spu_base.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. /*
  2. * Low-level SPU handling
  3. *
  4. * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
  5. *
  6. * Author: Arnd Bergmann <arndb@de.ibm.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #undef DEBUG
  23. #include <linux/interrupt.h>
  24. #include <linux/list.h>
  25. #include <linux/init.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/slab.h>
  28. #include <linux/wait.h>
  29. #include <linux/mm.h>
  30. #include <linux/io.h>
  31. #include <linux/mutex.h>
  32. #include <linux/linux_logo.h>
  33. #include <linux/syscore_ops.h>
  34. #include <asm/spu.h>
  35. #include <asm/spu_priv1.h>
  36. #include <asm/spu_csa.h>
  37. #include <asm/xmon.h>
  38. #include <asm/prom.h>
  39. #include <asm/kexec.h>
  40. const struct spu_management_ops *spu_management_ops;
  41. EXPORT_SYMBOL_GPL(spu_management_ops);
  42. const struct spu_priv1_ops *spu_priv1_ops;
  43. EXPORT_SYMBOL_GPL(spu_priv1_ops);
  44. struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
  45. EXPORT_SYMBOL_GPL(cbe_spu_info);
  46. /*
  47. * The spufs fault-handling code needs to call force_sig_info to raise signals
  48. * on DMA errors. Export it here to avoid general kernel-wide access to this
  49. * function
  50. */
  51. EXPORT_SYMBOL_GPL(force_sig_info);
  52. /*
  53. * Protects cbe_spu_info and spu->number.
  54. */
  55. static DEFINE_SPINLOCK(spu_lock);
  56. /*
  57. * List of all spus in the system.
  58. *
  59. * This list is iterated by callers from irq context and callers that
  60. * want to sleep. Thus modifications need to be done with both
  61. * spu_full_list_lock and spu_full_list_mutex held, while iterating
  62. * through it requires either of these locks.
  63. *
  64. * In addition spu_full_list_lock protects all assignments to
  65. * spu->mm.
  66. */
  67. static LIST_HEAD(spu_full_list);
  68. static DEFINE_SPINLOCK(spu_full_list_lock);
  69. static DEFINE_MUTEX(spu_full_list_mutex);
  70. void spu_invalidate_slbs(struct spu *spu)
  71. {
  72. struct spu_priv2 __iomem *priv2 = spu->priv2;
  73. unsigned long flags;
  74. spin_lock_irqsave(&spu->register_lock, flags);
  75. if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
  76. out_be64(&priv2->slb_invalidate_all_W, 0UL);
  77. spin_unlock_irqrestore(&spu->register_lock, flags);
  78. }
  79. EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
  80. /* This is called by the MM core when a segment size is changed, to
  81. * request a flush of all the SPEs using a given mm
  82. */
  83. void spu_flush_all_slbs(struct mm_struct *mm)
  84. {
  85. struct spu *spu;
  86. unsigned long flags;
  87. spin_lock_irqsave(&spu_full_list_lock, flags);
  88. list_for_each_entry(spu, &spu_full_list, full_list) {
  89. if (spu->mm == mm)
  90. spu_invalidate_slbs(spu);
  91. }
  92. spin_unlock_irqrestore(&spu_full_list_lock, flags);
  93. }
  94. /* The hack below stinks... try to do something better one of
  95. * these days... Does it even work properly with NR_CPUS == 1 ?
