123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865 |
- |
- | setox.sa 3.1 12/10/90
- |
- | The entry point setox computes the exponential of a value.
- | setoxd does the same except the input value is a denormalized
- | number. setoxm1 computes exp(X)-1, and setoxm1d computes
- | exp(X)-1 for denormalized X.
- |
- | INPUT
- | -----
- | Double-extended value in memory location pointed to by address
- | register a0.
- |
- | OUTPUT
- | ------
- | exp(X) or exp(X)-1 returned in floating-point register fp0.
- |
- | ACCURACY and MONOTONICITY
- | -------------------------
- | The returned result is within 0.85 ulps in 64 significant bit, i.e.
- | within 0.5001 ulp to 53 bits if the result is subsequently rounded
- | to double precision. The result is provably monotonic in double
- | precision.
- |
- | SPEED
- | -----
- | Two timings are measured, both in the copy-back mode. The
- | first one is measured when the function is invoked the first time
- | (so the instructions and data are not in cache), and the
- | second one is measured when the function is reinvoked at the same
- | input argument.
- |
- | The program setox takes approximately 210/190 cycles for input
- | argument X whose magnitude is less than 16380 log2, which
- | is the usual situation. For the less common arguments,
- | depending on their values, the program may run faster or slower --
- | but no worse than 10% slower even in the extreme cases.
- |
- | The program setoxm1 takes approximately ??? / ??? cycles for input
- | argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
- | approximately ??? / ??? cycles. For the less common arguments,
- | depending on their values, the program may run faster or slower --
- | but no worse than 10% slower even in the extreme cases.
- |
- | ALGORITHM and IMPLEMENTATION NOTES
- | ----------------------------------
- |
- | setoxd
- | ------
- | Step 1. Set ans := 1.0
- |
- | Step 2. Return ans := ans + sign(X)*2^(-126). Exit.
- | Notes: This will always generate one exception -- inexact.
- |
- |
- | setox
- | -----
- |
- | Step 1. Filter out extreme cases of input argument.
- | 1.1 If |X| >= 2^(-65), go to Step 1.3.
- | 1.2 Go to Step 7.
- | 1.3 If |X| < 16380 log(2), go to Step 2.
- | 1.4 Go to Step 8.
- | Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
- | To avoid the use of floating-point comparisons, a
- | compact representation of |X| is used. This format is a
- | 32-bit integer, the upper (more significant) 16 bits are
- | the sign and biased exponent field of |X|; the lower 16
- | bits are the 16 most significant fraction (including the
- | explicit bit) bits of |X|. Consequently, the comparisons
- | in Steps 1.1 and 1.3 can be performed by integer comparison.
- | Note also that the constant 16380 log(2) used in Step 1.3
- | is also in the compact form. Thus taking the branch
- | to Step 2 guarantees |X| < 16380 log(2). There is no harm
- | to have a small number of cases where |X| is less than,
- | but close to, 16380 log(2) and the branch to Step 9 is
- | taken.
- |
- | Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
- | 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
- | 2.2 N := round-to-nearest-integer( X * 64/log2 ).
- | 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63.
- | 2.4 Calculate M = (N - J)/64; so N = 64M + J.
- | 2.5 Calculate the address of the stored value of 2^(J/64).
- | 2.6 Create the value Scale = 2^M.
- | Notes: The calculation in 2.2 is really performed by
- |
- | Z := X * constant
- | N := round-to-nearest-integer(Z)
- |
- | where
- |
- | constant := single-precision( 64/log 2 ).
- |
- | Using a single-precision constant avoids memory access.
- | Another effect of using a single-precision "constant" is
- | that the calculated value Z is
- |
- | Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
- |
- | This error has to be considered later in Steps 3 and 4.
- |
- | Step 3. Calculate X - N*log2/64.
- | 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
- | 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
- | Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate
- | the value -log2/64 to 88 bits of accuracy.
- | b) N*L1 is exact because N is no longer than 22 bits and
- | L1 is no longer than 24 bits.
- | c) The calculation X+N*L1 is also exact due to cancellation.
- | Thus, R is practically X+N(L1+L2) to full 64 bits.
