x38_edac.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528
  1. /*
  2. * Intel X38 Memory Controller kernel module
  3. * Copyright (C) 2008 Cluster Computing, Inc.
  4. *
  5. * This file may be distributed under the terms of the
  6. * GNU General Public License.
  7. *
  8. * This file is based on i3200_edac.c
  9. *
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/pci.h>
  14. #include <linux/pci_ids.h>
  15. #include <linux/edac.h>
  16. #include <linux/io-64-nonatomic-lo-hi.h>
  17. #include "edac_core.h"
  18. #define X38_REVISION "1.1"
  19. #define EDAC_MOD_STR "x38_edac"
  20. #define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0
  21. #define X38_RANKS 8
  22. #define X38_RANKS_PER_CHANNEL 4
  23. #define X38_CHANNELS 2
  24. /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
  25. #define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */
  26. #define X38_MCHBAR_HIGH 0x4c
  27. #define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */
  28. #define X38_MMR_WINDOW_SIZE 16384
  29. #define X38_TOM 0xa0 /* Top of Memory (16b)
  30. *
  31. * 15:10 reserved
  32. * 9:0 total populated physical memory
  33. */
  34. #define X38_TOM_MASK 0x3ff /* bits 9:0 */
  35. #define X38_TOM_SHIFT 26 /* 64MiB grain */
  36. #define X38_ERRSTS 0xc8 /* Error Status Register (16b)
  37. *
  38. * 15 reserved
  39. * 14 Isochronous TBWRR Run Behind FIFO Full
  40. * (ITCV)
  41. * 13 Isochronous TBWRR Run Behind FIFO Put
  42. * (ITSTV)
  43. * 12 reserved
  44. * 11 MCH Thermal Sensor Event
  45. * for SMI/SCI/SERR (GTSE)
  46. * 10 reserved
  47. * 9 LOCK to non-DRAM Memory Flag (LCKF)
  48. * 8 reserved
  49. * 7 DRAM Throttle Flag (DTF)
  50. * 6:2 reserved
  51. * 1 Multi-bit DRAM ECC Error Flag (DMERR)
  52. * 0 Single-bit DRAM ECC Error Flag (DSERR)
  53. */
  54. #define X38_ERRSTS_UE 0x0002
  55. #define X38_ERRSTS_CE 0x0001
  56. #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE)
  57. /* Intel MMIO register space - device 0 function 0 - MMR space */
  58. #define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4)
  59. *
  60. * 15:10 reserved
  61. * 9:0 Channel 0 DRAM Rank Boundary Address
  62. */
  63. #define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */
  64. #define X38_DRB_MASK 0x3ff /* bits 9:0 */
  65. #define X38_DRB_SHIFT 26 /* 64MiB grain */
  66. #define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b)
  67. *
  68. * 63:48 Error Column Address (ERRCOL)
  69. * 47:32 Error Row Address (ERRROW)
  70. * 31:29 Error Bank Address (ERRBANK)
  71. * 28:27 Error Rank Address (ERRRANK)
  72. * 26:24 reserved
  73. * 23:16 Error Syndrome (ERRSYND)
  74. * 15: 2 reserved
  75. * 1 Multiple Bit Error Status (MERRSTS)
  76. * 0 Correctable Error Status (CERRSTS)
  77. */
  78. #define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */
  79. #define X38_ECCERRLOG_CE 0x1
  80. #define X38_ECCERRLOG_UE 0x2
  81. #define X38_ECCERRLOG_RANK_BITS 0x18000000
  82. #define X38_ECCERRLOG_SYNDROME_BITS 0xff0000
  83. #define X38_CAPID0 0xe0 /* see P.94 of spec for details */
  84. static int x38_channel_num;
  85. static int how_many_channel(struct pci_dev *pdev)
  86. {
  87. unsigned char capid0_8b; /* 8th byte of CAPID0 */
  88. pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
  89. if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */
  90. edac_dbg(0, "In single channel mode\n");
  91. x38_channel_num = 1;
  92. } else {
  93. edac_dbg(0, "In dual channel mode\n");
  94. x38_channel_num = 2;
  95. }
  96. return x38_channel_num;
  97. }
  98. static unsigned long eccerrlog_syndrome(u64 log)
