  1844. set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
  1845. }
  1846. }
  1847. static void update_domain(struct protection_domain *domain)
  1848. {
  1849. if (!domain->updated)
  1850. return;
  1851. update_device_table(domain);
  1852. domain_flush_devices(domain);
  1853. domain_flush_tlb_pde(domain);
  1854. domain->updated = false;
  1855. }
  1856. static int dir2prot(enum dma_data_direction direction)
  1857. {
  1858. if (direction == DMA_TO_DEVICE)
  1859. return IOMMU_PROT_IR;
  1860. else if (direction == DMA_FROM_DEVICE)
  1861. return IOMMU_PROT_IW;
  1862. else if (direction == DMA_BIDIRECTIONAL)
  1863. return IOMMU_PROT_IW | IOMMU_PROT_IR;
  1864. else
  1865. return 0;
  1866. }
  1867. /*
  1868. * This function contains common code for mapping of a physically
  1869. * contiguous memory region into DMA address space. It is used by all
  1870. * mapping functions provided with this IOMMU driver.
  1871. * Must be called with the domain lock held.
  1872. */
  1873. static dma_addr_t __map_single(struct device *dev,
  1874. struct dma_ops_domain *dma_dom,
  1875. phys_addr_t paddr,
  1876. size_t size,
  1877. enum dma_data_direction direction,
  1878. u64 dma_mask)
  1879. {
  1880. dma_addr_t offset = paddr & ~PAGE_MASK;
  1881. dma_addr_t address, start, ret;
  1882. unsigned int pages;
  1883. int prot = 0;
  1884. int i;
  1885. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1886. paddr &= PAGE_MASK;
  1887. address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
  1888. if (address == DMA_ERROR_CODE)
  1889. goto out;
  1890. prot = dir2prot(direction);
  1891. start = address;
  1892. for (i = 0; i < pages; ++i) {
  1893. ret = iommu_map_page(&dma_dom->domain, start, paddr,
  1894. PAGE_SIZE, prot, GFP_ATOMIC);
  1895. if (ret)
  1896. goto out_unmap;
  1897. paddr += PAGE_SIZE;
  1898. start += PAGE_SIZE;
  1899. }
  1900. address += offset;
  1901. if (unlikely(amd_iommu_np_cache)) {
  1902. domain_flush_pages(&dma_dom->domain, address, size);
  1903. domain_flush_complete(&dma_dom->domain);
  1904. }
  1905. out:
  1906. return address;
  1907. out_unmap:
  1908. for (--i; i >= 0; --i) {
  1909. start -= PAGE_SIZE;
  1910. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1911. }
  1912. domain_flush_tlb(&dma_dom->domain);
  1913. domain_flush_complete(&dma_dom->domain);
  1914. dma_ops_free_iova(dma_dom, address, pages);
  1915. return DMA_ERROR_CODE;
  1916. }
  1917. /*
  1918. * Does the reverse of the __map_single function. Must be called with
  1919. * the domain lock held too
  1920. */
  1921. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1922. dma_addr_t dma_addr,
  1923. size_t size,
  1924. int dir)
  1925. {
  1926. dma_addr_t flush_addr;
  1927. dma_addr_t i, start;
  1928. unsigned int pages;
  1929. flush_addr = dma_addr;
  1930. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1931. dma_addr &= PAGE_MASK;
  1932. start = dma_addr;
  1933. for (i = 0; i < pages; ++i) {
  1934. iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
  1935. start += PAGE_SIZE;
  1936. }
  1937. if (amd_iommu_unmap_flush) {
  1938. dma_ops_free_iova(dma_dom, dma_addr, pages);
  1939. domain_flush_tlb(&dma_dom->domain);
  1940. domain_flush_complete(&dma_dom->domain);
  1941. } else {
  1942. queue_add(dma_dom, dma_addr, pages);
  1943. }
  1944. }
  1945. /*
  1946. * The exported map_single function for dma_ops.
  1947. */
  1948. static dma_addr_t map_page(struct device *dev, struct page *page,
  1949. unsigned long offset, size_t size,
  1950. enum dma_data_direction dir,
  1951. unsigned long attrs)
  1952. {
  1953. phys_addr_t paddr = page_to_phys(page) + offset;
  1954. struct protection_domain *domain;
  1955. struct dma_ops_domain *dma_dom;
  1956. u64 dma_mask;
  1957. domain = get_domain(dev);
  1958. if (PTR_ERR(domain) == -EINVAL)
  1959. return (dma_addr_t)paddr;
  1960. else if (IS_ERR(domain))
  1961. return DMA_ERROR_CODE;
  1962. dma_mask = *dev->dma_mask;
  1963. dma_dom = to_dma_ops_domain(domain);
  1964. return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
  1965. }
  1966. /*
  1967. * The exported unmap_single function for dma_ops.
  1968. */
  1969. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1970. enum dma_data_direction dir, unsigned long attrs)
  1971. {
  1972. struct protection_domain *domain;
  1973. struct dma_ops_domain *dma_dom;
  1974. domain = get_domain(dev);
  1975. if (IS_ERR(domain))
  1976. return;
  1977. dma_dom = to_dma_ops_domain(domain);
  1978. __unmap_single(dma_dom, dma_addr, size, dir);
  1979. }
  1980. static int sg_num_pages(struct device *dev,
  1981. struct scatterlist *sglist,
  1982. int nelems)
  1983. {
  1984. unsigned long mask, boundary_size;
  1985. struct scatterlist *s;
  1986. int i, npages = 0;
  1987. mask = dma_get_seg_boundary(dev);
  1988. boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
  1989. 1UL << (BITS_PER_LONG - PAGE_SHIFT);
  1990. for_each_sg(sglist, s, nelems, i) {
  1991. int p, n;
  1992. s->dma_address = npages << PAGE_SHIFT;
  1993. p = npages % boundary_size;
  1994. n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  1995. if (p + n > boundary_size)
  1996. npages += boundary_size - p;
  1997. npages += n;
  1998. }
  1999. return npages;
  2000. }
  2001. /*
  2002. * The exported map_sg function for dma_ops (handles scatter-gather
  2003. * lists).
  2004. */
  2005. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2006. int nelems, enum dma_data_direction direction,
  2007. unsigned long attrs)
  2008. {
  2009. int mapped_pages = 0, npages = 0, prot = 0, i;
  2010. struct protection_domain *domain;
  2011. struct dma_ops_domain *dma_dom;
  2012. struct scatterlist *s;
  2013. unsigned long address;
  2014. u64 dma_mask;
  2015. domain = get_domain(dev);
  2016. if (IS_ERR(domain))
  2017. return 0;
  2018. dma_dom = to_dma_ops_domain(domain);
  2019. dma_mask = *dev->dma_mask;
  2020. npages = sg_num_pages(dev, sglist, nelems);
  2021. address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
  2022. if (address == DMA_ERROR_CODE)
  2023. goto out_err;
  2024. prot = dir2prot(direction);
  2025. /* Map all sg entries */
  2026. for_each_sg(sglist, s, nelems, i) {
  2027. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  2028. for (j = 0; j < pages; ++j) {
  2029. unsigned long bus_addr, phys_addr;
  2030. int ret;
  2031. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  2032. phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
  2033. ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
  2034. if (ret)
  2035. goto out_unmap;
  2036. mapped_pages += 1;
  2037. }
  2038. }
  2039. /* Everything is mapped - write the right values into s->dma_address */
  2040. for_each_sg(sglist, s, nelems, i) {
  2041. s->dma_address += address + s->offset;
  2042. s->dma_length = s->length;
  2043. }
  2044. return nelems;
  2045. out_unmap:
  2046. pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
  2047. dev_name(dev), npages);
  2048. for_each_sg(sglist, s, nelems, i) {
  2049. int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
  2050. for (j = 0; j < pages; ++j) {
  2051. unsigned long bus_addr;
  2052. bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
  2053. iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
  2054. if (--mapped_pages)
  2055. goto out_free_iova;
  2056. }
  2057. }
  2058. out_free_iova:
  2059. free_iova_fast(&dma_dom->iovad, address, npages);
  2060. out_err:
  2061. return 0;
  2062. }
  2063. /*
  2064. * The exported map_sg function for dma_ops (handles scatter-gather
  2065. * lists).