  96. */
  97. static inline void mm_needs_global_tlbie(struct mm_struct *mm)
  98. {
  99. int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
  100. /* Global TLBIE broadcast required with SPEs. */
  101. bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
  102. }
  103. void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
  104. {
  105. unsigned long flags;
  106. spin_lock_irqsave(&spu_full_list_lock, flags);
  107. spu->mm = mm;
  108. spin_unlock_irqrestore(&spu_full_list_lock, flags);
  109. if (mm)
  110. mm_needs_global_tlbie(mm);
  111. }
  112. EXPORT_SYMBOL_GPL(spu_associate_mm);
  113. int spu_64k_pages_available(void)
  114. {
  115. return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
  116. }
  117. EXPORT_SYMBOL_GPL(spu_64k_pages_available);
  118. static void spu_restart_dma(struct spu *spu)
  119. {
  120. struct spu_priv2 __iomem *priv2 = spu->priv2;
  121. if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
  122. out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
  123. else {
  124. set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
  125. mb();
  126. }
  127. }
  128. static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
  129. {
  130. struct spu_priv2 __iomem *priv2 = spu->priv2;
  131. pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
  132. __func__, slbe, slb->vsid, slb->esid);
  133. out_be64(&priv2->slb_index_W, slbe);
  134. /* set invalid before writing vsid */
  135. out_be64(&priv2->slb_esid_RW, 0);
  136. /* now it's safe to write the vsid */
  137. out_be64(&priv2->slb_vsid_RW, slb->vsid);
  138. /* setting the new esid makes the entry valid again */
  139. out_be64(&priv2->slb_esid_RW, slb->esid);
  140. }
  141. static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
  142. {
  143. struct copro_slb slb;
  144. int ret;
  145. ret = copro_calculate_slb(spu->mm, ea, &slb);
  146. if (ret)
  147. return ret;
  148. spu_load_slb(spu, spu->slb_replace, &slb);
  149. spu->slb_replace++;
  150. if (spu->slb_replace >= 8)
  151. spu->slb_replace = 0;
  152. spu_restart_dma(spu);
  153. spu->stats.slb_flt++;
  154. return 0;
  155. }
  156. extern int hash_page(unsigned long ea, unsigned long access,
  157. unsigned long trap, unsigned long dsisr); //XXX
  158. static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
  159. {
  160. int ret;
  161. pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
  162. /*
  163. * Handle kernel space hash faults immediately. User hash
  164. * faults need to be deferred to process context.
  165. */
  166. if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
  167. (REGION_ID(ea) != USER_REGION_ID)) {
  168. spin_unlock(&spu->register_lock);
  169. ret = hash_page(ea,
  170. _PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED,
  171. 0x300, dsisr);
  172. spin_lock(&spu->register_lock);
  173. if (!ret) {
  174. spu_restart_dma(spu);
  175. return 0;
  176. }
  177. }
  178. spu->class_1_dar = ea;
  179. spu->class_1_dsisr = dsisr;
  180. spu->stop_callback(spu, 1);
  181. spu->class_1_dar = 0;
  182. spu->class_1_dsisr = 0;
  183. return 0;
  184. }
  185. static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
  186. {
  187. unsigned long ea = (unsigned long)addr;
  188. u64 llp;
  189. if (REGION_ID(ea) == KERNEL_REGION_ID)
  190. llp = mmu_psize_defs[mmu_linear_psize].sllp;
  191. else
  192. llp = mmu_psize_defs[mmu_virtual_psize].sllp;
  193. slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
  194. SLB_VSID_KERNEL | llp;
  195. slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
  196. }
  197. /**
  198. * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
  199. * address @new_addr is present.
  200. */
  201. static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
  202. void *new_addr)
  203. {
  204. unsigned long ea = (unsigned long)new_addr;
  205. int i;
  206. for (i = 0; i < nr_slbs; i++)
  207. if (!((slbs[i].esid ^ ea) & ESID_MASK))
  208. return 1;
  209. return 0;
  210. }
  211. /**
  212. * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
  213. * need to map both the context save area, and the save/restore code.
  214. *
  215. * Because the lscsa and code may cross segment boundaries, we check to see
  216. * if mappings are required for the start and end of each range. We currently
  217. * assume that the mappings are smaller that one segment - if not, something
  218. * is seriously wrong.