- | d) It is important to estimate how large can |R| be after
- | Step 3.2.
- |
- | N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
- | X*64/log2 (1+eps) = N + f, |f| <= 0.5
- | X*64/log2 - N = f - eps*X 64/log2
- | X - N*log2/64 = f*log2/64 - eps*X
- |
- |
- | Now |X| <= 16446 log2, thus
- |
- | |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
- | <= 0.57 log2/64.
- | This bound will be used in Step 4.
- |
- | Step 4. Approximate exp(R)-1 by a polynomial
- | p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
- | Notes: a) In order to reduce memory access, the coefficients are
- | made as "short" as possible: A1 (which is 1/2), A4 and A5
- | are single precision; A2 and A3 are double precision.
- | b) Even with the restrictions above,
- | |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
- | Note that 0.0062 is slightly bigger than 0.57 log2/64.
- | c) To fully utilize the pipeline, p is separated into
- | two independent pieces of roughly equal complexities
- | p = [ R + R*S*(A2 + S*A4) ] +
- | [ S*(A1 + S*(A3 + S*A5)) ]
- | where S = R*R.
- |
- | Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
- | ans := T + ( T*p + t)
- | where T and t are the stored values for 2^(J/64).
- | Notes: 2^(J/64) is stored as T and t where T+t approximates
- | 2^(J/64) to roughly 85 bits; T is in extended precision
- | and t is in single precision. Note also that T is rounded
- | to 62 bits so that the last two bits of T are zero. The
- | reason for such a special form is that T-1, T-2, and T-8
- | will all be exact --- a property that will give much
- | more accurate computation of the function EXPM1.
- |
- | Step 6. Reconstruction of exp(X)
- | exp(X) = 2^M * 2^(J/64) * exp(R).
- | 6.1 If AdjFlag = 0, go to 6.3
- | 6.2 ans := ans * AdjScale
- | 6.3 Restore the user FPCR
- | 6.4 Return ans := ans * Scale. Exit.
- | Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
- | |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
- | neither overflow nor underflow. If AdjFlag = 1, that
- | means that
- | X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
- | Hence, exp(X) may overflow or underflow or neither.
- | When that is the case, AdjScale = 2^(M1) where M1 is
- | approximately M. Thus 6.2 will never cause over/underflow.
- | Possible exception in 6.4 is overflow or underflow.
- | The inexact exception is not generated in 6.4. Although
- | one can argue that the inexact flag should always be
- | raised, to simulate that exception cost to much than the
- | flag is worth in practical uses.
- |
- | Step 7. Return 1 + X.
- | 7.1 ans := X
- | 7.2 Restore user FPCR.
- | 7.3 Return ans := 1 + ans. Exit
- | Notes: For non-zero X, the inexact exception will always be
- | raised by 7.3. That is the only exception raised by 7.3.
- | Note also that we use the FMOVEM instruction to move X
- | in Step 7.1 to avoid unnecessary trapping. (Although
- | the FMOVEM may not seem relevant since X is normalized,
- | the precaution will be useful in the library version of
- | this code where the separate entry for denormalized inputs
- | will be done away with.)
- |
- | Step 8. Handle exp(X) where |X| >= 16380log2.
- | 8.1 If |X| > 16480 log2, go to Step 9.
- | (mimic 2.2 - 2.6)
- | 8.2 N := round-to-integer( X * 64/log2 )
- | 8.3 Calculate J = N mod 64, J = 0,1,...,63
- | 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
- | 8.5 Calculate the address of the stored value 2^(J/64).
- | 8.6 Create the values Scale = 2^M, AdjScale = 2^M1.
- | 8.7 Go to Step 3.
- | Notes: Refer to notes for 2.2 - 2.6.
- |
- | Step 9. Handle exp(X), |X| > 16480 log2.
- | 9.1 If X < 0, go to 9.3
- | 9.2 ans := Huge, go to 9.4
- | 9.3 ans := Tiny.
- | 9.4 Restore user FPCR.
- | 9.5 Return ans := ans * ans. Exit.
- | Notes: Exp(X) will surely overflow or underflow, depending on
- | X's sign. "Huge" and "Tiny" are respectively large/tiny
- | extended-precision numbers whose square over/underflow
- | with an inexact result. Thus, 9.5 always raises the
- | inexact together with either overflow or underflow.