  2066. */
  2067. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2068. int nelems, enum dma_data_direction dir,
  2069. unsigned long attrs)
  2070. {
  2071. struct protection_domain *domain;
  2072. struct dma_ops_domain *dma_dom;
  2073. unsigned long startaddr;
  2074. int npages = 2;
  2075. domain = get_domain(dev);
  2076. if (IS_ERR(domain))
  2077. return;
  2078. startaddr = sg_dma_address(sglist) & PAGE_MASK;
  2079. dma_dom = to_dma_ops_domain(domain);
  2080. npages = sg_num_pages(dev, sglist, nelems);
  2081. __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
  2082. }
  2083. /*
  2084. * The exported alloc_coherent function for dma_ops.
  2085. */
  2086. static void *alloc_coherent(struct device *dev, size_t size,
  2087. dma_addr_t *dma_addr, gfp_t flag,
  2088. unsigned long attrs)
  2089. {
  2090. u64 dma_mask = dev->coherent_dma_mask;
  2091. struct protection_domain *domain;
  2092. struct dma_ops_domain *dma_dom;
  2093. struct page *page;
  2094. domain = get_domain(dev);
  2095. if (PTR_ERR(domain) == -EINVAL) {
  2096. page = alloc_pages(flag, get_order(size));
  2097. *dma_addr = page_to_phys(page);
  2098. return page_address(page);
  2099. } else if (IS_ERR(domain))
  2100. return NULL;
  2101. dma_dom = to_dma_ops_domain(domain);
  2102. size = PAGE_ALIGN(size);
  2103. dma_mask = dev->coherent_dma_mask;
  2104. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2105. flag |= __GFP_ZERO;
  2106. page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
  2107. if (!page) {
  2108. if (!gfpflags_allow_blocking(flag))
  2109. return NULL;
  2110. page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
  2111. get_order(size));
  2112. if (!page)
  2113. return NULL;
  2114. }
  2115. if (!dma_mask)
  2116. dma_mask = *dev->dma_mask;
  2117. *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
  2118. size, DMA_BIDIRECTIONAL, dma_mask);
  2119. if (*dma_addr == DMA_ERROR_CODE)
  2120. goto out_free;
  2121. return page_address(page);
  2122. out_free:
  2123. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2124. __free_pages(page, get_order(size));
  2125. return NULL;
  2126. }
  2127. /*
  2128. * The exported free_coherent function for dma_ops.
  2129. */
  2130. static void free_coherent(struct device *dev, size_t size,
  2131. void *virt_addr, dma_addr_t dma_addr,
  2132. unsigned long attrs)
  2133. {
  2134. struct protection_domain *domain;
  2135. struct dma_ops_domain *dma_dom;
  2136. struct page *page;
  2137. page = virt_to_page(virt_addr);
  2138. size = PAGE_ALIGN(size);
  2139. domain = get_domain(dev);
  2140. if (IS_ERR(domain))
  2141. goto free_mem;
  2142. dma_dom = to_dma_ops_domain(domain);
  2143. __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
  2144. free_mem:
  2145. if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
  2146. __free_pages(page, get_order(size));
  2147. }
  2148. /*
  2149. * This function is called by the DMA layer to find out if we can handle a
  2150. * particular device. It is part of the dma_ops.
  2151. */
  2152. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2153. {
  2154. return check_device(dev);
  2155. }
  2156. static struct dma_map_ops amd_iommu_dma_ops = {
  2157. .alloc = alloc_coherent,
  2158. .free = free_coherent,
  2159. .map_page = map_page,
  2160. .unmap_page = unmap_page,
  2161. .map_sg = map_sg,
  2162. .unmap_sg = unmap_sg,
  2163. .dma_supported = amd_iommu_dma_supported,
  2164. };
  2165. static int init_reserved_iova_ranges(void)
  2166. {
  2167. struct pci_dev *pdev = NULL;
  2168. struct iova *val;
  2169. init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
  2170. IOVA_START_PFN, DMA_32BIT_PFN);
  2171. lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
  2172. &reserved_rbtree_key);
  2173. /* MSI memory range */
  2174. val = reserve_iova(&reserved_iova_ranges,
  2175. IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
  2176. if (!val) {
  2177. pr_err("Reserving MSI range failed\n");
  2178. return -ENOMEM;
  2179. }
  2180. /* HT memory range */
  2181. val = reserve_iova(&reserved_iova_ranges,
  2182. IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
  2183. if (!val) {
  2184. pr_err("Reserving HT range failed\n");
  2185. return -ENOMEM;
  2186. }
  2187. /*
  2188. * Memory used for PCI resources
  2189. * FIXME: Check whether we can reserve the PCI-hole completly
  2190. */
  2191. for_each_pci_dev(pdev) {
  2192. int i;
  2193. for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
  2194. struct resource *r = &pdev->resource[i];
  2195. if (!(r->flags & IORESOURCE_MEM))
  2196. continue;
  2197. val = reserve_iova(&reserved_iova_ranges,
  2198. IOVA_PFN(r->start),
  2199. IOVA_PFN(r->end));
  2200. if (!val) {
  2201. pr_err("Reserve pci-resource range failed\n");
  2202. return -ENOMEM;
  2203. }
  2204. }
  2205. }
  2206. return 0;
  2207. }
  2208. int __init amd_iommu_init_api(void)
  2209. {
  2210. int ret, cpu, err = 0;
  2211. ret = iova_cache_get();
  2212. if (ret)
  2213. return ret;
  2214. ret = init_reserved_iova_ranges();
  2215. if (ret)
  2216. return ret;
  2217. for_each_possible_cpu(cpu) {
  2218. struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);
  2219. queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
  2220. sizeof(*queue->entries),
  2221. GFP_KERNEL);
  2222. if (!queue->entries)
  2223. goto out_put_iova;
  2224. spin_lock_init(&queue->lock);
  2225. }
  2226. err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2227. if (err)
  2228. return err;
  2229. #ifdef CONFIG_ARM_AMBA
  2230. err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
  2231. if (err)
  2232. return err;
  2233. #endif
  2234. err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
  2235. if (err)
  2236. return err;
  2237. return 0;
  2238. out_put_iova:
  2239. for_each_possible_cpu(cpu) {
  2240. struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);
  2241. kfree(queue->entries);
  2242. }
  2243. return -ENOMEM;
  2244. }
  2245. int __init amd_iommu_init_dma_ops(void)
  2246. {
  2247. setup_timer(&queue_timer, queue_flush_timeout, 0);
  2248. atomic_set(&queue_timer_on, 0);
  2249. swiotlb = iommu_pass_through ? 1 : 0;
  2250. iommu_detected = 1;
  2251. /*
  2252. * In case we don't initialize SWIOTLB (actually the common case
  2253. * when AMD IOMMU is enabled), make sure there are global
  2254. * dma_ops set as a fall-back for devices not handled by this
  2255. * driver (for example non-PCI devices).
  2256. */
  2257. if (!swiotlb)
  2258. dma_ops = &nommu_dma_ops;
  2259. if (amd_iommu_unmap_flush)
  2260. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2261. else
  2262. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2263. return 0;
  2264. }
  2265. /*****************************************************************************
  2266. *
  2267. * The following functions belong to the exported interface of AMD IOMMU
  2268. *
  2269. * This interface allows access to lower level functions of the IOMMU
  2270. * like protection domain handling and assignement of devices to domains
  2271. * which is not possible with the dma_ops interface.