  219. */
  220. void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
  221. void *code, int code_size)
  222. {
  223. struct copro_slb slbs[4];
  224. int i, nr_slbs = 0;
  225. /* start and end addresses of both mappings */
  226. void *addrs[] = {
  227. lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
  228. code, code + code_size - 1
  229. };
  230. /* check the set of addresses, and create a new entry in the slbs array
  231. * if there isn't already a SLB for that address */
  232. for (i = 0; i < ARRAY_SIZE(addrs); i++) {
  233. if (__slb_present(slbs, nr_slbs, addrs[i]))
  234. continue;
  235. __spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
  236. nr_slbs++;
  237. }
  238. spin_lock_irq(&spu->register_lock);
  239. /* Add the set of SLBs */
  240. for (i = 0; i < nr_slbs; i++)
  241. spu_load_slb(spu, i, &slbs[i]);
  242. spin_unlock_irq(&spu->register_lock);
  243. }
  244. EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
  245. static irqreturn_t
  246. spu_irq_class_0(int irq, void *data)
  247. {
  248. struct spu *spu;
  249. unsigned long stat, mask;
  250. spu = data;
  251. spin_lock(&spu->register_lock);
  252. mask = spu_int_mask_get(spu, 0);
  253. stat = spu_int_stat_get(spu, 0) & mask;
  254. spu->class_0_pending |= stat;
  255. spu->class_0_dar = spu_mfc_dar_get(spu);
  256. spu->stop_callback(spu, 0);
  257. spu->class_0_pending = 0;
  258. spu->class_0_dar = 0;
  259. spu_int_stat_clear(spu, 0, stat);
  260. spin_unlock(&spu->register_lock);
  261. return IRQ_HANDLED;
  262. }
  263. static irqreturn_t
  264. spu_irq_class_1(int irq, void *data)
  265. {
  266. struct spu *spu;
  267. unsigned long stat, mask, dar, dsisr;
  268. spu = data;
  269. /* atomically read & clear class1 status. */
  270. spin_lock(&spu->register_lock);
  271. mask = spu_int_mask_get(spu, 1);
  272. stat = spu_int_stat_get(spu, 1) & mask;
  273. dar = spu_mfc_dar_get(spu);
  274. dsisr = spu_mfc_dsisr_get(spu);
  275. if (stat & CLASS1_STORAGE_FAULT_INTR)
  276. spu_mfc_dsisr_set(spu, 0ul);
  277. spu_int_stat_clear(spu, 1, stat);
  278. pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
  279. dar, dsisr);
  280. if (stat & CLASS1_SEGMENT_FAULT_INTR)
  281. __spu_trap_data_seg(spu, dar);
  282. if (stat & CLASS1_STORAGE_FAULT_INTR)
  283. __spu_trap_data_map(spu, dar, dsisr);
  284. if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
  285. ;
  286. if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
  287. ;
  288. spu->class_1_dsisr = 0;
  289. spu->class_1_dar = 0;
  290. spin_unlock(&spu->register_lock);
  291. return stat ? IRQ_HANDLED : IRQ_NONE;
  292. }
  293. static irqreturn_t
  294. spu_irq_class_2(int irq, void *data)
  295. {
  296. struct spu *spu;
  297. unsigned long stat;
  298. unsigned long mask;
  299. const int mailbox_intrs =
  300. CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
  301. spu = data;
  302. spin_lock(&spu->register_lock);
  303. stat = spu_int_stat_get(spu, 2);
  304. mask = spu_int_mask_get(spu, 2);
  305. /* ignore interrupts we're not waiting for */
  306. stat &= mask;
  307. /* mailbox interrupts are level triggered. mask them now before
  308. * acknowledging */
  309. if (stat & mailbox_intrs)
  310. spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
  311. /* acknowledge all interrupts before the callbacks */
  312. spu_int_stat_clear(spu, 2, stat);
  313. pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
  314. if (stat & CLASS2_MAILBOX_INTR)
  315. spu->ibox_callback(spu);
  316. if (stat & CLASS2_SPU_STOP_INTR)