- |
- |
- | setoxm1d
- | --------
- |
- | Step 1. Set ans := 0
- |
- | Step 2. Return ans := X + ans. Exit.
- | Notes: This will return X with the appropriate rounding
- | precision prescribed by the user FPCR.
- |
- | setoxm1
- | -------
- |
- | Step 1. Check |X|
- | 1.1 If |X| >= 1/4, go to Step 1.3.
- | 1.2 Go to Step 7.
- | 1.3 If |X| < 70 log(2), go to Step 2.
- | 1.4 Go to Step 10.
- | Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
- | However, it is conceivable |X| can be small very often
- | because EXPM1 is intended to evaluate exp(X)-1 accurately
- | when |X| is small. For further details on the comparisons,
- | see the notes on Step 1 of setox.
- |
- | Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
- | 2.1 N := round-to-nearest-integer( X * 64/log2 ).
- | 2.2 Calculate J = N mod 64; so J = 0,1,2,..., or 63.
- | 2.3 Calculate M = (N - J)/64; so N = 64M + J.
- | 2.4 Calculate the address of the stored value of 2^(J/64).
- | 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M).
- | Notes: See the notes on Step 2 of setox.
- |
- | Step 3. Calculate X - N*log2/64.
- | 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
- | 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
- | Notes: Applying the analysis of Step 3 of setox in this case
- | shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
- | this case).
- |
- | Step 4. Approximate exp(R)-1 by a polynomial
- | p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
- | Notes: a) In order to reduce memory access, the coefficients are
- | made as "short" as possible: A1 (which is 1/2), A5 and A6
- | are single precision; A2, A3 and A4 are double precision.
- | b) Even with the restriction above,
- | |p - (exp(R)-1)| < |R| * 2^(-72.7)
- | for all |R| <= 0.0055.
- | c) To fully utilize the pipeline, p is separated into
- | two independent pieces of roughly equal complexity
- | p = [ R*S*(A2 + S*(A4 + S*A6)) ] +
- | [ R + S*(A1 + S*(A3 + S*A5)) ]
- | where S = R*R.
- |
- | Step 5. Compute 2^(J/64)*p by
- | p := T*p
- | where T and t are the stored values for 2^(J/64).
- | Notes: 2^(J/64) is stored as T and t where T+t approximates
- | 2^(J/64) to roughly 85 bits; T is in extended precision
- | and t is in single precision. Note also that T is rounded
- | to 62 bits so that the last two bits of T are zero. The
- | reason for such a special form is that T-1, T-2, and T-8
- | will all be exact --- a property that will be exploited
- | in Step 6 below. The total relative error in p is no
- | bigger than 2^(-67.7) compared to the final result.
- |
- | Step 6. Reconstruction of exp(X)-1
- | exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
- | 6.1 If M <= 63, go to Step 6.3.
- | 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6
- | 6.3 If M >= -3, go to 6.5.
- | 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6
- | 6.5 ans := (T + OnebySc) + (p + t).
- | 6.6 Restore user FPCR.
- | 6.7 Return ans := Sc * ans. Exit.
- | Notes: The various arrangements of the expressions give accurate
- | evaluations.
- |
- | Step 7. exp(X)-1 for |X| < 1/4.
- | 7.1 If |X| >= 2^(-65), go to Step 9.
- | 7.2 Go to Step 8.
- |
- | Step 8. Calculate exp(X)-1, |X| < 2^(-65).
- | 8.1 If |X| < 2^(-16312), goto 8.3
- | 8.2 Restore FPCR; return ans := X - 2^(-16382). Exit.
- | 8.3 X := X * 2^(140).
- | 8.4 Restore FPCR; ans := ans - 2^(-16382).
- | Return ans := ans*2^(140). Exit
- | Notes: The idea is to return "X - tiny" under the user
- | precision and rounding modes. To avoid unnecessary
- | inefficiency, we stay away from denormalized numbers the
- | best we can. For |X| >= 2^(-16312), the straightforward
- | 8.2 generates the inexact exception as the case warrants.