  2272. *
  2273. *****************************************************************************/
  2274. static void cleanup_domain(struct protection_domain *domain)
  2275. {
  2276. struct iommu_dev_data *entry;
  2277. unsigned long flags;
  2278. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2279. while (!list_empty(&domain->dev_list)) {
  2280. entry = list_first_entry(&domain->dev_list,
  2281. struct iommu_dev_data, list);
  2282. __detach_device(entry);
  2283. }
  2284. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2285. }
  2286. static void protection_domain_free(struct protection_domain *domain)
  2287. {
  2288. if (!domain)
  2289. return;
  2290. del_domain_from_list(domain);
  2291. if (domain->id)
  2292. domain_id_free(domain->id);
  2293. kfree(domain);
  2294. }
  2295. static int protection_domain_init(struct protection_domain *domain)
  2296. {
  2297. spin_lock_init(&domain->lock);
  2298. mutex_init(&domain->api_lock);
  2299. domain->id = domain_id_alloc();
  2300. if (!domain->id)
  2301. return -ENOMEM;
  2302. INIT_LIST_HEAD(&domain->dev_list);
  2303. return 0;
  2304. }
  2305. static struct protection_domain *protection_domain_alloc(void)
  2306. {
  2307. struct protection_domain *domain;
  2308. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2309. if (!domain)
  2310. return NULL;
  2311. if (protection_domain_init(domain))
  2312. goto out_err;
  2313. add_domain_to_list(domain);
  2314. return domain;
  2315. out_err:
  2316. kfree(domain);
  2317. return NULL;
  2318. }
  2319. static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
  2320. {
  2321. struct protection_domain *pdomain;
  2322. struct dma_ops_domain *dma_domain;
  2323. switch (type) {
  2324. case IOMMU_DOMAIN_UNMANAGED:
  2325. pdomain = protection_domain_alloc();
  2326. if (!pdomain)
  2327. return NULL;
  2328. pdomain->mode = PAGE_MODE_3_LEVEL;
  2329. pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2330. if (!pdomain->pt_root) {
  2331. protection_domain_free(pdomain);
  2332. return NULL;
  2333. }
  2334. pdomain->domain.geometry.aperture_start = 0;
  2335. pdomain->domain.geometry.aperture_end = ~0ULL;
  2336. pdomain->domain.geometry.force_aperture = true;
  2337. break;
  2338. case IOMMU_DOMAIN_DMA:
  2339. dma_domain = dma_ops_domain_alloc();
  2340. if (!dma_domain) {
  2341. pr_err("AMD-Vi: Failed to allocate\n");
  2342. return NULL;
  2343. }
  2344. pdomain = &dma_domain->domain;
  2345. break;
  2346. case IOMMU_DOMAIN_IDENTITY:
  2347. pdomain = protection_domain_alloc();
  2348. if (!pdomain)
  2349. return NULL;
  2350. pdomain->mode = PAGE_MODE_NONE;
  2351. break;
  2352. default:
  2353. return NULL;
  2354. }
  2355. return &pdomain->domain;
  2356. }
  2357. static void amd_iommu_domain_free(struct iommu_domain *dom)
  2358. {
  2359. struct protection_domain *domain;
  2360. struct dma_ops_domain *dma_dom;
  2361. domain = to_pdomain(dom);
  2362. if (domain->dev_cnt > 0)
  2363. cleanup_domain(domain);
  2364. BUG_ON(domain->dev_cnt != 0);
  2365. if (!dom)
  2366. return;
  2367. switch (dom->type) {
  2368. case IOMMU_DOMAIN_DMA:
  2369. /*
  2370. * First make sure the domain is no longer referenced from the
  2371. * flush queue
  2372. */
  2373. queue_flush_all();
  2374. /* Now release the domain */
  2375. dma_dom = to_dma_ops_domain(domain);
  2376. dma_ops_domain_free(dma_dom);
  2377. break;
  2378. default:
  2379. if (domain->mode != PAGE_MODE_NONE)
  2380. free_pagetable(domain);
  2381. if (domain->flags & PD_IOMMUV2_MASK)
  2382. free_gcr3_table(domain);
  2383. protection_domain_free(domain);
  2384. break;
  2385. }
  2386. }
  2387. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2388. struct device *dev)
  2389. {
  2390. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2391. struct amd_iommu *iommu;
  2392. int devid;
  2393. if (!check_device(dev))
  2394. return;
  2395. devid = get_device_id(dev);
  2396. if (devid < 0)
  2397. return;
  2398. if (dev_data->domain != NULL)
  2399. detach_device(dev);
  2400. iommu = amd_iommu_rlookup_table[devid];
  2401. if (!iommu)
  2402. return;
  2403. #ifdef CONFIG_IRQ_REMAP
  2404. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
  2405. (dom->type == IOMMU_DOMAIN_UNMANAGED))
  2406. dev_data->use_vapic = 0;
  2407. #endif
  2408. iommu_completion_wait(iommu);
  2409. }
  2410. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2411. struct device *dev)
  2412. {
  2413. struct protection_domain *domain = to_pdomain(dom);
  2414. struct iommu_dev_data *dev_data;
  2415. struct amd_iommu *iommu;
  2416. int ret;
  2417. if (!check_device(dev))
  2418. return -EINVAL;
  2419. dev_data = dev->archdata.iommu;
  2420. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2421. if (!iommu)
  2422. return -EINVAL;
  2423. if (dev_data->domain)
  2424. detach_device(dev);
  2425. ret = attach_device(dev, domain);
  2426. #ifdef CONFIG_IRQ_REMAP
  2427. if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  2428. if (dom->type == IOMMU_DOMAIN_UNMANAGED)
  2429. dev_data->use_vapic = 1;
  2430. else
  2431. dev_data->use_vapic = 0;
  2432. }
  2433. #endif
  2434. iommu_completion_wait(iommu);
  2435. return ret;
  2436. }
  2437. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2438. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2439. {
  2440. struct protection_domain *domain = to_pdomain(dom);
  2441. int prot = 0;
  2442. int ret;
  2443. if (domain->mode == PAGE_MODE_NONE)
  2444. return -EINVAL;
  2445. if (iommu_prot & IOMMU_READ)
  2446. prot |= IOMMU_PROT_IR;
  2447. if (iommu_prot & IOMMU_WRITE)
  2448. prot |= IOMMU_PROT_IW;
  2449. mutex_lock(&domain->api_lock);
  2450. ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
  2451. mutex_unlock(&domain->api_lock);
  2452. return ret;
  2453. }
  2454. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2455. size_t page_size)
  2456. {
  2457. struct protection_domain *domain = to_pdomain(dom);
  2458. size_t unmap_size;
  2459. if (domain->mode == PAGE_MODE_NONE)
  2460. return -EINVAL;
  2461. mutex_lock(&domain->api_lock);
  2462. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2463. mutex_unlock(&domain->api_lock);
  2464. domain_flush_tlb_pde(domain);
  2465. domain_flush_complete(domain);
  2466. return unmap_size;
  2467. }
  2468. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2469. dma_addr_t iova)
  2470. {
  2471. struct protection_domain *domain = to_pdomain(dom);
  2472. unsigned long offset_mask, pte_pgsize;
  2473. u64 *pte, __pte;
  2474. if (domain->mode == PAGE_MODE_NONE)
  2475. return iova;
  2476. pte = fetch_pte(domain, iova, &pte_pgsize);
