e7xxx_edac.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607
  1. /*
  2. * Intel e7xxx Memory Controller kernel module
  3. * (C) 2003 Linux Networx (http://lnxi.com)
  4. * This file may be distributed under the terms of the
  5. * GNU General Public License.
  6. *
  7. * See "enum e7xxx_chips" below for supported chipsets
  8. *
  9. * Written by Thayne Harbaugh
  10. * Based on work by Dan Hollis <goemon at anime dot net> and others.
  11. * http://www.anime.net/~goemon/linux-ecc/
  12. *
  13. * Datasheet:
  14. * http://www.intel.com/content/www/us/en/chipsets/e7501-chipset-memory-controller-hub-datasheet.html
  15. *
  16. * Contributors:
  17. * Eric Biederman (Linux Networx)
  18. * Tom Zimmerman (Linux Networx)
  19. * Jim Garlick (Lawrence Livermore National Labs)
  20. * Dave Peterson (Lawrence Livermore National Labs)
  21. * That One Guy (Some other place)
  22. * Wang Zhenyu (intel.com)
  23. *
  24. * $Id: edac_e7xxx.c,v 1.5.2.9 2005/10/05 00:43:44 dsp_llnl Exp $
  25. *
  26. */
  27. #include <linux/module.h>
  28. #include <linux/init.h>
  29. #include <linux/pci.h>
  30. #include <linux/pci_ids.h>
  31. #include <linux/edac.h>
  32. #include "edac_core.h"
  33. #define E7XXX_REVISION " Ver: 2.0.2"
  34. #define EDAC_MOD_STR "e7xxx_edac"
  35. #define e7xxx_printk(level, fmt, arg...) \
  36. edac_printk(level, "e7xxx", fmt, ##arg)
  37. #define e7xxx_mc_printk(mci, level, fmt, arg...) \
  38. edac_mc_chipset_printk(mci, level, "e7xxx", fmt, ##arg)
  39. #ifndef PCI_DEVICE_ID_INTEL_7205_0
  40. #define PCI_DEVICE_ID_INTEL_7205_0 0x255d
  41. #endif /* PCI_DEVICE_ID_INTEL_7205_0 */
  42. #ifndef PCI_DEVICE_ID_INTEL_7205_1_ERR
  43. #define PCI_DEVICE_ID_INTEL_7205_1_ERR 0x2551
  44. #endif /* PCI_DEVICE_ID_INTEL_7205_1_ERR */
  45. #ifndef PCI_DEVICE_ID_INTEL_7500_0
  46. #define PCI_DEVICE_ID_INTEL_7500_0 0x2540
  47. #endif /* PCI_DEVICE_ID_INTEL_7500_0 */
  48. #ifndef PCI_DEVICE_ID_INTEL_7500_1_ERR
  49. #define PCI_DEVICE_ID_INTEL_7500_1_ERR 0x2541
  50. #endif /* PCI_DEVICE_ID_INTEL_7500_1_ERR */
  51. #ifndef PCI_DEVICE_ID_INTEL_7501_0
  52. #define PCI_DEVICE_ID_INTEL_7501_0 0x254c
  53. #endif /* PCI_DEVICE_ID_INTEL_7501_0 */
  54. #ifndef PCI_DEVICE_ID_INTEL_7501_1_ERR
  55. #define PCI_DEVICE_ID_INTEL_7501_1_ERR 0x2541
  56. #endif /* PCI_DEVICE_ID_INTEL_7501_1_ERR */
  57. #ifndef PCI_DEVICE_ID_INTEL_7505_0
  58. #define PCI_DEVICE_ID_INTEL_7505_0 0x2550
  59. #endif /* PCI_DEVICE_ID_INTEL_7505_0 */
  60. #ifndef PCI_DEVICE_ID_INTEL_7505_1_ERR
  61. #define PCI_DEVICE_ID_INTEL_7505_1_ERR 0x2551
  62. #endif /* PCI_DEVICE_ID_INTEL_7505_1_ERR */
  63. #define E7XXX_NR_CSROWS 8 /* number of csrows */
  64. #define E7XXX_NR_DIMMS 8 /* 2 channels, 4 dimms/channel */
  65. /* E7XXX register addresses - device 0 function 0 */
  66. #define E7XXX_DRB 0x60 /* DRAM row boundary register (8b) */
  67. #define E7XXX_DRA 0x70 /* DRAM row attribute register (8b) */
