book3s_hv_ras.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/kernel.h>
  13. #include <asm/opal.h>
  14. #include <asm/mce.h>
  15. #include <asm/machdep.h>
  16. #include <asm/cputhreads.h>
  17. #include <asm/hmi.h>
  18. /* SRR1 bits for machine check on POWER7 */
  19. #define SRR1_MC_LDSTERR (1ul << (63-42))
  20. #define SRR1_MC_IFETCH_SH (63-45)
  21. #define SRR1_MC_IFETCH_MASK 0x7
  22. #define SRR1_MC_IFETCH_SLBPAR 2 /* SLB parity error */
  23. #define SRR1_MC_IFETCH_SLBMULTI 3 /* SLB multi-hit */
  24. #define SRR1_MC_IFETCH_SLBPARMULTI 4 /* SLB parity + multi-hit */
  25. #define SRR1_MC_IFETCH_TLBMULTI 5 /* I-TLB multi-hit */
  26. /* DSISR bits for machine check on POWER7 */
  27. #define DSISR_MC_DERAT_MULTI 0x800 /* D-ERAT multi-hit */
  28. #define DSISR_MC_TLB_MULTI 0x400 /* D-TLB multi-hit */
  29. #define DSISR_MC_SLB_PARITY 0x100 /* SLB parity error */
  30. #define DSISR_MC_SLB_MULTI 0x080 /* SLB multi-hit */
  31. #define DSISR_MC_SLB_PARMULTI 0x040 /* SLB parity + multi-hit */
  32. /* POWER7 SLB flush and reload */
  33. static void reload_slb(struct kvm_vcpu *vcpu)
  34. {
  35. struct slb_shadow *slb;
  36. unsigned long i, n;
  37. /* First clear out SLB */
  38. asm volatile("slbmte %0,%0; slbia" : : "r" (0));
  39. /* Do they have an SLB shadow buffer registered? */
  40. slb = vcpu->arch.slb_shadow.pinned_addr;
  41. if (!slb)
  42. return;
  43. /* Sanity check */
  44. n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
  45. if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
  46. return;
  47. /* Load up the SLB from that */
  48. for (i = 0; i < n; ++i) {
  49. unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
  50. unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
  51. rb = (rb & ~0xFFFul) | i; /* insert entry number */
  52. asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
  53. }
  54. }
  55. /*
  56. * On POWER7, see if we can handle a machine check that occurred inside
  57. * the guest in real mode, without switching to the host partition.
  58. *
  59. * Returns: 0 => exit guest, 1 => deliver machine check to guest
  60. */
  61. static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
  62. {
  63. unsigned long srr1 = vcpu->arch.shregs.msr;
  64. struct machine_check_event mce_evt;
  65. long handled = 1;
  66. if (srr1 & SRR1_MC_LDSTERR) {
  67. /* error on load/store */
  68. unsigned long dsisr = vcpu->arch.shregs.dsisr;
  69. if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  70. DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
  71. /* flush and reload SLB; flushes D-ERAT too */
  72. reload_slb(vcpu);
  73. dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  74. DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
  75. }
  76. if (dsisr & DSISR_MC_TLB_MULTI) {
  77. if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
  78. cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
  79. dsisr &= ~DSISR_MC_TLB_MULTI;
  80. }
  81. /* Any other errors we don't understand? */
  82. if (dsisr & 0xffffffffUL)
  83. handled = 0;
  84. }
  85. switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
  86. case 0:
  87. break;
  88. case SRR1_MC_IFETCH_SLBPAR:
  89. case SRR1_MC_IFETCH_SLBMULTI:
  90. case SRR1_MC_IFETCH_SLBPARMULTI:
  91. reload_slb(vcpu);
  92. break;
  93. case SRR1_MC_IFETCH_TLBMULTI:
  94. if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
  95. cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
  96. break;
  97. default:
  98. handled = 0;
  99. }
  100. /*
  101. * See if we have already handled the condition in the linux host.