  99. {
  100. return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
  101. }
  102. static int eccerrlog_row(int channel, u64 log)
  103. {
  104. return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
  105. (channel * X38_RANKS_PER_CHANNEL);
  106. }
  107. enum x38_chips {
  108. X38 = 0,
  109. };
  110. struct x38_dev_info {
  111. const char *ctl_name;
  112. };
  113. struct x38_error_info {
  114. u16 errsts;
  115. u16 errsts2;
  116. u64 eccerrlog[X38_CHANNELS];
  117. };
  118. static const struct x38_dev_info x38_devs[] = {
  119. [X38] = {
  120. .ctl_name = "x38"},
  121. };
  122. static struct pci_dev *mci_pdev;
  123. static int x38_registered = 1;
  124. static void x38_clear_error_info(struct mem_ctl_info *mci)
  125. {
  126. struct pci_dev *pdev;
  127. pdev = to_pci_dev(mci->pdev);
  128. /*
  129. * Clear any error bits.
  130. * (Yes, we really clear bits by writing 1 to them.)
  131. */
  132. pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
  133. X38_ERRSTS_BITS);
  134. }
  135. static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
  136. struct x38_error_info *info)
  137. {
  138. struct pci_dev *pdev;
  139. void __iomem *window = mci->pvt_info;
  140. pdev = to_pci_dev(mci->pdev);
  141. /*
  142. * This is a mess because there is no atomic way to read all the
  143. * registers at once and the registers can transition from CE being
  144. * overwritten by UE.
  145. */
  146. pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
  147. if (!(info->errsts & X38_ERRSTS_BITS))
  148. return;
  149. info->eccerrlog[0] = lo_hi_readq(window + X38_C0ECCERRLOG);
  150. if (x38_channel_num == 2)
  151. info->eccerrlog[1] = lo_hi_readq(window + X38_C1ECCERRLOG);
  152. pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
  153. /*
  154. * If the error is the same for both reads then the first set
  155. * of reads is valid. If there is a change then there is a CE
  156. * with no info and the second set of reads is valid and
  157. * should be UE info.
  158. */
  159. if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
  160. info->eccerrlog[0] = lo_hi_readq(window + X38_C0ECCERRLOG);
  161. if (x38_channel_num == 2)
  162. info->eccerrlog[1] =
  163. lo_hi_readq(window + X38_C1ECCERRLOG);
  164. }
  165. x38_clear_error_info(mci);
  166. }
  167. static void x38_process_error_info(struct mem_ctl_info *mci,
  168. struct x38_error_info *info)
  169. {
  170. int channel;
  171. u64 log;
  172. if (!(info->errsts & X38_ERRSTS_BITS))
  173. return;
  174. if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
  175. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
  176. -1, -1, -1,
  177. "UE overwrote CE", "");
  178. info->errsts = info->errsts2;
  179. }
  180. for (channel = 0; channel < x38_channel_num; channel++) {
  181. log = info->eccerrlog[channel];
  182. if (log & X38_ECCERRLOG_UE) {
  183. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
  184. 0, 0, 0,
  185. eccerrlog_row(channel, log),
  186. -1, -1,
  187. "x38 UE", "");
  188. } else if (log & X38_ECCERRLOG_CE) {
  189. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
  190. 0, 0, eccerrlog_syndrome(log),
  191. eccerrlog_row(channel, log),
  192. -1, -1,
  193. "x38 CE", "");
  194. }
  195. }
  196. }
  197. static void x38_check(struct mem_ctl_info *mci)
  198. {
  199. struct x38_error_info info;
  200. edac_dbg(1, "MC%d\n", mci->mc_idx);
  201. x38_get_and_clear_error_info(mci, &info);
  202. x38_process_error_info(mci, &info);
  203. }
  204. static void __iomem *x38_map_mchbar(struct pci_dev *pdev)
  205. {
  206. union {