  68. /*
  69. * 31 Device width row 7 0=x8 1=x4
  70. * 27 Device width row 6
  71. * 23 Device width row 5
  72. * 19 Device width row 4
  73. * 15 Device width row 3
  74. * 11 Device width row 2
  75. * 7 Device width row 1
  76. * 3 Device width row 0
  77. */
  78. #define E7XXX_DRC 0x7C /* DRAM controller mode reg (32b) */
  79. /*
  80. * 22 Number channels 0=1,1=2
  81. * 19:18 DRB Granularity 32/64MB
  82. */
  83. #define E7XXX_TOLM 0xC4 /* DRAM top of low memory reg (16b) */
  84. #define E7XXX_REMAPBASE 0xC6 /* DRAM remap base address reg (16b) */
  85. #define E7XXX_REMAPLIMIT 0xC8 /* DRAM remap limit address reg (16b) */
  86. /* E7XXX register addresses - device 0 function 1 */
  87. #define E7XXX_DRAM_FERR 0x80 /* DRAM first error register (8b) */
  88. #define E7XXX_DRAM_NERR 0x82 /* DRAM next error register (8b) */
  89. #define E7XXX_DRAM_CELOG_ADD 0xA0 /* DRAM first correctable memory */
  90. /* error address register (32b) */
  91. /*
  92. * 31:28 Reserved
  93. * 27:6 CE address (4k block 33:12)
  94. * 5:0 Reserved
  95. */
  96. #define E7XXX_DRAM_UELOG_ADD 0xB0 /* DRAM first uncorrectable memory */
  97. /* error address register (32b) */
  98. /*
  99. * 31:28 Reserved
  100. * 27:6 CE address (4k block 33:12)
  101. * 5:0 Reserved
  102. */
  103. #define E7XXX_DRAM_CELOG_SYNDROME 0xD0 /* DRAM first correctable memory */
  104. /* error syndrome register (16b) */
  105. enum e7xxx_chips {
  106. E7500 = 0,
  107. E7501,
  108. E7505,
  109. E7205,
  110. };
  111. struct e7xxx_pvt {
  112. struct pci_dev *bridge_ck;
  113. u32 tolm;
  114. u32 remapbase;
  115. u32 remaplimit;
  116. const struct e7xxx_dev_info *dev_info;
  117. };
  118. struct e7xxx_dev_info {
  119. u16 err_dev;
  120. const char *ctl_name;
  121. };
  122. struct e7xxx_error_info {
  123. u8 dram_ferr;
  124. u8 dram_nerr;
  125. u32 dram_celog_add;
  126. u16 dram_celog_syndrome;
  127. u32 dram_uelog_add;
  128. };
  129. static struct edac_pci_ctl_info *e7xxx_pci;
  130. static const struct e7xxx_dev_info e7xxx_devs[] = {
  131. [E7500] = {
  132. .err_dev = PCI_DEVICE_ID_INTEL_7500_1_ERR,
  133. .ctl_name = "E7500"},
  134. [E7501] = {
  135. .err_dev = PCI_DEVICE_ID_INTEL_7501_1_ERR,
  136. .ctl_name = "E7501"},
  137. [E7505] = {
  138. .err_dev = PCI_DEVICE_ID_INTEL_7505_1_ERR,
  139. .ctl_name = "E7505"},
  140. [E7205] = {
  141. .err_dev = PCI_DEVICE_ID_INTEL_7205_1_ERR,
  142. .ctl_name = "E7205"},
  143. };
  144. /* FIXME - is this valid for both SECDED and S4ECD4ED? */
  145. static inline int e7xxx_find_channel(u16 syndrome)
  146. {
  147. edac_dbg(3, "\n");
  148. if ((syndrome & 0xff00) == 0)
  149. return 0;
  150. if ((syndrome & 0x00ff) == 0)
  151. return 1;
  152. if ((syndrome & 0xf000) == 0 || (syndrome & 0x0f00) == 0)
  153. return 0;
  154. return 1;
  155. }
  156. static unsigned long ctl_page_to_phys(struct mem_ctl_info *mci,
  157. unsigned long page)
  158. {