- |
- | Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
- | p = X + X*X*(B1 + X*(B2 + ... + X*B12))
- | Notes: a) In order to reduce memory access, the coefficients are
- | made as "short" as possible: B1 (which is 1/2), B9 to B12
- | are single precision; B3 to B8 are double precision; and
- | B2 is double extended.
- | b) Even with the restriction above,
- | |p - (exp(X)-1)| < |X| 2^(-70.6)
- | for all |X| <= 0.251.
- | Note that 0.251 is slightly bigger than 1/4.
- | c) To fully preserve accuracy, the polynomial is computed
- | as X + ( S*B1 + Q ) where S = X*X and
- | Q = X*S*(B2 + X*(B3 + ... + X*B12))
- | d) To fully utilize the pipeline, Q is separated into
- | two independent pieces of roughly equal complexity
- | Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
- | [ S*S*(B3 + S*(B5 + ... + S*B11)) ]
- |
- | Step 10. Calculate exp(X)-1 for |X| >= 70 log 2.
- | 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
- | purposes. Therefore, go to Step 1 of setox.
- | 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
- | ans := -1
- | Restore user FPCR
- | Return ans := ans + 2^(-126). Exit.
- | Notes: 10.2 will always create an inexact and return -1 + tiny
- | in the user rounding precision and mode.
- |
- |
- | Copyright (C) Motorola, Inc. 1990
- | All Rights Reserved
- |
- | For details on the license for this file, please see the
- | file, README, in this same directory.
- |setox idnt 2,1 | Motorola 040 Floating Point Software Package
- |section 8
- #include "fpsp.h"
- L2: .long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
- EXPA3: .long 0x3FA55555,0x55554431
- EXPA2: .long 0x3FC55555,0x55554018
- HUGE: .long 0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
- TINY: .long 0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
- EM1A4: .long 0x3F811111,0x11174385
- EM1A3: .long 0x3FA55555,0x55554F5A
- EM1A2: .long 0x3FC55555,0x55555555,0x00000000,0x00000000
- EM1B8: .long 0x3EC71DE3,0xA5774682
- EM1B7: .long 0x3EFA01A0,0x19D7CB68
- EM1B6: .long 0x3F2A01A0,0x1A019DF3
- EM1B5: .long 0x3F56C16C,0x16C170E2
- EM1B4: .long 0x3F811111,0x11111111
- EM1B3: .long 0x3FA55555,0x55555555
- EM1B2: .long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
- .long 0x00000000
- TWO140: .long 0x48B00000,0x00000000
- TWON140: .long 0x37300000,0x00000000
- EXPTBL:
- .long 0x3FFF0000,0x80000000,0x00000000,0x00000000
- .long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
- .long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
- .long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
- .long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
- .long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
- .long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
- .long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
- .long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
- .long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
- .long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
- .long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
- .long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
- .long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
- .long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
- .long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
- .long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
- .long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
- .long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
- .long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
- .long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
- .long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
- .long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
- .long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
- .long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
- .long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
- .long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
- .long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
- .long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
- .long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
- .long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
- .long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
- .long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
- .long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
- .long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
- .long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
- .long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
- .long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
- .long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
- .long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
- .long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
- .long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
- .long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
- .long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
- .long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
- .long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
- .long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
- .long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
- .long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
- .long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
- .long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
- .long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
- .long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
- .long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
- .long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
- .long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
- .long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
- .long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
- .long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
- .long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
- .long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
- .long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
- .long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
- .long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
- .set ADJFLAG,L_SCR2
- .set SCALE,FP_SCR1
- .set ADJSCALE,FP_SCR2
- .set SC,FP_SCR3
- .set ONEBYSC,FP_SCR4
- | xref t_frcinx
- |xref t_extdnrm
- |xref t_unfl
- |xref t_ovfl
- .global setoxd
- setoxd:
- |--entry point for EXP(X), X is denormalized
- movel (%a0),%d0
- andil #0x80000000,%d0
- oril #0x00800000,%d0 | ...sign(X)*2^(-126)
- movel %d0,-(%sp)
- fmoves #0x3F800000,%fp0
- fmovel %d1,%fpcr
- fadds (%sp)+,%fp0
- bra t_frcinx
- .global setox
- setox:
- |--entry point for EXP(X), here X is finite, non-zero, and not NaN's
- |--Step 1.