  207. u64 mchbar;
  208. struct {
  209. u32 mchbar_low;
  210. u32 mchbar_high;
  211. };
  212. } u;
  213. void __iomem *window;
  214. pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
  215. pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
  216. pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
  217. u.mchbar &= X38_MCHBAR_MASK;
  218. if (u.mchbar != (resource_size_t)u.mchbar) {
  219. printk(KERN_ERR
  220. "x38: mmio space beyond accessible range (0x%llx)\n",
  221. (unsigned long long)u.mchbar);
  222. return NULL;
  223. }
  224. window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
  225. if (!window)
  226. printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
  227. (unsigned long long)u.mchbar);
  228. return window;
  229. }
  230. static void x38_get_drbs(void __iomem *window,
  231. u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
  232. {
  233. int i;
  234. for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
  235. drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
  236. drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
  237. }
  238. }
  239. static bool x38_is_stacked(struct pci_dev *pdev,
  240. u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
  241. {
  242. u16 tom;
  243. pci_read_config_word(pdev, X38_TOM, &tom);
  244. tom &= X38_TOM_MASK;
  245. return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
  246. }
  247. static unsigned long drb_to_nr_pages(
  248. u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
  249. bool stacked, int channel, int rank)
  250. {
  251. int n;
  252. n = drbs[channel][rank];
  253. if (rank > 0)
  254. n -= drbs[channel][rank - 1];
  255. if (stacked && (channel == 1) && drbs[channel][rank] ==
  256. drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
  257. n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
  258. }
  259. n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
  260. return n;
  261. }
  262. static int x38_probe1(struct pci_dev *pdev, int dev_idx)
  263. {
  264. int rc;
  265. int i, j;
  266. struct mem_ctl_info *mci = NULL;
  267. struct edac_mc_layer layers[2];
  268. u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
  269. bool stacked;
  270. void __iomem *window;
  271. edac_dbg(0, "MC:\n");
  272. window = x38_map_mchbar(pdev);
  273. if (!window)
  274. return -ENODEV;
  275. x38_get_drbs(window, drbs);
  276. how_many_channel(pdev);
  277. /* FIXME: unconventional pvt_info usage */
  278. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  279. layers[0].size = X38_RANKS;
  280. layers[0].is_virt_csrow = true;
  281. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  282. layers[1].size = x38_channel_num;
  283. layers[1].is_virt_csrow = false;
  284. mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
  285. if (!mci)
  286. return -ENOMEM;
  287. edac_dbg(3, "MC: init mci\n");
  288. mci->pdev = &pdev->dev;
  289. mci->mtype_cap = MEM_FLAG_DDR2;
  290. mci->edac_ctl_cap = EDAC_FLAG_SECDED;
  291. mci->edac_cap = EDAC_FLAG_SECDED;
  292. mci->mod_name = EDAC_MOD_STR;
  293. mci->mod_ver = X38_REVISION;
  294. mci->ctl_name = x38_devs[dev_idx].ctl_name;
  295. mci->dev_name = pci_name(pdev);
  296. mci->edac_check = x38_check;
  297. mci->ctl_page_to_phys = NULL;
  298. mci->pvt_info = window;
  299. stacked = x38_is_stacked(pdev, drbs);
  300. /*
  301. * The dram rank boundary (DRB) reg values are boundary addresses
  302. * for each DRAM rank with a granularity of 64MB. DRB regs are
  303. * cumulative; the last one will contain the total memory
  304. * contained in all ranks.