  2477. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2478. return 0;
  2479. offset_mask = pte_pgsize - 1;
  2480. __pte = *pte & PM_ADDR_MASK;
  2481. return (__pte & ~offset_mask) | (iova & offset_mask);
  2482. }
  2483. static bool amd_iommu_capable(enum iommu_cap cap)
  2484. {
  2485. switch (cap) {
  2486. case IOMMU_CAP_CACHE_COHERENCY:
  2487. return true;
  2488. case IOMMU_CAP_INTR_REMAP:
  2489. return (irq_remapping_enabled == 1);
  2490. case IOMMU_CAP_NOEXEC:
  2491. return false;
  2492. }
  2493. return false;
  2494. }
  2495. static void amd_iommu_get_dm_regions(struct device *dev,
  2496. struct list_head *head)
  2497. {
  2498. struct unity_map_entry *entry;
  2499. int devid;
  2500. devid = get_device_id(dev);
  2501. if (devid < 0)
  2502. return;
  2503. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  2504. struct iommu_dm_region *region;
  2505. if (devid < entry->devid_start || devid > entry->devid_end)
  2506. continue;
  2507. region = kzalloc(sizeof(*region), GFP_KERNEL);
  2508. if (!region) {
  2509. pr_err("Out of memory allocating dm-regions for %s\n",
  2510. dev_name(dev));
  2511. return;
  2512. }
  2513. region->start = entry->address_start;
  2514. region->length = entry->address_end - entry->address_start;
  2515. if (entry->prot & IOMMU_PROT_IR)
  2516. region->prot |= IOMMU_READ;
  2517. if (entry->prot & IOMMU_PROT_IW)
  2518. region->prot |= IOMMU_WRITE;
  2519. list_add_tail(&region->list, head);
  2520. }
  2521. }
  2522. static void amd_iommu_put_dm_regions(struct device *dev,
  2523. struct list_head *head)
  2524. {
  2525. struct iommu_dm_region *entry, *next;
  2526. list_for_each_entry_safe(entry, next, head, list)
  2527. kfree(entry);
  2528. }
  2529. static void amd_iommu_apply_dm_region(struct device *dev,
  2530. struct iommu_domain *domain,
  2531. struct iommu_dm_region *region)
  2532. {
  2533. struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
  2534. unsigned long start, end;
  2535. start = IOVA_PFN(region->start);
  2536. end = IOVA_PFN(region->start + region->length - 1);
  2537. WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
  2538. }
  2539. static const struct iommu_ops amd_iommu_ops = {
  2540. .capable = amd_iommu_capable,
  2541. .domain_alloc = amd_iommu_domain_alloc,
  2542. .domain_free = amd_iommu_domain_free,
  2543. .attach_dev = amd_iommu_attach_device,
  2544. .detach_dev = amd_iommu_detach_device,
  2545. .map = amd_iommu_map,
  2546. .unmap = amd_iommu_unmap,
  2547. .map_sg = default_iommu_map_sg,
  2548. .iova_to_phys = amd_iommu_iova_to_phys,
  2549. .add_device = amd_iommu_add_device,
  2550. .remove_device = amd_iommu_remove_device,
  2551. .device_group = amd_iommu_device_group,
  2552. .get_dm_regions = amd_iommu_get_dm_regions,
  2553. .put_dm_regions = amd_iommu_put_dm_regions,
  2554. .apply_dm_region = amd_iommu_apply_dm_region,
  2555. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2556. };
  2557. /*****************************************************************************
  2558. *
  2559. * The next functions do a basic initialization of IOMMU for pass through
  2560. * mode
  2561. *
  2562. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2563. * DMA-API translation.
  2564. *
  2565. *****************************************************************************/
  2566. /* IOMMUv2 specific functions */
  2567. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2568. {
  2569. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2570. }
  2571. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2572. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2573. {
  2574. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2575. }
  2576. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2577. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2578. {
  2579. struct protection_domain *domain = to_pdomain(dom);
  2580. unsigned long flags;
  2581. spin_lock_irqsave(&domain->lock, flags);
  2582. /* Update data structure */
  2583. domain->mode = PAGE_MODE_NONE;
  2584. domain->updated = true;
  2585. /* Make changes visible to IOMMUs */
  2586. update_domain(domain);
  2587. /* Page-table is not visible to IOMMU anymore, so free it */
  2588. free_pagetable(domain);
  2589. spin_unlock_irqrestore(&domain->lock, flags);
  2590. }
  2591. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2592. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2593. {
  2594. struct protection_domain *domain = to_pdomain(dom);
  2595. unsigned long flags;
  2596. int levels, ret;
  2597. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2598. return -EINVAL;
  2599. /* Number of GCR3 table levels required */
  2600. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2601. levels += 1;
  2602. if (levels > amd_iommu_max_glx_val)
  2603. return -EINVAL;
  2604. spin_lock_irqsave(&domain->lock, flags);
  2605. /*
  2606. * Save us all sanity checks whether devices already in the
  2607. * domain support IOMMUv2. Just force that the domain has no
  2608. * devices attached when it is switched into IOMMUv2 mode.
  2609. */
  2610. ret = -EBUSY;
  2611. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2612. goto out;
  2613. ret = -ENOMEM;
  2614. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2615. if (domain->gcr3_tbl == NULL)
  2616. goto out;
  2617. domain->glx = levels;
  2618. domain->flags |= PD_IOMMUV2_MASK;
  2619. domain->updated = true;
  2620. update_domain(domain);
  2621. ret = 0;
  2622. out:
  2623. spin_unlock_irqrestore(&domain->lock, flags);
  2624. return ret;
  2625. }
  2626. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2627. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2628. u64 address, bool size)
  2629. {
  2630. struct iommu_dev_data *dev_data;
  2631. struct iommu_cmd cmd;
  2632. int i, ret;
  2633. if (!(domain->flags & PD_IOMMUV2_MASK))
  2634. return -EINVAL;
  2635. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2636. /*
  2637. * IOMMU TLB needs to be flushed before Device TLB to
  2638. * prevent device TLB refill from IOMMU TLB
  2639. */
  2640. for (i = 0; i < amd_iommus_present; ++i) {
  2641. if (domain->dev_iommu[i] == 0)
  2642. continue;
  2643. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2644. if (ret != 0)
  2645. goto out;
  2646. }
  2647. /* Wait until IOMMU TLB flushes are complete */
  2648. domain_flush_complete(domain);
  2649. /* Now flush device TLBs */
  2650. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2651. struct amd_iommu *iommu;
  2652. int qdep;
  2653. /*
  2654. There might be non-IOMMUv2 capable devices in an IOMMUv2
  2655. * domain.