- movel (%a0),%d0 | ...load part of input X
- andil #0x7FFF0000,%d0 | ...biased expo. of X
- cmpil #0x3FBE0000,%d0 | ...2^(-65)
- bges EXPC1 | ...normal case
- bra EXPSM
- EXPC1:
- |--The case |X| >= 2^(-65)
- movew 4(%a0),%d0 | ...expo. and partial sig. of |X|
- cmpil #0x400CB167,%d0 | ...16380 log2 trunc. 16 bits
- blts EXPMAIN | ...normal case
- bra EXPBIG
- EXPMAIN:
- |--Step 2.
- |--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
- fmovex (%a0),%fp0 | ...load input from (a0)
- fmovex %fp0,%fp1
- fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X
- fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2
- movel #0,ADJFLAG(%a6)
- fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
- lea EXPTBL,%a1
- fmovel %d0,%fp0 | ...convert to floating-format
- movel %d0,L_SCR1(%a6) | ...save N temporarily
- andil #0x3F,%d0 | ...D0 is J = N mod 64
- lsll #4,%d0
- addal %d0,%a1 | ...address of 2^(J/64)
- movel L_SCR1(%a6),%d0
- asrl #6,%d0 | ...D0 is M
- addiw #0x3FFF,%d0 | ...biased expo. of 2^(M)
- movew L2,L_SCR1(%a6) | ...prefetch L2, no need in CB
- EXPCONT1:
- |--Step 3.
- |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
- |--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
- fmovex %fp0,%fp2
- fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64)
- fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64
- faddx %fp1,%fp0 | ...X + N*L1
- faddx %fp2,%fp0 | ...fp0 is R, reduced arg.
- | MOVE.W #$3FA5,EXPA3 ...load EXPA3 in cache
- |--Step 4.
- |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
- |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
- |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
- |--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 | ...fp1 IS S = R*R
- fmoves #0x3AB60B70,%fp2 | ...fp2 IS A5
- | MOVE.W #0,2(%a1) ...load 2^(J/64) in cache
- fmulx %fp1,%fp2 | ...fp2 IS S*A5
- fmovex %fp1,%fp3
- fmuls #0x3C088895,%fp3 | ...fp3 IS S*A4
- faddd EXPA3,%fp2 | ...fp2 IS A3+S*A5
- faddd EXPA2,%fp3 | ...fp3 IS A2+S*A4
- fmulx %fp1,%fp2 | ...fp2 IS S*(A3+S*A5)
- movew %d0,SCALE(%a6) | ...SCALE is 2^(M) in extended
- clrw SCALE+2(%a6)
- movel #0x80000000,SCALE+4(%a6)
- clrl SCALE+8(%a6)
- fmulx %fp1,%fp3 | ...fp3 IS S*(A2+S*A4)
- fadds #0x3F000000,%fp2 | ...fp2 IS A1+S*(A3+S*A5)
- fmulx %fp0,%fp3 | ...fp3 IS R*S*(A2+S*A4)
- fmulx %fp1,%fp2 | ...fp2 IS S*(A1+S*(A3+S*A5))
- faddx %fp3,%fp0 | ...fp0 IS R+R*S*(A2+S*A4),
- | ...fp3 released
- fmovex (%a1)+,%fp1 | ...fp1 is lead. pt. of 2^(J/64)
- faddx %fp2,%fp0 | ...fp0 is EXP(R) - 1
- | ...fp2 released
- |--Step 5
- |--final reconstruction process
- |--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
- fmulx %fp1,%fp0 | ...2^(J/64)*(Exp(R)-1)
- fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored
- fadds (%a1),%fp0 | ...accurate 2^(J/64)
- faddx %fp1,%fp0 | ...2^(J/64) + 2^(J/64)*...