  159. u32 remap;
  160. struct e7xxx_pvt *pvt = (struct e7xxx_pvt *)mci->pvt_info;
  161. edac_dbg(3, "\n");
  162. if ((page < pvt->tolm) ||
  163. ((page >= 0x100000) && (page < pvt->remapbase)))
  164. return page;
  165. remap = (page - pvt->tolm) + pvt->remapbase;
  166. if (remap < pvt->remaplimit)
  167. return remap;
  168. e7xxx_printk(KERN_ERR, "Invalid page %lx - out of range\n", page);
  169. return pvt->tolm - 1;
  170. }
  171. static void process_ce(struct mem_ctl_info *mci, struct e7xxx_error_info *info)
  172. {
  173. u32 error_1b, page;
  174. u16 syndrome;
  175. int row;
  176. int channel;
  177. edac_dbg(3, "\n");
  178. /* read the error address */
  179. error_1b = info->dram_celog_add;
  180. /* FIXME - should use PAGE_SHIFT */
  181. page = error_1b >> 6; /* convert the address to 4k page */
  182. /* read the syndrome */
  183. syndrome = info->dram_celog_syndrome;
  184. /* FIXME - check for -1 */
  185. row = edac_mc_find_csrow_by_page(mci, page);
  186. /* convert syndrome to channel */
  187. channel = e7xxx_find_channel(syndrome);
  188. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, page, 0, syndrome,
  189. row, channel, -1, "e7xxx CE", "");
  190. }
  191. static void process_ce_no_info(struct mem_ctl_info *mci)
  192. {
  193. edac_dbg(3, "\n");
  194. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, -1, -1, -1,
  195. "e7xxx CE log register overflow", "");
  196. }
  197. static void process_ue(struct mem_ctl_info *mci, struct e7xxx_error_info *info)
  198. {
  199. u32 error_2b, block_page;
  200. int row;
  201. edac_dbg(3, "\n");
  202. /* read the error address */
  203. error_2b = info->dram_uelog_add;
  204. /* FIXME - should use PAGE_SHIFT */
  205. block_page = error_2b >> 6; /* convert to 4k address */
  206. row = edac_mc_find_csrow_by_page(mci, block_page);
  207. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, block_page, 0, 0,
  208. row, -1, -1, "e7xxx UE", "");
  209. }
  210. static void process_ue_no_info(struct mem_ctl_info *mci)
  211. {
  212. edac_dbg(3, "\n");
  213. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, -1, -1, -1,
  214. "e7xxx UE log register overflow", "");
  215. }
  216. static void e7xxx_get_error_info(struct mem_ctl_info *mci,
  217. struct e7xxx_error_info *info)
  218. {
  219. struct e7xxx_pvt *pvt;
  220. pvt = (struct e7xxx_pvt *)mci->pvt_info;
  221. pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_FERR, &info->dram_ferr);
  222. pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_NERR, &info->dram_nerr);
  223. if ((info->dram_ferr & 1) || (info->dram_nerr & 1)) {
  224. pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_CELOG_ADD,
  225. &info->dram_celog_add);
  226. pci_read_config_word(pvt->bridge_ck,
  227. E7XXX_DRAM_CELOG_SYNDROME,
  228. &info->dram_celog_syndrome);
  229. }
  230. if ((info->dram_ferr & 2) || (info->dram_nerr & 2))