  2656. */
  2657. if (!dev_data->ats.enabled)
  2658. continue;
  2659. qdep = dev_data->ats.qdep;
  2660. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2661. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2662. qdep, address, size);
  2663. ret = iommu_queue_command(iommu, &cmd);
  2664. if (ret != 0)
  2665. goto out;
  2666. }
  2667. /* Wait until all device TLBs are flushed */
  2668. domain_flush_complete(domain);
  2669. ret = 0;
  2670. out:
  2671. return ret;
  2672. }
  2673. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2674. u64 address)
  2675. {
  2676. return __flush_pasid(domain, pasid, address, false);
  2677. }
  2678. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2679. u64 address)
  2680. {
  2681. struct protection_domain *domain = to_pdomain(dom);
  2682. unsigned long flags;
  2683. int ret;
  2684. spin_lock_irqsave(&domain->lock, flags);
  2685. ret = __amd_iommu_flush_page(domain, pasid, address);
  2686. spin_unlock_irqrestore(&domain->lock, flags);
  2687. return ret;
  2688. }
  2689. EXPORT_SYMBOL(amd_iommu_flush_page);
  2690. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2691. {
  2692. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2693. true);
  2694. }
  2695. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2696. {
  2697. struct protection_domain *domain = to_pdomain(dom);
  2698. unsigned long flags;
  2699. int ret;
  2700. spin_lock_irqsave(&domain->lock, flags);
  2701. ret = __amd_iommu_flush_tlb(domain, pasid);
  2702. spin_unlock_irqrestore(&domain->lock, flags);
  2703. return ret;
  2704. }
  2705. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2706. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2707. {
  2708. int index;
  2709. u64 *pte;
  2710. while (true) {
  2711. index = (pasid >> (9 * level)) & 0x1ff;
  2712. pte = &root[index];
  2713. if (level == 0)
  2714. break;
  2715. if (!(*pte & GCR3_VALID)) {
  2716. if (!alloc)
  2717. return NULL;
  2718. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2719. if (root == NULL)
  2720. return NULL;
  2721. *pte = __pa(root) | GCR3_VALID;
  2722. }
  2723. root = __va(*pte & PAGE_MASK);
  2724. level -= 1;
  2725. }
  2726. return pte;
  2727. }
  2728. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2729. unsigned long cr3)
  2730. {
  2731. u64 *pte;
  2732. if (domain->mode != PAGE_MODE_NONE)
  2733. return -EINVAL;
  2734. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2735. if (pte == NULL)
  2736. return -ENOMEM;
  2737. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2738. return __amd_iommu_flush_tlb(domain, pasid);
  2739. }
  2740. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2741. {
  2742. u64 *pte;
  2743. if (domain->mode != PAGE_MODE_NONE)
  2744. return -EINVAL;
  2745. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2746. if (pte == NULL)
  2747. return 0;
  2748. *pte = 0;
  2749. return __amd_iommu_flush_tlb(domain, pasid);
  2750. }
  2751. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2752. unsigned long cr3)
  2753. {
  2754. struct protection_domain *domain = to_pdomain(dom);
  2755. unsigned long flags;
  2756. int ret;
  2757. spin_lock_irqsave(&domain->lock, flags);
  2758. ret = __set_gcr3(domain, pasid, cr3);
  2759. spin_unlock_irqrestore(&domain->lock, flags);
  2760. return ret;
  2761. }
  2762. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2763. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2764. {
  2765. struct protection_domain *domain = to_pdomain(dom);
  2766. unsigned long flags;
  2767. int ret;
  2768. spin_lock_irqsave(&domain->lock, flags);
  2769. ret = __clear_gcr3(domain, pasid);
  2770. spin_unlock_irqrestore(&domain->lock, flags);
  2771. return ret;
  2772. }
  2773. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2774. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2775. int status, int tag)
  2776. {
  2777. struct iommu_dev_data *dev_data;
  2778. struct amd_iommu *iommu;
  2779. struct iommu_cmd cmd;
  2780. dev_data = get_dev_data(&pdev->dev);
  2781. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2782. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2783. tag, dev_data->pri_tlp);
  2784. return iommu_queue_command(iommu, &cmd);
  2785. }
  2786. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2787. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2788. {
  2789. struct protection_domain *pdomain;
  2790. pdomain = get_domain(&pdev->dev);
  2791. if (IS_ERR(pdomain))
  2792. return NULL;
  2793. /* Only return IOMMUv2 domains */
  2794. if (!(pdomain->flags & PD_IOMMUV2_MASK))
  2795. return NULL;
  2796. return &pdomain->domain;
  2797. }
  2798. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2799. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2800. {
  2801. struct iommu_dev_data *dev_data;
  2802. if (!amd_iommu_v2_supported())
  2803. return;
  2804. dev_data = get_dev_data(&pdev->dev);
  2805. dev_data->errata |= (1 << erratum);
  2806. }
  2807. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2808. int amd_iommu_device_info(struct pci_dev *pdev,
  2809. struct amd_iommu_device_info *info)
  2810. {
  2811. int max_pasids;
  2812. int pos;
  2813. if (pdev == NULL || info == NULL)
  2814. return -EINVAL;
  2815. if (!amd_iommu_v2_supported())
  2816. return -EINVAL;
  2817. memset(info, 0, sizeof(*info));
  2818. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2819. if (pos)
  2820. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2821. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2822. if (pos)
  2823. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2824. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2825. if (pos) {
  2826. int features;
  2827. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2828. max_pasids = min(max_pasids, (1 << 20));
  2829. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2830. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2831. features = pci_pasid_features(pdev);
  2832. if (features & PCI_PASID_CAP_EXEC)
  2833. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2834. if (features & PCI_PASID_CAP_PRIV)
  2835. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2836. }
  2837. return 0;
  2838. }
  2839. EXPORT_SYMBOL(amd_iommu_device_info);
  2840. #ifdef CONFIG_IRQ_REMAP
  2841. /*****************************************************************************
  2842. *
  2843. * Interrupt Remapping Implementation
  2844. *
  2845. *****************************************************************************/
  2846. static struct irq_chip amd_ir_chip;
  2847. #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
  2848. #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
  2849. #define DTE_IRQ_TABLE_LEN (8ULL << 1)
  2850. #define DTE_IRQ_REMAP_ENABLE 1ULL
  2851. static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
  2852. {
  2853. u64 dte;
  2854. dte = amd_iommu_dev_table[devid].data[2];
  2855. dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