  317. spu->stop_callback(spu, 2);
  318. if (stat & CLASS2_SPU_HALT_INTR)
  319. spu->stop_callback(spu, 2);
  320. if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
  321. spu->mfc_callback(spu);
  322. if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
  323. spu->wbox_callback(spu);
  324. spu->stats.class2_intr++;
  325. spin_unlock(&spu->register_lock);
  326. return stat ? IRQ_HANDLED : IRQ_NONE;
  327. }
  328. static int spu_request_irqs(struct spu *spu)
  329. {
  330. int ret = 0;
  331. if (spu->irqs[0]) {
  332. snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
  333. spu->number);
  334. ret = request_irq(spu->irqs[0], spu_irq_class_0,
  335. 0, spu->irq_c0, spu);
  336. if (ret)
  337. goto bail0;
  338. }
  339. if (spu->irqs[1]) {
  340. snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
  341. spu->number);
  342. ret = request_irq(spu->irqs[1], spu_irq_class_1,
  343. 0, spu->irq_c1, spu);
  344. if (ret)
  345. goto bail1;
  346. }
  347. if (spu->irqs[2]) {
  348. snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
  349. spu->number);
  350. ret = request_irq(spu->irqs[2], spu_irq_class_2,
  351. 0, spu->irq_c2, spu);
  352. if (ret)
  353. goto bail2;
  354. }
  355. return 0;
  356. bail2:
  357. if (spu->irqs[1])
  358. free_irq(spu->irqs[1], spu);
  359. bail1:
  360. if (spu->irqs[0])
  361. free_irq(spu->irqs[0], spu);
  362. bail0:
  363. return ret;
  364. }
  365. static void spu_free_irqs(struct spu *spu)
  366. {
  367. if (spu->irqs[0])
  368. free_irq(spu->irqs[0], spu);
  369. if (spu->irqs[1])
  370. free_irq(spu->irqs[1], spu);
  371. if (spu->irqs[2])
  372. free_irq(spu->irqs[2], spu);
  373. }
  374. void spu_init_channels(struct spu *spu)
  375. {
  376. static const struct {
  377. unsigned channel;
  378. unsigned count;
  379. } zero_list[] = {
  380. { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
  381. { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
  382. }, count_list[] = {
  383. { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
  384. { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
  385. { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
  386. };
  387. struct spu_priv2 __iomem *priv2;
  388. int i;
  389. priv2 = spu->priv2;
  390. /* initialize all channel data to zero */
  391. for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
  392. int count;
  393. out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
  394. for (count = 0; count < zero_list[i].count; count++)
  395. out_be64(&priv2->spu_chnldata_RW, 0);
  396. }
  397. /* initialize channel counts to meaningful values */
  398. for (i = 0; i < ARRAY_SIZE(count_list); i++) {
  399. out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
  400. out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
  401. }
  402. }
  403. EXPORT_SYMBOL_GPL(spu_init_channels);
  404. static struct bus_type spu_subsys = {
  405. .name = "spu",
  406. .dev_name = "spu",
  407. };
  408. int spu_add_dev_attr(struct device_attribute *attr)
  409. {
  410. struct spu *spu;
  411. mutex_lock(&spu_full_list_mutex);
  412. list_for_each_entry(spu, &spu_full_list, full_list)
  413. device_create_file(&spu->dev, attr);
  414. mutex_unlock(&spu_full_list_mutex);
  415. return 0;
  416. }
  417. EXPORT_SYMBOL_GPL(spu_add_dev_attr);
  418. int spu_add_dev_attr_group(struct attribute_group *attrs)
  419. {
  420. struct spu *spu;
  421. int rc = 0;
  422. mutex_lock(&spu_full_list_mutex);
  423. list_for_each_entry(spu, &spu_full_list, full_list) {
  424. rc = sysfs_create_group(&spu->dev.kobj, attrs);