  102. * We assume that if the condition is recovered then linux host
  103. * will have generated an error log event that we will pick
  104. * up and log later.
  105. * Don't release mce event now. We will queue up the event so that
  106. * we can log the MCE event info on host console.
  107. */
  108. if (!get_mce_event(&mce_evt, MCE_EVENT_DONTRELEASE))
  109. goto out;
  110. if (mce_evt.version == MCE_V1 &&
  111. (mce_evt.severity == MCE_SEV_NO_ERROR ||
  112. mce_evt.disposition == MCE_DISPOSITION_RECOVERED))
  113. handled = 1;
  114. out:
  115. /*
  116. * We are now going enter guest either through machine check
  117. * interrupt (for unhandled errors) or will continue from
  118. * current HSRR0 (for handled errors) in guest. Hence
  119. * queue up the event so that we can log it from host console later.
  120. */
  121. machine_check_queue_event();
  122. return handled;
  123. }
  124. long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
  125. {
  126. return kvmppc_realmode_mc_power7(vcpu);
  127. }
  128. /* Check if dynamic split is in force and return subcore size accordingly. */
  129. static inline int kvmppc_cur_subcore_size(void)
  130. {
  131. if (local_paca->kvm_hstate.kvm_split_mode)
  132. return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
  133. return threads_per_subcore;
  134. }
  135. void kvmppc_subcore_enter_guest(void)
  136. {
  137. int thread_id, subcore_id;
  138. thread_id = cpu_thread_in_core(local_paca->paca_index);
  139. subcore_id = thread_id / kvmppc_cur_subcore_size();
  140. local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
  141. }
  142. void kvmppc_subcore_exit_guest(void)
  143. {
  144. int thread_id, subcore_id;
  145. thread_id = cpu_thread_in_core(local_paca->paca_index);
  146. subcore_id = thread_id / kvmppc_cur_subcore_size();
  147. local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
  148. }
  149. static bool kvmppc_tb_resync_required(void)
  150. {
  151. if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
  152. &local_paca->sibling_subcore_state->flags))
  153. return false;
  154. return true;
  155. }
  156. static void kvmppc_tb_resync_done(void)
  157. {
  158. clear_bit(CORE_TB_RESYNC_REQ_BIT,
  159. &local_paca->sibling_subcore_state->flags);
  160. }
  161. /*
  162. * kvmppc_realmode_hmi_handler() is called only by primary thread during
  163. * guest exit path.
  164. *
  165. * There are multiple reasons why HMI could occur, one of them is
  166. * Timebase (TB) error. If this HMI is due to TB error, then TB would
  167. * have been in stopped state. The opal hmi handler Will fix it and
  168. * restore the TB value with host timebase value. For HMI caused due
  169. * to non-TB errors, opal hmi handler will not touch/restore TB register
  170. * and hence there won't be any change in TB value.
  171. *
  172. * Since we are not sure about the cause of this HMI, we can't be sure
  173. * about the content of TB register whether it holds guest or host timebase
  174. * value. Hence the idea is to resync the TB on every HMI, so that we
  175. * know about the exact state of the TB value. Resync TB call will
  176. * restore TB to host timebase.
  177. *
  178. * Things to consider:
  179. * - On TB error, HMI interrupt is reported on all the threads of the core
  180. * that has encountered TB error irrespective of split-core mode.
  181. * - The very first thread on the core that get chance to fix TB error
  182. * would rsync the TB with local chipTOD value.
  183. * - The resync TB is a core level action i.e. it will sync all the TBs
  184. * in that core independent of split-core mode. This means if we trigger
  185. * TB sync from a thread from one subcore, it would affect TB values of
  186. * sibling subcores of the same core.
  187. *
  188. * All threads need to co-ordinate before making opal hmi handler.