  231. pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_UELOG_ADD,
  232. &info->dram_uelog_add);
  233. if (info->dram_ferr & 3)
  234. pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_FERR, 0x03, 0x03);
  235. if (info->dram_nerr & 3)
  236. pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_NERR, 0x03, 0x03);
  237. }
  238. static int e7xxx_process_error_info(struct mem_ctl_info *mci,
  239. struct e7xxx_error_info *info,
  240. int handle_errors)
  241. {
  242. int error_found;
  243. error_found = 0;
  244. /* decode and report errors */
  245. if (info->dram_ferr & 1) { /* check first error correctable */
  246. error_found = 1;
  247. if (handle_errors)
  248. process_ce(mci, info);
  249. }
  250. if (info->dram_ferr & 2) { /* check first error uncorrectable */
  251. error_found = 1;
  252. if (handle_errors)
  253. process_ue(mci, info);
  254. }
  255. if (info->dram_nerr & 1) { /* check next error correctable */
  256. error_found = 1;
  257. if (handle_errors) {
  258. if (info->dram_ferr & 1)
  259. process_ce_no_info(mci);
  260. else
  261. process_ce(mci, info);
  262. }
  263. }
  264. if (info->dram_nerr & 2) { /* check next error uncorrectable */
  265. error_found = 1;
  266. if (handle_errors) {
  267. if (info->dram_ferr & 2)
  268. process_ue_no_info(mci);
  269. else
  270. process_ue(mci, info);
  271. }
  272. }
  273. return error_found;
  274. }
  275. static void e7xxx_check(struct mem_ctl_info *mci)
  276. {
  277. struct e7xxx_error_info info;
  278. edac_dbg(3, "\n");
  279. e7xxx_get_error_info(mci, &info);
  280. e7xxx_process_error_info(mci, &info, 1);
  281. }
  282. /* Return 1 if dual channel mode is active. Else return 0. */
  283. static inline int dual_channel_active(u32 drc, int dev_idx)
  284. {
  285. return (dev_idx == E7501) ? ((drc >> 22) & 0x1) : 1;
  286. }
  287. /* Return DRB granularity (0=32mb, 1=64mb). */
  288. static inline int drb_granularity(u32 drc, int dev_idx)
  289. {
  290. /* only e7501 can be single channel */
  291. return (dev_idx == E7501) ? ((drc >> 18) & 0x3) : 1;
  292. }
  293. static void e7xxx_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev,
  294. int dev_idx, u32 drc)
  295. {
  296. unsigned long last_cumul_size;
  297. int index, j;
  298. u8 value;
  299. u32 dra, cumul_size, nr_pages;
  300. int drc_chan, drc_drbg, drc_ddim, mem_dev;
  301. struct csrow_info *csrow;
  302. struct dimm_info *dimm;
  303. enum edac_type edac_mode;
  304. pci_read_config_dword(pdev, E7XXX_DRA, &dra);
  305. drc_chan = dual_channel_active(drc, dev_idx);
  306. drc_drbg = drb_granularity(drc, dev_idx);
  307. drc_ddim = (drc >> 20) & 0x3;
  308. last_cumul_size = 0;
  309. /* The dram row boundary (DRB) reg values are boundary address
  310. * for each DRAM row with a granularity of 32 or 64MB (single/dual
  311. * channel operation). DRB regs are cumulative; therefore DRB7 will
  312. * contain the total memory contained in all eight rows.