  2856. dte |= virt_to_phys(table->table);
  2857. dte |= DTE_IRQ_REMAP_INTCTL;
  2858. dte |= DTE_IRQ_TABLE_LEN;
  2859. dte |= DTE_IRQ_REMAP_ENABLE;
  2860. amd_iommu_dev_table[devid].data[2] = dte;
  2861. }
  2862. static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
  2863. {
  2864. struct irq_remap_table *table = NULL;
  2865. struct amd_iommu *iommu;
  2866. unsigned long flags;
  2867. u16 alias;
  2868. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2869. iommu = amd_iommu_rlookup_table[devid];
  2870. if (!iommu)
  2871. goto out_unlock;
  2872. table = irq_lookup_table[devid];
  2873. if (table)
  2874. goto out_unlock;
  2875. alias = amd_iommu_alias_table[devid];
  2876. table = irq_lookup_table[alias];
  2877. if (table) {
  2878. irq_lookup_table[devid] = table;
  2879. set_dte_irq_entry(devid, table);
  2880. iommu_flush_dte(iommu, devid);
  2881. goto out;
  2882. }
  2883. /* Nothing there yet, allocate new irq remapping table */
  2884. table = kzalloc(sizeof(*table), GFP_ATOMIC);
  2885. if (!table)
  2886. goto out_unlock;
  2887. /* Initialize table spin-lock */
  2888. spin_lock_init(&table->lock);
  2889. if (ioapic)
  2890. /* Keep the first 32 indexes free for IOAPIC interrupts */
  2891. table->min_index = 32;
  2892. table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
  2893. if (!table->table) {
  2894. kfree(table);
  2895. table = NULL;
  2896. goto out_unlock;
  2897. }
  2898. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  2899. memset(table->table, 0,
  2900. MAX_IRQS_PER_TABLE * sizeof(u32));
  2901. else
  2902. memset(table->table, 0,
  2903. (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
  2904. if (ioapic) {
  2905. int i;
  2906. for (i = 0; i < 32; ++i)
  2907. iommu->irte_ops->set_allocated(table, i);
  2908. }
  2909. irq_lookup_table[devid] = table;
  2910. set_dte_irq_entry(devid, table);
  2911. iommu_flush_dte(iommu, devid);
  2912. if (devid != alias) {
  2913. irq_lookup_table[alias] = table;
  2914. set_dte_irq_entry(alias, table);
  2915. iommu_flush_dte(iommu, alias);
  2916. }
  2917. out:
  2918. iommu_completion_wait(iommu);
  2919. out_unlock:
  2920. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2921. return table;
  2922. }
  2923. static int alloc_irq_index(u16 devid, int count)
  2924. {
  2925. struct irq_remap_table *table;
  2926. unsigned long flags;
  2927. int index, c;
  2928. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  2929. if (!iommu)
  2930. return -ENODEV;
  2931. table = get_irq_table(devid, false);
  2932. if (!table)
  2933. return -ENODEV;
  2934. spin_lock_irqsave(&table->lock, flags);
  2935. /* Scan table for free entries */
  2936. for (c = 0, index = table->min_index;
  2937. index < MAX_IRQS_PER_TABLE;
  2938. ++index) {
  2939. if (!iommu->irte_ops->is_allocated(table, index))
  2940. c += 1;
  2941. else
  2942. c = 0;
  2943. if (c == count) {
  2944. for (; c != 0; --c)
  2945. iommu->irte_ops->set_allocated(table, index - c + 1);
  2946. index -= count - 1;
  2947. goto out;
  2948. }
  2949. }
  2950. index = -ENOSPC;
  2951. out:
  2952. spin_unlock_irqrestore(&table->lock, flags);
  2953. return index;
  2954. }
  2955. static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
  2956. struct amd_ir_data *data)
  2957. {
  2958. struct irq_remap_table *table;
  2959. struct amd_iommu *iommu;
  2960. unsigned long flags;
  2961. struct irte_ga *entry;
  2962. iommu = amd_iommu_rlookup_table[devid];
  2963. if (iommu == NULL)
  2964. return -EINVAL;
  2965. table = get_irq_table(devid, false);
  2966. if (!table)
  2967. return -ENOMEM;
  2968. spin_lock_irqsave(&table->lock, flags);
  2969. entry = (struct irte_ga *)table->table;
  2970. entry = &entry[index];
  2971. entry->lo.fields_remap.valid = 0;
  2972. entry->hi.val = irte->hi.val;
  2973. entry->lo.val = irte->lo.val;
  2974. entry->lo.fields_remap.valid = 1;
  2975. if (data)
  2976. data->ref = entry;
  2977. spin_unlock_irqrestore(&table->lock, flags);
  2978. iommu_flush_irt(iommu, devid);
  2979. iommu_completion_wait(iommu);
  2980. return 0;
  2981. }
  2982. static int modify_irte(u16 devid, int index, union irte *irte)
  2983. {
  2984. struct irq_remap_table *table;
  2985. struct amd_iommu *iommu;
  2986. unsigned long flags;
  2987. iommu = amd_iommu_rlookup_table[devid];
  2988. if (iommu == NULL)
  2989. return -EINVAL;
  2990. table = get_irq_table(devid, false);
  2991. if (!table)
  2992. return -ENOMEM;
  2993. spin_lock_irqsave(&table->lock, flags);
  2994. table->table[index] = irte->val;
  2995. spin_unlock_irqrestore(&table->lock, flags);
  2996. iommu_flush_irt(iommu, devid);
  2997. iommu_completion_wait(iommu);
  2998. return 0;
  2999. }
  3000. static void free_irte(u16 devid, int index)
  3001. {
  3002. struct irq_remap_table *table;
  3003. struct amd_iommu *iommu;
  3004. unsigned long flags;
  3005. iommu = amd_iommu_rlookup_table[devid];
  3006. if (iommu == NULL)
  3007. return;
  3008. table = get_irq_table(devid, false);
  3009. if (!table)
  3010. return;
  3011. spin_lock_irqsave(&table->lock, flags);
  3012. iommu->irte_ops->clear_allocated(table, index);
  3013. spin_unlock_irqrestore(&table->lock, flags);
  3014. iommu_flush_irt(iommu, devid);
  3015. iommu_completion_wait(iommu);
  3016. }
  3017. static void irte_prepare(void *entry,
  3018. u32 delivery_mode, u32 dest_mode,
  3019. u8 vector, u32 dest_apicid, int devid)
  3020. {
  3021. union irte *irte = (union irte *) entry;
  3022. irte->val = 0;
  3023. irte->fields.vector = vector;
  3024. irte->fields.int_type = delivery_mode;
  3025. irte->fields.destination = dest_apicid;
  3026. irte->fields.dm = dest_mode;
  3027. irte->fields.valid = 1;
  3028. }
  3029. static void irte_ga_prepare(void *entry,
  3030. u32 delivery_mode, u32 dest_mode,
  3031. u8 vector, u32 dest_apicid, int devid)
  3032. {
  3033. struct irte_ga *irte = (struct irte_ga *) entry;
  3034. irte->lo.val = 0;
  3035. irte->hi.val = 0;
  3036. irte->lo.fields_remap.int_type = delivery_mode;
  3037. irte->lo.fields_remap.dm = dest_mode;
  3038. irte->hi.fields.vector = vector;
  3039. irte->lo.fields_remap.destination = dest_apicid;
  3040. irte->lo.fields_remap.valid = 1;
  3041. }
  3042. static void irte_activate(void *entry, u16 devid, u16 index)
  3043. {
  3044. union irte *irte = (union irte *) entry;
  3045. irte->fields.valid = 1;
  3046. modify_irte(devid, index, irte);
  3047. }
  3048. static void irte_ga_activate(void *entry, u16 devid, u16 index)
  3049. {
  3050. struct irte_ga *irte = (struct irte_ga *) entry;
  3051. irte->lo.fields_remap.valid = 1;
  3052. modify_irte_ga(devid, index, irte, NULL);
  3053. }
  3054. static void irte_deactivate(void *entry, u16 devid, u16 index)
  3055. {
  3056. union irte *irte = (union irte *) entry;
  3057. irte->fields.valid = 0;
  3058. modify_irte(devid, index, irte);
  3059. }
  3060. static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
  3061. {