  189. * All threads will use sibling_subcore_state->in_guest[] (shared by all
  190. * threads in the core) in paca which holds information about whether
  191. * sibling subcores are in Guest mode or host mode. The in_guest[] array
  192. * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
  193. * subcore status. Only primary threads from each subcore is responsible
  194. * to set/unset its designated array element while entering/exiting the
  195. * guset.
  196. *
  197. * After invoking opal hmi handler call, one of the thread (of entire core)
  198. * will need to resync the TB. Bit 63 from subcore state bitmap flags
  199. * (sibling_subcore_state->flags) will be used to co-ordinate between
  200. * primary threads to decide who takes up the responsibility.
  201. *
  202. * This is what we do:
  203. * - Primary thread from each subcore tries to set resync required bit[63]
  204. * of paca->sibling_subcore_state->flags.
  205. * - The first primary thread that is able to set the flag takes the
  206. * responsibility of TB resync. (Let us call it as thread leader)
  207. * - All other threads which are in host will call
  208. * wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
  209. * paca->sibling_subcore_state to get cleared.
  210. * - All the primary thread will clear its subcore status from subcore
  211. * state in_guest[] array respectively.
  212. * - Once all primary threads clear in_guest[0-3], all of them will invoke
  213. * opal hmi handler.
  214. * - Now all threads will wait for TB resync to complete by invoking
  215. * wait_for_tb_resync() except the thread leader.
  216. * - Thread leader will do a TB resync by invoking opal_resync_timebase()
  217. * call and the it will clear the resync required bit.
  218. * - All other threads will now come out of resync wait loop and proceed
  219. * with individual execution.
  220. * - On return of this function, primary thread will signal all
  221. * secondary threads to proceed.
  222. * - All secondary threads will eventually call opal hmi handler on
  223. * their exit path.
  224. */
  225. long kvmppc_realmode_hmi_handler(void)
  226. {
  227. int ptid = local_paca->kvm_hstate.ptid;
  228. bool resync_req;
  229. /* This is only called on primary thread. */
  230. BUG_ON(ptid != 0);
  231. __this_cpu_inc(irq_stat.hmi_exceptions);
  232. /*
  233. * By now primary thread has already completed guest->host
  234. * partition switch but haven't signaled secondaries yet.
  235. * All the secondary threads on this subcore is waiting
  236. * for primary thread to signal them to go ahead.
  237. *
  238. * For threads from subcore which isn't in guest, they all will
  239. * wait until all other subcores on this core exit the guest.
  240. *
  241. * Now set the resync required bit. If you are the first to
  242. * set this bit then kvmppc_tb_resync_required() function will
  243. * return true. For rest all other subcores
  244. * kvmppc_tb_resync_required() will return false.
  245. *
  246. * If resync_req == true, then this thread is responsible to
  247. * initiate TB resync after hmi handler has completed.
  248. * All other threads on this core will wait until this thread
  249. * clears the resync required bit flag.
  250. */
  251. resync_req = kvmppc_tb_resync_required();
  252. /* Reset the subcore status to indicate it has exited guest */
  253. kvmppc_subcore_exit_guest();
  254. /*
  255. * Wait for other subcores on this core to exit the guest.
  256. * All the primary threads and threads from subcore that are
  257. * not in guest will wait here until all subcores are out
  258. * of guest context.
  259. */
  260. wait_for_subcore_guest_exit();
  261. /*
  262. * At this point we are sure that primary threads from each
  263. * subcore on this core have completed guest->host partition
  264. * switch. Now it is safe to call HMI handler.
  265. */
  266. if (ppc_md.hmi_exception_early)
  267. ppc_md.hmi_exception_early(NULL);
  268. /*
  269. * Check if this thread is responsible to resync TB.
  270. * All other threads will wait until this thread completes the
  271. * TB resync.
  272. */
  273. if (resync_req) {
  274. opal_resync_timebase();
  275. /* Reset TB resync req bit */
  276. kvmppc_tb_resync_done();
  277. } else {
  278. wait_for_tb_resync();
  279. }
  280. return 0;
  281. }