  313. */
  314. for (index = 0; index < mci->nr_csrows; index++) {
  315. /* mem_dev 0=x8, 1=x4 */
  316. mem_dev = (dra >> (index * 4 + 3)) & 0x1;
  317. csrow = mci->csrows[index];
  318. pci_read_config_byte(pdev, E7XXX_DRB + index, &value);
  319. /* convert a 64 or 32 MiB DRB to a page size. */
  320. cumul_size = value << (25 + drc_drbg - PAGE_SHIFT);
  321. edac_dbg(3, "(%d) cumul_size 0x%x\n", index, cumul_size);
  322. if (cumul_size == last_cumul_size)
  323. continue; /* not populated */
  324. csrow->first_page = last_cumul_size;
  325. csrow->last_page = cumul_size - 1;
  326. nr_pages = cumul_size - last_cumul_size;
  327. last_cumul_size = cumul_size;
  328. /*
  329. * if single channel or x8 devices then SECDED
  330. * if dual channel and x4 then S4ECD4ED
  331. */
  332. if (drc_ddim) {
  333. if (drc_chan && mem_dev) {
  334. edac_mode = EDAC_S4ECD4ED;
  335. mci->edac_cap |= EDAC_FLAG_S4ECD4ED;
  336. } else {
  337. edac_mode = EDAC_SECDED;
  338. mci->edac_cap |= EDAC_FLAG_SECDED;
  339. }
  340. } else
  341. edac_mode = EDAC_NONE;
  342. for (j = 0; j < drc_chan + 1; j++) {
  343. dimm = csrow->channels[j]->dimm;
  344. dimm->nr_pages = nr_pages / (drc_chan + 1);
  345. dimm->grain = 1 << 12; /* 4KiB - resolution of CELOG */
  346. dimm->mtype = MEM_RDDR; /* only one type supported */
  347. dimm->dtype = mem_dev ? DEV_X4 : DEV_X8;
  348. dimm->edac_mode = edac_mode;
  349. }
  350. }
  351. }
  352. static int e7xxx_probe1(struct pci_dev *pdev, int dev_idx)
  353. {
  354. u16 pci_data;
  355. struct mem_ctl_info *mci = NULL;
  356. struct edac_mc_layer layers[2];
  357. struct e7xxx_pvt *pvt = NULL;
  358. u32 drc;
  359. int drc_chan;
  360. struct e7xxx_error_info discard;
  361. edac_dbg(0, "mci\n");
  362. pci_read_config_dword(pdev, E7XXX_DRC, &drc);
  363. drc_chan = dual_channel_active(drc, dev_idx);
  364. /*
  365. * According with the datasheet, this device has a maximum of
  366. * 4 DIMMS per channel, either single-rank or dual-rank. So, the
  367. * total amount of dimms is 8 (E7XXX_NR_DIMMS).
  368. * That means that the DIMM is mapped as CSROWs, and the channel
  369. * will map the rank. So, an error to either channel should be
  370. * attributed to the same dimm.
  371. */
  372. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  373. layers[0].size = E7XXX_NR_CSROWS;
  374. layers[0].is_virt_csrow = true;
  375. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  376. layers[1].size = drc_chan + 1;
  377. layers[1].is_virt_csrow = false;
  378. mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
  379. if (mci == NULL)
  380. return -ENOMEM;
  381. edac_dbg(3, "init mci\n");
  382. mci->mtype_cap = MEM_FLAG_RDDR;
  383. mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED |
  384. EDAC_FLAG_S4ECD4ED;
  385. /* FIXME - what if different memory types are in different csrows? */
  386. mci->mod_name = EDAC_MOD_STR;
  387. mci->mod_ver = E7XXX_REVISION;
  388. mci->pdev = &pdev->dev;
  389. edac_dbg(3, "init pvt\n");
  390. pvt = (struct e7xxx_pvt *)mci->pvt_info;
  391. pvt->dev_info = &e7xxx_devs[dev_idx];
  392. pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL,
  393. pvt->dev_info->err_dev, pvt->bridge_ck);
  394. if (!pvt->bridge_ck) {
  395. e7xxx_printk(KERN_ERR, "error reporting device not found:"
  396. "vendor %x device 0x%x (broken BIOS?)\n",
  397. PCI_VENDOR_ID_INTEL, e7xxx_devs[dev_idx].err_dev);
  398. goto fail0;
  399. }
  400. edac_dbg(3, "more mci init\n");
  401. mci->ctl_name = pvt->dev_info->ctl_name;
  402. mci->dev_name = pci_name(pdev);
  403. mci->edac_check = e7xxx_check;
  404. mci->ctl_page_to_phys = ctl_page_to_phys;
  405. e7xxx_init_csrows(mci, pdev, dev_idx, drc);
  406. mci->edac_cap |= EDAC_FLAG_NONE;
  407. edac_dbg(3, "tolm, remapbase, remaplimit\n");
  408. /* load the top of low memory, remap base, and remap limit vars */
  409. pci_read_config_word(pdev, E7XXX_TOLM, &pci_data);
  410. pvt->tolm = ((u32) pci_data) << 4;
  411. pci_read_config_word(pdev, E7XXX_REMAPBASE, &pci_data);
  412. pvt->remapbase = ((u32) pci_data) << 14;
  413. pci_read_config_word(pdev, E7XXX_REMAPLIMIT, &pci_data);
  414. pvt->remaplimit = ((u32) pci_data) << 14;
  415. e7xxx_printk(KERN_INFO,
  416. "tolm = %x, remapbase = %x, remaplimit = %x\n", pvt->tolm,
  417. pvt->remapbase, pvt->remaplimit);
  418. /* clear any pending errors, or initial state bits */
  419. e7xxx_get_error_info(mci, &discard);
  420. /* Here we assume that we will never see multiple instances of this
  421. * type of memory controller. The ID is therefore hardcoded to 0.