  3062. struct irte_ga *irte = (struct irte_ga *) entry;
  3063. irte->lo.fields_remap.valid = 0;
  3064. modify_irte_ga(devid, index, irte, NULL);
  3065. }
  3066. static void irte_set_affinity(void *entry, u16 devid, u16 index,
  3067. u8 vector, u32 dest_apicid)
  3068. {
  3069. union irte *irte = (union irte *) entry;
  3070. irte->fields.vector = vector;
  3071. irte->fields.destination = dest_apicid;
  3072. modify_irte(devid, index, irte);
  3073. }
  3074. static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
  3075. u8 vector, u32 dest_apicid)
  3076. {
  3077. struct irte_ga *irte = (struct irte_ga *) entry;
  3078. struct iommu_dev_data *dev_data = search_dev_data(devid);
  3079. if (!dev_data || !dev_data->use_vapic ||
  3080. !irte->lo.fields_remap.guest_mode) {
  3081. irte->hi.fields.vector = vector;
  3082. irte->lo.fields_remap.destination = dest_apicid;
  3083. modify_irte_ga(devid, index, irte, NULL);
  3084. }
  3085. }
  3086. #define IRTE_ALLOCATED (~1U)
  3087. static void irte_set_allocated(struct irq_remap_table *table, int index)
  3088. {
  3089. table->table[index] = IRTE_ALLOCATED;
  3090. }
  3091. static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
  3092. {
  3093. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3094. struct irte_ga *irte = &ptr[index];
  3095. memset(&irte->lo.val, 0, sizeof(u64));
  3096. memset(&irte->hi.val, 0, sizeof(u64));
  3097. irte->hi.fields.vector = 0xff;
  3098. }
  3099. static bool irte_is_allocated(struct irq_remap_table *table, int index)
  3100. {
  3101. union irte *ptr = (union irte *)table->table;
  3102. union irte *irte = &ptr[index];
  3103. return irte->val != 0;
  3104. }
  3105. static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
  3106. {
  3107. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3108. struct irte_ga *irte = &ptr[index];
  3109. return irte->hi.fields.vector != 0;
  3110. }
  3111. static void irte_clear_allocated(struct irq_remap_table *table, int index)
  3112. {
  3113. table->table[index] = 0;
  3114. }
  3115. static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
  3116. {
  3117. struct irte_ga *ptr = (struct irte_ga *)table->table;
  3118. struct irte_ga *irte = &ptr[index];
  3119. memset(&irte->lo.val, 0, sizeof(u64));
  3120. memset(&irte->hi.val, 0, sizeof(u64));
  3121. }
  3122. static int get_devid(struct irq_alloc_info *info)
  3123. {
  3124. int devid = -1;
  3125. switch (info->type) {
  3126. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3127. devid = get_ioapic_devid(info->ioapic_id);
  3128. break;
  3129. case X86_IRQ_ALLOC_TYPE_HPET:
  3130. devid = get_hpet_devid(info->hpet_id);
  3131. break;
  3132. case X86_IRQ_ALLOC_TYPE_MSI:
  3133. case X86_IRQ_ALLOC_TYPE_MSIX:
  3134. devid = get_device_id(&info->msi_dev->dev);
  3135. break;
  3136. default:
  3137. BUG_ON(1);
  3138. break;
  3139. }
  3140. return devid;
  3141. }
  3142. static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
  3143. {
  3144. struct amd_iommu *iommu;
  3145. int devid;
  3146. if (!info)
  3147. return NULL;
  3148. devid = get_devid(info);
  3149. if (devid >= 0) {
  3150. iommu = amd_iommu_rlookup_table[devid];
  3151. if (iommu)
  3152. return iommu->ir_domain;
  3153. }
  3154. return NULL;
  3155. }
  3156. static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
  3157. {
  3158. struct amd_iommu *iommu;
  3159. int devid;
  3160. if (!info)
  3161. return NULL;
  3162. switch (info->type) {
  3163. case X86_IRQ_ALLOC_TYPE_MSI:
  3164. case X86_IRQ_ALLOC_TYPE_MSIX:
  3165. devid = get_device_id(&info->msi_dev->dev);
  3166. if (devid < 0)
  3167. return NULL;
  3168. iommu = amd_iommu_rlookup_table[devid];
  3169. if (iommu)
  3170. return iommu->msi_domain;
  3171. break;
  3172. default:
  3173. break;
  3174. }
  3175. return NULL;
  3176. }
  3177. struct irq_remap_ops amd_iommu_irq_ops = {
  3178. .prepare = amd_iommu_prepare,
  3179. .enable = amd_iommu_enable,
  3180. .disable = amd_iommu_disable,
  3181. .reenable = amd_iommu_reenable,
  3182. .enable_faulting = amd_iommu_enable_faulting,
  3183. .get_ir_irq_domain = get_ir_irq_domain,
  3184. .get_irq_domain = get_irq_domain,
  3185. };
  3186. static void irq_remapping_prepare_irte(struct amd_ir_data *data,
  3187. struct irq_cfg *irq_cfg,
  3188. struct irq_alloc_info *info,
  3189. int devid, int index, int sub_handle)
  3190. {
  3191. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3192. struct msi_msg *msg = &data->msi_entry;
  3193. struct IO_APIC_route_entry *entry;
  3194. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  3195. if (!iommu)
  3196. return;
  3197. data->irq_2_irte.devid = devid;
  3198. data->irq_2_irte.index = index + sub_handle;
  3199. iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
  3200. apic->irq_dest_mode, irq_cfg->vector,
  3201. irq_cfg->dest_apicid, devid);
  3202. switch (info->type) {
  3203. case X86_IRQ_ALLOC_TYPE_IOAPIC:
  3204. /* Setup IOAPIC entry */
  3205. entry = info->ioapic_entry;
  3206. info->ioapic_entry = NULL;
  3207. memset(entry, 0, sizeof(*entry));
  3208. entry->vector = index;
  3209. entry->mask = 0;
  3210. entry->trigger = info->ioapic_trigger;
  3211. entry->polarity = info->ioapic_polarity;
  3212. /* Mask level triggered irqs. */
  3213. if (info->ioapic_trigger)
  3214. entry->mask = 1;
  3215. break;
  3216. case X86_IRQ_ALLOC_TYPE_HPET:
  3217. case X86_IRQ_ALLOC_TYPE_MSI:
  3218. case X86_IRQ_ALLOC_TYPE_MSIX:
  3219. msg->address_hi = MSI_ADDR_BASE_HI;
  3220. msg->address_lo = MSI_ADDR_BASE_LO;
  3221. msg->data = irte_info->index;
  3222. break;
  3223. default:
  3224. BUG_ON(1);
  3225. break;
  3226. }
  3227. }
  3228. struct amd_irte_ops irte_32_ops = {
  3229. .prepare = irte_prepare,
  3230. .activate = irte_activate,
  3231. .deactivate = irte_deactivate,
  3232. .set_affinity = irte_set_affinity,
  3233. .set_allocated = irte_set_allocated,
  3234. .is_allocated = irte_is_allocated,
  3235. .clear_allocated = irte_clear_allocated,
  3236. };
  3237. struct amd_irte_ops irte_128_ops = {
  3238. .prepare = irte_ga_prepare,
  3239. .activate = irte_ga_activate,
  3240. .deactivate = irte_ga_deactivate,
  3241. .set_affinity = irte_ga_set_affinity,
  3242. .set_allocated = irte_ga_set_allocated,
  3243. .is_allocated = irte_ga_is_allocated,
  3244. .clear_allocated = irte_ga_clear_allocated,
  3245. };
  3246. static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
  3247. unsigned int nr_irqs, void *arg)
  3248. {
  3249. struct irq_alloc_info *info = arg;
  3250. struct irq_data *irq_data;
  3251. struct amd_ir_data *data = NULL;
  3252. struct irq_cfg *cfg;
  3253. int i, ret, devid;
  3254. int index = -1;
  3255. if (!info)
  3256. return -EINVAL;
  3257. if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
  3258. info->type != X86_IRQ_ALLOC_TYPE_MSIX)
  3259. return -EINVAL;
  3260. /*
  3261. * With IRQ remapping enabled, don't need contiguous CPU vectors
  3262. * to support multiple MSI interrupts.