- movel ADJFLAG(%a6),%d0
- |--Step 6
- tstl %d0
- beqs NORMAL
- ADJUST:
- fmulx ADJSCALE(%a6),%fp0
- NORMAL:
- fmovel %d1,%FPCR | ...restore user FPCR
- fmulx SCALE(%a6),%fp0 | ...multiply 2^(M)
- bra t_frcinx
- EXPSM:
- |--Step 7
- fmovemx (%a0),%fp0-%fp0 | ...in case X is denormalized
- fmovel %d1,%FPCR
- fadds #0x3F800000,%fp0 | ...1+X in user mode
- bra t_frcinx
- EXPBIG:
- |--Step 8
- cmpil #0x400CB27C,%d0 | ...16480 log2
- bgts EXP2BIG
- |--Steps 8.2 -- 8.6
- fmovex (%a0),%fp0 | ...load input from (a0)
- fmovex %fp0,%fp1
- fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X
- fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2
- movel #1,ADJFLAG(%a6)
- fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
- lea EXPTBL,%a1
- fmovel %d0,%fp0 | ...convert to floating-format
- movel %d0,L_SCR1(%a6) | ...save N temporarily
- andil #0x3F,%d0 | ...D0 is J = N mod 64
- lsll #4,%d0
- addal %d0,%a1 | ...address of 2^(J/64)
- movel L_SCR1(%a6),%d0
- asrl #6,%d0 | ...D0 is K
- movel %d0,L_SCR1(%a6) | ...save K temporarily
- asrl #1,%d0 | ...D0 is M1
- subl %d0,L_SCR1(%a6) | ...a1 is M
- addiw #0x3FFF,%d0 | ...biased expo. of 2^(M1)
- movew %d0,ADJSCALE(%a6) | ...ADJSCALE := 2^(M1)
- clrw ADJSCALE+2(%a6)
- movel #0x80000000,ADJSCALE+4(%a6)
- clrl ADJSCALE+8(%a6)
- movel L_SCR1(%a6),%d0 | ...D0 is M
- addiw #0x3FFF,%d0 | ...biased expo. of 2^(M)
- bra EXPCONT1 | ...go back to Step 3
- EXP2BIG:
- |--Step 9
- fmovel %d1,%FPCR
- movel (%a0),%d0
- bclrb #sign_bit,(%a0) | ...setox always returns positive
- cmpil #0,%d0
- blt t_unfl
- bra t_ovfl
- .global setoxm1d
- setoxm1d:
- |--entry point for EXPM1(X), here X is denormalized
- |--Step 0.
- bra t_extdnrm
- .global setoxm1
- setoxm1:
- |--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
- |--Step 1.
- |--Step 1.1
- movel (%a0),%d0 | ...load part of input X
- andil #0x7FFF0000,%d0 | ...biased expo. of X
- cmpil #0x3FFD0000,%d0 | ...1/4
- bges EM1CON1 | ...|X| >= 1/4
- bra EM1SM
- EM1CON1:
- |--Step 1.3
- |--The case |X| >= 1/4
- movew 4(%a0),%d0 | ...expo. and partial sig. of |X|
- cmpil #0x4004C215,%d0 | ...70log2 rounded up to 16 bits
- bles EM1MAIN | ...1/4 <= |X| <= 70log2
- bra EM1BIG
- EM1MAIN:
- |--Step 2.
- |--This is the case: 1/4 <= |X| <= 70 log2.
- fmovex (%a0),%fp0 | ...load input from (a0)
- fmovex %fp0,%fp1
- fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X
- fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2
- | MOVE.W #$3F81,EM1A4 ...prefetch in CB mode
- fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
- lea EXPTBL,%a1
- fmovel %d0,%fp0 | ...convert to floating-format
- movel %d0,L_SCR1(%a6) | ...save N temporarily
- andil #0x3F,%d0 | ...D0 is J = N mod 64
- lsll #4,%d0
- addal %d0,%a1 | ...address of 2^(J/64)
- movel L_SCR1(%a6),%d0
- asrl #6,%d0 | ...D0 is M
- movel %d0,L_SCR1(%a6) | ...save a copy of M
- | MOVE.W #$3FDC,L2 ...prefetch L2 in CB mode
- |--Step 3.