  425. /* we're in trouble here, but try unwinding anyway */
  426. if (rc) {
  427. printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
  428. __func__, attrs->name);
  429. list_for_each_entry_continue_reverse(spu,
  430. &spu_full_list, full_list)
  431. sysfs_remove_group(&spu->dev.kobj, attrs);
  432. break;
  433. }
  434. }
  435. mutex_unlock(&spu_full_list_mutex);
  436. return rc;
  437. }
  438. EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
  439. void spu_remove_dev_attr(struct device_attribute *attr)
  440. {
  441. struct spu *spu;
  442. mutex_lock(&spu_full_list_mutex);
  443. list_for_each_entry(spu, &spu_full_list, full_list)
  444. device_remove_file(&spu->dev, attr);
  445. mutex_unlock(&spu_full_list_mutex);
  446. }
  447. EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
  448. void spu_remove_dev_attr_group(struct attribute_group *attrs)
  449. {
  450. struct spu *spu;
  451. mutex_lock(&spu_full_list_mutex);
  452. list_for_each_entry(spu, &spu_full_list, full_list)
  453. sysfs_remove_group(&spu->dev.kobj, attrs);
  454. mutex_unlock(&spu_full_list_mutex);
  455. }
  456. EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
  457. static int spu_create_dev(struct spu *spu)
  458. {
  459. int ret;
  460. spu->dev.id = spu->number;
  461. spu->dev.bus = &spu_subsys;
  462. ret = device_register(&spu->dev);
  463. if (ret) {
  464. printk(KERN_ERR "Can't register SPU %d with sysfs\n",
  465. spu->number);
  466. return ret;
  467. }
  468. sysfs_add_device_to_node(&spu->dev, spu->node);
  469. return 0;
  470. }
  471. static int __init create_spu(void *data)
  472. {
  473. struct spu *spu;
  474. int ret;
  475. static int number;
  476. unsigned long flags;
  477. ret = -ENOMEM;
  478. spu = kzalloc(sizeof (*spu), GFP_KERNEL);
  479. if (!spu)
  480. goto out;
  481. spu->alloc_state = SPU_FREE;
  482. spin_lock_init(&spu->register_lock);
  483. spin_lock(&spu_lock);
  484. spu->number = number++;
  485. spin_unlock(&spu_lock);
  486. ret = spu_create_spu(spu, data);
  487. if (ret)
  488. goto out_free;
  489. spu_mfc_sdr_setup(spu);
  490. spu_mfc_sr1_set(spu, 0x33);
  491. ret = spu_request_irqs(spu);
  492. if (ret)
  493. goto out_destroy;
  494. ret = spu_create_dev(spu);
  495. if (ret)
  496. goto out_free_irqs;
  497. mutex_lock(&cbe_spu_info[spu->node].list_mutex);
  498. list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
  499. cbe_spu_info[spu->node].n_spus++;
  500. mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
  501. mutex_lock(&spu_full_list_mutex);
  502. spin_lock_irqsave(&spu_full_list_lock, flags);
  503. list_add(&spu->full_list, &spu_full_list);
  504. spin_unlock_irqrestore(&spu_full_list_lock, flags);
  505. mutex_unlock(&spu_full_list_mutex);
  506. spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
  507. spu->stats.tstamp = ktime_get_ns();
  508. INIT_LIST_HEAD(&spu->aff_list);
  509. goto out;
  510. out_free_irqs:
  511. spu_free_irqs(spu);
  512. out_destroy:
  513. spu_destroy_spu(spu);
  514. out_free:
  515. kfree(spu);
  516. out:
  517. return ret;
  518. }
  519. static const char *spu_state_names[] = {
  520. "user", "system", "iowait", "idle"
  521. };
  522. static unsigned long long spu_acct_time(struct spu *spu,
  523. enum spu_utilization_state state)
  524. {
  525. unsigned long long time = spu->stats.times[state];
  526. /*
  527. * If the spu is idle or the context is stopped, utilization
  528. * statistics are not updated. Apply the time delta from the
  529. * last recorded state of the spu.