  305. */
  306. for (i = 0; i < mci->nr_csrows; i++) {
  307. unsigned long nr_pages;
  308. struct csrow_info *csrow = mci->csrows[i];
  309. nr_pages = drb_to_nr_pages(drbs, stacked,
  310. i / X38_RANKS_PER_CHANNEL,
  311. i % X38_RANKS_PER_CHANNEL);
  312. if (nr_pages == 0)
  313. continue;
  314. for (j = 0; j < x38_channel_num; j++) {
  315. struct dimm_info *dimm = csrow->channels[j]->dimm;
  316. dimm->nr_pages = nr_pages / x38_channel_num;
  317. dimm->grain = nr_pages << PAGE_SHIFT;
  318. dimm->mtype = MEM_DDR2;
  319. dimm->dtype = DEV_UNKNOWN;
  320. dimm->edac_mode = EDAC_UNKNOWN;
  321. }
  322. }
  323. x38_clear_error_info(mci);
  324. rc = -ENODEV;
  325. if (edac_mc_add_mc(mci)) {
  326. edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
  327. goto fail;
  328. }
  329. /* get this far and it's successful */
  330. edac_dbg(3, "MC: success\n");
  331. return 0;
  332. fail:
  333. iounmap(window);
  334. if (mci)
  335. edac_mc_free(mci);
  336. return rc;
  337. }
  338. static int x38_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  339. {
  340. int rc;
  341. edac_dbg(0, "MC:\n");
  342. if (pci_enable_device(pdev) < 0)
  343. return -EIO;
  344. rc = x38_probe1(pdev, ent->driver_data);
  345. if (!mci_pdev)
  346. mci_pdev = pci_dev_get(pdev);
  347. return rc;
  348. }
  349. static void x38_remove_one(struct pci_dev *pdev)
  350. {
  351. struct mem_ctl_info *mci;
  352. edac_dbg(0, "\n");
  353. mci = edac_mc_del_mc(&pdev->dev);
  354. if (!mci)
  355. return;
  356. iounmap(mci->pvt_info);
  357. edac_mc_free(mci);
  358. }
  359. static const struct pci_device_id x38_pci_tbl[] = {
  360. {
  361. PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  362. X38},
  363. {
  364. 0,
  365. } /* 0 terminated list. */
  366. };
  367. MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
  368. static struct pci_driver x38_driver = {
  369. .name = EDAC_MOD_STR,
  370. .probe = x38_init_one,
  371. .remove = x38_remove_one,
  372. .id_table = x38_pci_tbl,
  373. };
  374. static int __init x38_init(void)
  375. {
  376. int pci_rc;
  377. edac_dbg(3, "MC:\n");
  378. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  379. opstate_init();
  380. pci_rc = pci_register_driver(&x38_driver);
  381. if (pci_rc < 0)
  382. goto fail0;
  383. if (!mci_pdev) {
  384. x38_registered = 0;
  385. mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  386. PCI_DEVICE_ID_INTEL_X38_HB, NULL);
  387. if (!mci_pdev) {
  388. edac_dbg(0, "x38 pci_get_device fail\n");
  389. pci_rc = -ENODEV;
  390. goto fail1;
  391. }
  392. pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
  393. if (pci_rc < 0) {
  394. edac_dbg(0, "x38 init fail\n");
  395. pci_rc = -ENODEV;
  396. goto fail1;
  397. }
  398. }
  399. return 0;
  400. fail1:
  401. pci_unregister_driver(&x38_driver);
  402. fail0:
  403. pci_dev_put(mci_pdev);
  404. return pci_rc;
  405. }
  406. static void __exit x38_exit(void)
  407. {
  408. edac_dbg(3, "MC:\n");
  409. pci_unregister_driver(&x38_driver);
  410. if (!x38_registered) {
  411. x38_remove_one(mci_pdev);
  412. pci_dev_put(mci_pdev);
  413. }
  414. }
  415. module_init(x38_init);
  416. module_exit(x38_exit);
  417. MODULE_LICENSE("GPL");
  418. MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
  419. MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
  420. module_param(edac_op_state, int, 0444);
  421. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");