123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- /*
- * IEEE754 floating point arithmetic
- * single precision: MADDF.f (Fused Multiply Add)
- * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
- *
- * MIPS floating point support
- * Copyright (C) 2015 Imagination Technologies, Ltd.
- * Author: Markos Chandras <markos.chandras@imgtec.com>
- *
- * This program is free software; you can distribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; version 2 of the License.
- */
- #include "ieee754sp.h"
- static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x,
- union ieee754sp y, enum maddf_flags flags)
- {
- int re;
- int rs;
- unsigned rm;
- uint64_t rm64;
- uint64_t zm64;
- int s;
- COMPXSP;
- COMPYSP;
- COMPZSP;
- EXPLODEXSP;
- EXPLODEYSP;
- EXPLODEZSP;
- FLUSHXSP;
- FLUSHYSP;
- FLUSHZSP;
- ieee754_clearcx();
- /*
- * Handle the cases when at least one of x, y or z is a NaN.
- * Order of precedence is sNaN, qNaN and z, x, y.
- */
- if (zc == IEEE754_CLASS_SNAN)
- return ieee754sp_nanxcpt(z);
- if (xc == IEEE754_CLASS_SNAN)
- return ieee754sp_nanxcpt(x);
- if (yc == IEEE754_CLASS_SNAN)
- return ieee754sp_nanxcpt(y);
- if (zc == IEEE754_CLASS_QNAN)
- return z;
- if (xc == IEEE754_CLASS_QNAN)
- return x;
- if (yc == IEEE754_CLASS_QNAN)
- return y;
- if (zc == IEEE754_CLASS_DNORM)
- SPDNORMZ;
- /* ZERO z cases are handled separately below */
- switch (CLPAIR(xc, yc)) {
- /*
- * Infinity handling
- */
- case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
- case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
- ieee754_setcx(IEEE754_INVALID_OPERATION);
- return ieee754sp_indef();
- case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
- case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
- case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
- case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
- case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
- if ((zc == IEEE754_CLASS_INF) &&
- ((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) ||
- ((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) {
- /*
- * Cases of addition of infinities with opposite signs
- * or subtraction of infinities with same signs.
- */
- ieee754_setcx(IEEE754_INVALID_OPERATION);
- return ieee754sp_indef();
- }
- /*
- * z is here either not an infinity, or an infinity having the
- * same sign as product (x*y) (in case of MADDF.D instruction)
- * or product -(x*y) (in MSUBF.D case). The result must be an
- * infinity, and its sign is determined only by the value of
- * (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y.
- */
- if (flags & MADDF_NEGATE_PRODUCT)
- return ieee754sp_inf(1 ^ (xs ^ ys));
- else
- return ieee754sp_inf(xs ^ ys);
- case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
- case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
- case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
- case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
- case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
- if (zc == IEEE754_CLASS_INF)
- return ieee754sp_inf(zs);
- if (zc == IEEE754_CLASS_ZERO) {
- /* Handle cases +0 + (-0) and similar ones. */
- if ((!(flags & MADDF_NEGATE_PRODUCT)
- && (zs == (xs ^ ys))) ||
- ((flags & MADDF_NEGATE_PRODUCT)
- && (zs != (xs ^ ys))))
- /*
- * Cases of addition of zeros of equal signs
- * or subtraction of zeroes of opposite signs.
- * The sign of the resulting zero is in any
- * such case determined only by the sign of z.
- */
- return z;
- return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
- }
- /* x*y is here 0, and z is not 0, so just return z */
- return z;
- case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
- SPDNORMX;
- case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
- if (zc == IEEE754_CLASS_INF)
- return ieee754sp_inf(zs);
- SPDNORMY;
- break;
- case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
- if (zc == IEEE754_CLASS_INF)
- return ieee754sp_inf(zs);
- SPDNORMX;
- break;
- case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
- if (zc == IEEE754_CLASS_INF)
- return ieee754sp_inf(zs);
- /* fall through to real computations */
- }
- /* Finally get to do some computation */
- /*
- * Do the multiplication bit first
- *
- * rm = xm * ym, re = xe + ye basically
- *
- * At this point xm and ym should have been normalized.
- */
- /* rm = xm * ym, re = xe+ye basically */
- assert(xm & SP_HIDDEN_BIT);
- assert(ym & SP_HIDDEN_BIT);
- re = xe + ye;
- rs = xs ^ ys;
- if (flags & MADDF_NEGATE_PRODUCT)
- rs ^= 1;
- /* Multiple 24 bit xm and ym to give 48 bit results */
- rm64 = (uint64_t)xm * ym;
- /* Shunt to top of word */
- rm64 = rm64 << 16;
- /* Put explicit bit at bit 62 if necessary */
- if ((int64_t) rm64 < 0) {
- rm64 = rm64 >> 1;
- re++;
- }
- assert(rm64 & (1 << 62));
- if (zc == IEEE754_CLASS_ZERO) {
- /*
- * Move explicit bit from bit 62 to bit 26 since the
- * ieee754sp_format code expects the mantissa to be
- * 27 bits wide (24 + 3 rounding bits).
- */
- rm = XSPSRS64(rm64, (62 - 26));
- return ieee754sp_format(rs, re, rm);
- }
- /* Move explicit bit from bit 23 to bit 62 */
- zm64 = (uint64_t)zm << (62 - 23);
- assert(zm64 & (1 << 62));
- /* Make the exponents the same */
- if (ze > re) {
- /*
- * Have to shift r fraction right to align.
- */
- s = ze - re;
- rm64 = XSPSRS64(rm64, s);
- re += s;
- } else if (re > ze) {
- /*
- * Have to shift z fraction right to align.
- */
- s = re - ze;
- zm64 = XSPSRS64(zm64, s);
- ze += s;
- }
- assert(ze == re);
- assert(ze <= SP_EMAX);
- /* Do the addition */
- if (zs == rs) {
- /*
- * Generate 64 bit result by adding two 63 bit numbers
- * leaving result in zm64, zs and ze.
- */
- zm64 = zm64 + rm64;
- if ((int64_t)zm64 < 0) { /* carry out */
- zm64 = XSPSRS1(zm64);
- ze++;
- }
- } else {
- if (zm64 >= rm64) {
- zm64 = zm64 - rm64;
- } else {
- zm64 = rm64 - zm64;
- zs = rs;
- }
- if (zm64 == 0)
- return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
- /*
- * Put explicit bit at bit 62 if necessary.
- */
- while ((zm64 >> 62) == 0) {
- zm64 <<= 1;
- ze--;
- }
- }
- /*
- * Move explicit bit from bit 62 to bit 26 since the
- * ieee754sp_format code expects the mantissa to be
- * 27 bits wide (24 + 3 rounding bits).
- */
- zm = XSPSRS64(zm64, (62 - 26));
- return ieee754sp_format(zs, ze, zm);
- }
- union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
- union ieee754sp y)
- {
- return _sp_maddf(z, x, y, 0);
- }
- union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x,
- union ieee754sp y)
- {
- return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
- }
|