- |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
- |--a0 points to 2^(J/64), D0 and a1 both contain M
- fmovex %fp0,%fp2
- fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64)
- fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64
- faddx %fp1,%fp0 | ...X + N*L1
- faddx %fp2,%fp0 | ...fp0 is R, reduced arg.
- | MOVE.W #$3FC5,EM1A2 ...load EM1A2 in cache
- addiw #0x3FFF,%d0 | ...D0 is biased expo. of 2^M
- |--Step 4.
- |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
- |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
- |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
- |--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 | ...fp1 IS S = R*R
- fmoves #0x3950097B,%fp2 | ...fp2 IS a6
- | MOVE.W #0,2(%a1) ...load 2^(J/64) in cache
- fmulx %fp1,%fp2 | ...fp2 IS S*A6
- fmovex %fp1,%fp3
- fmuls #0x3AB60B6A,%fp3 | ...fp3 IS S*A5
- faddd EM1A4,%fp2 | ...fp2 IS A4+S*A6
- faddd EM1A3,%fp3 | ...fp3 IS A3+S*A5
- movew %d0,SC(%a6) | ...SC is 2^(M) in extended
- clrw SC+2(%a6)
- movel #0x80000000,SC+4(%a6)
- clrl SC+8(%a6)
- fmulx %fp1,%fp2 | ...fp2 IS S*(A4+S*A6)
- movel L_SCR1(%a6),%d0 | ...D0 is M
- negw %d0 | ...D0 is -M
- fmulx %fp1,%fp3 | ...fp3 IS S*(A3+S*A5)
- addiw #0x3FFF,%d0 | ...biased expo. of 2^(-M)
- faddd EM1A2,%fp2 | ...fp2 IS A2+S*(A4+S*A6)
- fadds #0x3F000000,%fp3 | ...fp3 IS A1+S*(A3+S*A5)
- fmulx %fp1,%fp2 | ...fp2 IS S*(A2+S*(A4+S*A6))
- oriw #0x8000,%d0 | ...signed/expo. of -2^(-M)
- movew %d0,ONEBYSC(%a6) | ...OnebySc is -2^(-M)
- clrw ONEBYSC+2(%a6)
- movel #0x80000000,ONEBYSC+4(%a6)
- clrl ONEBYSC+8(%a6)
- fmulx %fp3,%fp1 | ...fp1 IS S*(A1+S*(A3+S*A5))
- | ...fp3 released
- fmulx %fp0,%fp2 | ...fp2 IS R*S*(A2+S*(A4+S*A6))
- faddx %fp1,%fp0 | ...fp0 IS R+S*(A1+S*(A3+S*A5))
- | ...fp1 released
- faddx %fp2,%fp0 | ...fp0 IS EXP(R)-1
- | ...fp2 released
- fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored
- |--Step 5
- |--Compute 2^(J/64)*p
- fmulx (%a1),%fp0 | ...2^(J/64)*(Exp(R)-1)
- |--Step 6
- |--Step 6.1
- movel L_SCR1(%a6),%d0 | ...retrieve M
- cmpil #63,%d0
- bles MLE63
- |--Step 6.2 M >= 64
- fmoves 12(%a1),%fp1 | ...fp1 is t
- faddx ONEBYSC(%a6),%fp1 | ...fp1 is t+OnebySc
- faddx %fp1,%fp0 | ...p+(t+OnebySc), fp1 released
- faddx (%a1),%fp0 | ...T+(p+(t+OnebySc))
- bras EM1SCALE
- MLE63:
- |--Step 6.3 M <= 63
- cmpil #-3,%d0
- bges MGEN3
- MLTN3:
- |--Step 6.4 M <= -4
- fadds 12(%a1),%fp0 | ...p+t
- faddx (%a1),%fp0 | ...T+(p+t)
- faddx ONEBYSC(%a6),%fp0 | ...OnebySc + (T+(p+t))
- bras EM1SCALE
- MGEN3:
- |--Step 6.5 -3 <= M <= 63
- fmovex (%a1)+,%fp1 | ...fp1 is T
- fadds (%a1),%fp0 | ...fp0 is p+t
- faddx ONEBYSC(%a6),%fp1 | ...fp1 is T+OnebySc
- faddx %fp1,%fp0 | ...(T+OnebySc)+(p+t)
- EM1SCALE:
- |--Step 6.6
- fmovel %d1,%FPCR
- fmulx SC(%a6),%fp0
- bra t_frcinx
- EM1SM:
- |--Step 7 |X| < 1/4.