  530. */
  531. if (spu->stats.util_state == state)
  532. time += ktime_get_ns() - spu->stats.tstamp;
  533. return time / NSEC_PER_MSEC;
  534. }
  535. static ssize_t spu_stat_show(struct device *dev,
  536. struct device_attribute *attr, char *buf)
  537. {
  538. struct spu *spu = container_of(dev, struct spu, dev);
  539. return sprintf(buf, "%s %llu %llu %llu %llu "
  540. "%llu %llu %llu %llu %llu %llu %llu %llu\n",
  541. spu_state_names[spu->stats.util_state],
  542. spu_acct_time(spu, SPU_UTIL_USER),
  543. spu_acct_time(spu, SPU_UTIL_SYSTEM),
  544. spu_acct_time(spu, SPU_UTIL_IOWAIT),
  545. spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
  546. spu->stats.vol_ctx_switch,
  547. spu->stats.invol_ctx_switch,
  548. spu->stats.slb_flt,
  549. spu->stats.hash_flt,
  550. spu->stats.min_flt,
  551. spu->stats.maj_flt,
  552. spu->stats.class2_intr,
  553. spu->stats.libassist);
  554. }
  555. static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
  556. #ifdef CONFIG_KEXEC
  557. struct crash_spu_info {
  558. struct spu *spu;
  559. u32 saved_spu_runcntl_RW;
  560. u32 saved_spu_status_R;
  561. u32 saved_spu_npc_RW;
  562. u64 saved_mfc_sr1_RW;
  563. u64 saved_mfc_dar;
  564. u64 saved_mfc_dsisr;
  565. };
  566. #define CRASH_NUM_SPUS 16 /* Enough for current hardware */
  567. static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
  568. static void crash_kexec_stop_spus(void)
  569. {
  570. struct spu *spu;
  571. int i;
  572. u64 tmp;
  573. for (i = 0; i < CRASH_NUM_SPUS; i++) {
  574. if (!crash_spu_info[i].spu)
  575. continue;
  576. spu = crash_spu_info[i].spu;
  577. crash_spu_info[i].saved_spu_runcntl_RW =
  578. in_be32(&spu->problem->spu_runcntl_RW);
  579. crash_spu_info[i].saved_spu_status_R =
  580. in_be32(&spu->problem->spu_status_R);
  581. crash_spu_info[i].saved_spu_npc_RW =
  582. in_be32(&spu->problem->spu_npc_RW);
  583. crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu);
  584. crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu);
  585. tmp = spu_mfc_sr1_get(spu);
  586. crash_spu_info[i].saved_mfc_sr1_RW = tmp;
  587. tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
  588. spu_mfc_sr1_set(spu, tmp);
  589. __delay(200);
  590. }
  591. }
  592. static void crash_register_spus(struct list_head *list)
  593. {
  594. struct spu *spu;
  595. int ret;
  596. list_for_each_entry(spu, list, full_list) {
  597. if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
  598. continue;
  599. crash_spu_info[spu->number].spu = spu;
  600. }
  601. ret = crash_shutdown_register(&crash_kexec_stop_spus);
  602. if (ret)
  603. printk(KERN_ERR "Could not register SPU crash handler");
  604. }
  605. #else
  606. static inline void crash_register_spus(struct list_head *list)
  607. {
  608. }
  609. #endif
  610. static void spu_shutdown(void)
  611. {
  612. struct spu *spu;
  613. mutex_lock(&spu_full_list_mutex);
  614. list_for_each_entry(spu, &spu_full_list, full_list) {
  615. spu_free_irqs(spu);
  616. spu_destroy_spu(spu);
  617. }
  618. mutex_unlock(&spu_full_list_mutex);
  619. }
  620. static struct syscore_ops spu_syscore_ops = {
  621. .shutdown = spu_shutdown,
  622. };
  623. static int __init init_spu_base(void)
  624. {
  625. int i, ret = 0;
  626. for (i = 0; i < MAX_NUMNODES; i++) {
  627. mutex_init(&cbe_spu_info[i].list_mutex);
  628. INIT_LIST_HEAD(&cbe_spu_info[i].spus);
  629. }
  630. if (!spu_management_ops)
  631. goto out;
  632. /* create system subsystem for spus */
  633. ret = subsys_system_register(&spu_subsys, NULL);
  634. if (ret)
  635. goto out;
  636. ret = spu_enumerate_spus(create_spu);
  637. if (ret < 0) {
  638. printk(KERN_WARNING "%s: Error initializing spus\n",
  639. __func__);
  640. goto out_unregister_subsys;
  641. }
  642. if (ret > 0)
  643. fb_append_extra_logo(&logo_spe_clut224, ret);
  644. mutex_lock(&spu_full_list_mutex);
  645. xmon_register_spus(&spu_full_list);
  646. crash_register_spus(&spu_full_list);
  647. mutex_unlock(&spu_full_list_mutex);
  648. spu_add_dev_attr(&dev_attr_stat);
  649. register_syscore_ops(&spu_syscore_ops);
  650. spu_init_affinity();
  651. return 0;
  652. out_unregister_subsys:
  653. bus_unregister(&spu_subsys);
  654. out:
  655. return ret;
  656. }
  657. device_initcall(init_spu_base);