  3263. */
  3264. if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
  3265. info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
  3266. devid = get_devid(info);
  3267. if (devid < 0)
  3268. return -EINVAL;
  3269. ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
  3270. if (ret < 0)
  3271. return ret;
  3272. if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
  3273. if (get_irq_table(devid, true))
  3274. index = info->ioapic_pin;
  3275. else
  3276. ret = -ENOMEM;
  3277. } else {
  3278. index = alloc_irq_index(devid, nr_irqs);
  3279. }
  3280. if (index < 0) {
  3281. pr_warn("Failed to allocate IRTE\n");
  3282. ret = index;
  3283. goto out_free_parent;
  3284. }
  3285. for (i = 0; i < nr_irqs; i++) {
  3286. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3287. cfg = irqd_cfg(irq_data);
  3288. if (!irq_data || !cfg) {
  3289. ret = -EINVAL;
  3290. goto out_free_data;
  3291. }
  3292. ret = -ENOMEM;
  3293. data = kzalloc(sizeof(*data), GFP_KERNEL);
  3294. if (!data)
  3295. goto out_free_data;
  3296. if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
  3297. data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
  3298. else
  3299. data->entry = kzalloc(sizeof(struct irte_ga),
  3300. GFP_KERNEL);
  3301. if (!data->entry) {
  3302. kfree(data);
  3303. goto out_free_data;
  3304. }
  3305. irq_data->hwirq = (devid << 16) + i;
  3306. irq_data->chip_data = data;
  3307. irq_data->chip = &amd_ir_chip;
  3308. irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
  3309. irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
  3310. }
  3311. return 0;
  3312. out_free_data:
  3313. for (i--; i >= 0; i--) {
  3314. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3315. if (irq_data)
  3316. kfree(irq_data->chip_data);
  3317. }
  3318. for (i = 0; i < nr_irqs; i++)
  3319. free_irte(devid, index + i);
  3320. out_free_parent:
  3321. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3322. return ret;
  3323. }
  3324. static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
  3325. unsigned int nr_irqs)
  3326. {
  3327. struct irq_2_irte *irte_info;
  3328. struct irq_data *irq_data;
  3329. struct amd_ir_data *data;
  3330. int i;
  3331. for (i = 0; i < nr_irqs; i++) {
  3332. irq_data = irq_domain_get_irq_data(domain, virq + i);
  3333. if (irq_data && irq_data->chip_data) {
  3334. data = irq_data->chip_data;
  3335. irte_info = &data->irq_2_irte;
  3336. free_irte(irte_info->devid, irte_info->index);
  3337. kfree(data->entry);
  3338. kfree(data);
  3339. }
  3340. }
  3341. irq_domain_free_irqs_common(domain, virq, nr_irqs);
  3342. }
  3343. static void irq_remapping_activate(struct irq_domain *domain,
  3344. struct irq_data *irq_data)
  3345. {
  3346. struct amd_ir_data *data = irq_data->chip_data;
  3347. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3348. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3349. if (iommu)
  3350. iommu->irte_ops->activate(data->entry, irte_info->devid,
  3351. irte_info->index);
  3352. }
  3353. static void irq_remapping_deactivate(struct irq_domain *domain,
  3354. struct irq_data *irq_data)
  3355. {
  3356. struct amd_ir_data *data = irq_data->chip_data;
  3357. struct irq_2_irte *irte_info = &data->irq_2_irte;
  3358. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3359. if (iommu)
  3360. iommu->irte_ops->deactivate(data->entry, irte_info->devid,
  3361. irte_info->index);
  3362. }
  3363. static struct irq_domain_ops amd_ir_domain_ops = {
  3364. .alloc = irq_remapping_alloc,
  3365. .free = irq_remapping_free,
  3366. .activate = irq_remapping_activate,
  3367. .deactivate = irq_remapping_deactivate,
  3368. };
  3369. static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
  3370. {
  3371. struct amd_iommu *iommu;
  3372. struct amd_iommu_pi_data *pi_data = vcpu_info;
  3373. struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
  3374. struct amd_ir_data *ir_data = data->chip_data;
  3375. struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
  3376. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3377. struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
  3378. /* Note:
  3379. * This device has never been set up for guest mode.
  3380. * we should not modify the IRTE
  3381. */
  3382. if (!dev_data || !dev_data->use_vapic)
  3383. return 0;
  3384. pi_data->ir_data = ir_data;
  3385. /* Note:
  3386. * SVM tries to set up for VAPIC mode, but we are in
  3387. * legacy mode. So, we force legacy mode instead.
  3388. */
  3389. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
  3390. pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
  3391. __func__);
  3392. pi_data->is_guest_mode = false;
  3393. }
  3394. iommu = amd_iommu_rlookup_table[irte_info->devid];
  3395. if (iommu == NULL)
  3396. return -EINVAL;
  3397. pi_data->prev_ga_tag = ir_data->cached_ga_tag;
  3398. if (pi_data->is_guest_mode) {
  3399. /* Setting */
  3400. irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
  3401. irte->hi.fields.vector = vcpu_pi_info->vector;
  3402. irte->lo.fields_vapic.ga_log_intr = 1;
  3403. irte->lo.fields_vapic.guest_mode = 1;
  3404. irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
  3405. ir_data->cached_ga_tag = pi_data->ga_tag;
  3406. } else {
  3407. /* Un-Setting */
  3408. struct irq_cfg *cfg = irqd_cfg(data);
  3409. irte->hi.val = 0;
  3410. irte->lo.val = 0;
  3411. irte->hi.fields.vector = cfg->vector;
  3412. irte->lo.fields_remap.guest_mode = 0;
  3413. irte->lo.fields_remap.destination = cfg->dest_apicid;
  3414. irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
  3415. irte->lo.fields_remap.dm = apic->irq_dest_mode;
  3416. /*
  3417. * This communicates the ga_tag back to the caller
  3418. * so that it can do all the necessary clean up.
  3419. */
  3420. ir_data->cached_ga_tag = 0;
  3421. }
  3422. return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
  3423. }
  3424. static int amd_ir_set_affinity(struct irq_data *data,
  3425. const struct cpumask *mask, bool force)
  3426. {
  3427. struct amd_ir_data *ir_data = data->chip_data;
  3428. struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
  3429. struct irq_cfg *cfg = irqd_cfg(data);
  3430. struct irq_data *parent = data->parent_data;
  3431. struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
  3432. int ret;
  3433. if (!iommu)
  3434. return -ENODEV;
  3435. ret = parent->chip->irq_set_affinity(parent, mask, force);
  3436. if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
  3437. return ret;
  3438. /*
  3439. * Atomically updates the IRTE with the new destination, vector
  3440. * and flushes the interrupt entry cache.
  3441. */
  3442. iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
  3443. irte_info->index, cfg->vector, cfg->dest_apicid);
  3444. /*
  3445. * After this point, all the interrupts will start arriving
  3446. * at the new destination. So, time to cleanup the previous
  3447. * vector allocation.
  3448. */
  3449. send_cleanup_vector(cfg);
  3450. return IRQ_SET_MASK_OK_DONE;
  3451. }
  3452. static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
  3453. {
  3454. struct amd_ir_data *ir_data = irq_data->chip_data;
  3455. *msg = ir_data->msi_entry;
  3456. }
  3457. static struct irq_chip amd_ir_chip = {
  3458. .irq_ack = ir_ack_apic_edge,
  3459. .irq_set_affinity = amd_ir_set_affinity,
  3460. .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
  3461. .irq_compose_msi_msg = ir_compose_msi_msg,
  3462. };
  3463. int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
  3464. {
  3465. iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
  3466. if (!iommu->ir_domain)
  3467. return -ENOMEM;
  3468. iommu->ir_domain->parent = arch_get_ir_parent_domain();
  3469. iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
  3470. return 0;
  3471. }
  3472. int amd_iommu_update_ga(int cpu, bool is_run, void *data)
  3473. {
  3474. unsigned long flags;
  3475. struct amd_iommu *iommu;
  3476. struct irq_remap_table *irt;
  3477. struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
  3478. int devid = ir_data->irq_2_irte.devid;
  3479. struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
  3480. struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
  3481. if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
  3482. !ref || !entry || !entry->lo.fields_vapic.guest_mode)
  3483. return 0;
  3484. iommu = amd_iommu_rlookup_table[devid];
  3485. if (!iommu)
  3486. return -ENODEV;
  3487. irt = get_irq_table(devid, false);
  3488. if (!irt)
  3489. return -ENODEV;
  3490. spin_lock_irqsave(&irt->lock, flags);
  3491. if (ref->lo.fields_vapic.guest_mode) {
  3492. if (cpu >= 0)
  3493. ref->lo.fields_vapic.destination = cpu;
  3494. ref->lo.fields_vapic.is_run = is_run;
  3495. barrier();
  3496. }
  3497. spin_unlock_irqrestore(&irt->lock, flags);
  3498. iommu_flush_irt(iommu, devid);
  3499. iommu_completion_wait(iommu);
  3500. return 0;
  3501. }
  3502. EXPORT_SYMBOL(amd_iommu_update_ga);
  3503. #endif