- cmpil #0x3FBE0000,%d0 | ...2^(-65)
- bges EM1POLY
- EM1TINY:
- |--Step 8 |X| < 2^(-65)
- cmpil #0x00330000,%d0 | ...2^(-16312)
- blts EM12TINY
- |--Step 8.2
- movel #0x80010000,SC(%a6) | ...SC is -2^(-16382)
- movel #0x80000000,SC+4(%a6)
- clrl SC+8(%a6)
- fmovex (%a0),%fp0
- fmovel %d1,%FPCR
- faddx SC(%a6),%fp0
- bra t_frcinx
- EM12TINY:
- |--Step 8.3
- fmovex (%a0),%fp0
- fmuld TWO140,%fp0
- movel #0x80010000,SC(%a6)
- movel #0x80000000,SC+4(%a6)
- clrl SC+8(%a6)
- faddx SC(%a6),%fp0
- fmovel %d1,%FPCR
- fmuld TWON140,%fp0
- bra t_frcinx
- EM1POLY:
- |--Step 9 exp(X)-1 by a simple polynomial
- fmovex (%a0),%fp0 | ...fp0 is X
- fmulx %fp0,%fp0 | ...fp0 is S := X*X
- fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2
- fmoves #0x2F30CAA8,%fp1 | ...fp1 is B12
- fmulx %fp0,%fp1 | ...fp1 is S*B12
- fmoves #0x310F8290,%fp2 | ...fp2 is B11
- fadds #0x32D73220,%fp1 | ...fp1 is B10+S*B12
- fmulx %fp0,%fp2 | ...fp2 is S*B11
- fmulx %fp0,%fp1 | ...fp1 is S*(B10 + ...
- fadds #0x3493F281,%fp2 | ...fp2 is B9+S*...
- faddd EM1B8,%fp1 | ...fp1 is B8+S*...
- fmulx %fp0,%fp2 | ...fp2 is S*(B9+...
- fmulx %fp0,%fp1 | ...fp1 is S*(B8+...
- faddd EM1B7,%fp2 | ...fp2 is B7+S*...
- faddd EM1B6,%fp1 | ...fp1 is B6+S*...
- fmulx %fp0,%fp2 | ...fp2 is S*(B7+...
- fmulx %fp0,%fp1 | ...fp1 is S*(B6+...
- faddd EM1B5,%fp2 | ...fp2 is B5+S*...
- faddd EM1B4,%fp1 | ...fp1 is B4+S*...
- fmulx %fp0,%fp2 | ...fp2 is S*(B5+...
- fmulx %fp0,%fp1 | ...fp1 is S*(B4+...
- faddd EM1B3,%fp2 | ...fp2 is B3+S*...
- faddx EM1B2,%fp1 | ...fp1 is B2+S*...
- fmulx %fp0,%fp2 | ...fp2 is S*(B3+...
- fmulx %fp0,%fp1 | ...fp1 is S*(B2+...
- fmulx %fp0,%fp2 | ...fp2 is S*S*(B3+...)
- fmulx (%a0),%fp1 | ...fp1 is X*S*(B2...
- fmuls #0x3F000000,%fp0 | ...fp0 is S*B1
- faddx %fp2,%fp1 | ...fp1 is Q
- | ...fp2 released
- fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored
- faddx %fp1,%fp0 | ...fp0 is S*B1+Q
- | ...fp1 released
- fmovel %d1,%FPCR
- faddx (%a0),%fp0
- bra t_frcinx
- EM1BIG:
- |--Step 10 |X| > 70 log2
- movel (%a0),%d0
- cmpil #0,%d0
- bgt EXPC1
- |--Step 10.2
- fmoves #0xBF800000,%fp0 | ...fp0 is -1
- fmovel %d1,%FPCR
- fadds #0x00800000,%fp0 | ...-1 + 2^(-126)
- bra t_frcinx
- |end
|