  422. */
  423. if (edac_mc_add_mc(mci)) {
  424. edac_dbg(3, "failed edac_mc_add_mc()\n");
  425. goto fail1;
  426. }
  427. /* allocating generic PCI control info */
  428. e7xxx_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
  429. if (!e7xxx_pci) {
  430. printk(KERN_WARNING
  431. "%s(): Unable to create PCI control\n",
  432. __func__);
  433. printk(KERN_WARNING
  434. "%s(): PCI error report via EDAC not setup\n",
  435. __func__);
  436. }
  437. /* get this far and it's successful */
  438. edac_dbg(3, "success\n");
  439. return 0;
  440. fail1:
  441. pci_dev_put(pvt->bridge_ck);
  442. fail0:
  443. edac_mc_free(mci);
  444. return -ENODEV;
  445. }
  446. /* returns count (>= 0), or negative on error */
  447. static int e7xxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  448. {
  449. edac_dbg(0, "\n");
  450. /* wake up and enable device */
  451. return pci_enable_device(pdev) ?
  452. -EIO : e7xxx_probe1(pdev, ent->driver_data);
  453. }
  454. static void e7xxx_remove_one(struct pci_dev *pdev)
  455. {
  456. struct mem_ctl_info *mci;
  457. struct e7xxx_pvt *pvt;
  458. edac_dbg(0, "\n");
  459. if (e7xxx_pci)
  460. edac_pci_release_generic_ctl(e7xxx_pci);
  461. if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
  462. return;
  463. pvt = (struct e7xxx_pvt *)mci->pvt_info;
  464. pci_dev_put(pvt->bridge_ck);
  465. edac_mc_free(mci);
  466. }
  467. static const struct pci_device_id e7xxx_pci_tbl[] = {
  468. {
  469. PCI_VEND_DEV(INTEL, 7205_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  470. E7205},
  471. {
  472. PCI_VEND_DEV(INTEL, 7500_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  473. E7500},
  474. {
  475. PCI_VEND_DEV(INTEL, 7501_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  476. E7501},
  477. {
  478. PCI_VEND_DEV(INTEL, 7505_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
  479. E7505},
  480. {
  481. 0,
  482. } /* 0 terminated list. */
  483. };
  484. MODULE_DEVICE_TABLE(pci, e7xxx_pci_tbl);
  485. static struct pci_driver e7xxx_driver = {
  486. .name = EDAC_MOD_STR,
  487. .probe = e7xxx_init_one,
  488. .remove = e7xxx_remove_one,
  489. .id_table = e7xxx_pci_tbl,
  490. };
  491. static int __init e7xxx_init(void)
  492. {
  493. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  494. opstate_init();
  495. return pci_register_driver(&e7xxx_driver);
  496. }
  497. static void __exit e7xxx_exit(void)
  498. {
  499. pci_unregister_driver(&e7xxx_driver);
  500. }
  501. module_init(e7xxx_init);
  502. module_exit(e7xxx_exit);
  503. MODULE_LICENSE("GPL");
  504. MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
  505. "Based on.work by Dan Hollis et al");
  506. MODULE_DESCRIPTION("MC support for Intel e7xxx memory controllers");
  507. module_param(edac_op_state, int, 0444);
  508. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");