123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- /*
- *
- * Optimized version of the standard strlen() function
- *
- *
- * Inputs:
- * in0 address of string
- *
- * Outputs:
- * ret0 the number of characters in the string (0 if empty string)
- * does not count the \0
- *
- * Copyright (C) 1999, 2001 Hewlett-Packard Co
- * Stephane Eranian <eranian@hpl.hp.com>
- *
- * 09/24/99 S.Eranian add speculation recovery code
- */
- #include <asm/asmmacro.h>
- #include <asm/export.h>
- //
- //
- // This is an enhanced version of the basic strlen. it includes a combination
- // of compute zero index (czx), parallel comparisons, speculative loads and
- // loop unroll using rotating registers.
- //
- // General Ideas about the algorithm:
- // The goal is to look at the string in chunks of 8 bytes.
- // so we need to do a few extra checks at the beginning because the
- // string may not be 8-byte aligned. In this case we load the 8byte
- // quantity which includes the start of the string and mask the unused
- // bytes with 0xff to avoid confusing czx.
- // We use speculative loads and software pipelining to hide memory
- // latency and do read ahead safely. This way we defer any exception.
- //
- // Because we don't want the kernel to be relying on particular
- // settings of the DCR register, we provide recovery code in case
- // speculation fails. The recovery code is going to "redo" the work using
- // only normal loads. If we still get a fault then we generate a
- // kernel panic. Otherwise we return the strlen as usual.
- //
- // The fact that speculation may fail can be caused, for instance, by
- // the DCR.dm bit being set. In this case TLB misses are deferred, i.e.,
- // a NaT bit will be set if the translation is not present. The normal
- // load, on the other hand, will cause the translation to be inserted
- // if the mapping exists.
- //
- // It should be noted that we execute recovery code only when we need
- // to use the data that has been speculatively loaded: we don't execute
- // recovery code on pure read ahead data.
- //
- // Remarks:
- // - the cmp r0,r0 is used as a fast way to initialize a predicate
- // register to 1. This is required to make sure that we get the parallel
- // compare correct.
- //
- // - we don't use the epilogue counter to exit the loop but we need to set
- // it to zero beforehand.
- //
- // - after the loop we must test for Nat values because neither the
- // czx nor cmp instruction raise a NaT consumption fault. We must be
- // careful not to look too far for a Nat for which we don't care.
- // For instance we don't need to look at a NaT in val2 if the zero byte
- // was in val1.
- //
- // - Clearly performance tuning is required.
- //
- //
- //
- #define saved_pfs r11
- #define tmp r10
- #define base r16
- #define orig r17
- #define saved_pr r18
- #define src r19
- #define mask r20
- #define val r21
- #define val1 r22
- #define val2 r23
- GLOBAL_ENTRY(strlen)
- .prologue
- .save ar.pfs, saved_pfs
- alloc saved_pfs=ar.pfs,11,0,0,8 // rotating must be multiple of 8
- .rotr v[2], w[2] // declares our 4 aliases
- extr.u tmp=in0,0,3 // tmp=least significant 3 bits
- mov orig=in0 // keep trackof initial byte address
- dep src=0,in0,0,3 // src=8byte-aligned in0 address
- .save pr, saved_pr
- mov saved_pr=pr // preserve predicates (rotation)
- ;;
- .body
- ld8 v[1]=[src],8 // must not speculate: can fail here
- shl tmp=tmp,3 // multiply by 8bits/byte
- mov mask=-1 // our mask
- ;;
- ld8.s w[1]=[src],8 // speculatively load next
- cmp.eq p6,p0=r0,r0 // sets p6 to true for cmp.and
- sub tmp=64,tmp // how many bits to shift our mask on the right
- ;;
- shr.u mask=mask,tmp // zero enough bits to hold v[1] valuable part
- mov ar.ec=r0 // clear epilogue counter (saved in ar.pfs)
- ;;
- add base=-16,src // keep track of aligned base
- or v[1]=v[1],mask // now we have a safe initial byte pattern
- ;;
- 1:
- ld8.s v[0]=[src],8 // speculatively load next
- czx1.r val1=v[1] // search 0 byte from right
- czx1.r val2=w[1] // search 0 byte from right following 8bytes
- ;;
- ld8.s w[0]=[src],8 // speculatively load next to next
- cmp.eq.and p6,p0=8,val1 // p6 = p6 and val1==8
- cmp.eq.and p6,p0=8,val2 // p6 = p6 and mask==8
- (p6) br.wtop.dptk 1b // loop until p6 == 0
- ;;
- //
- // We must return try the recovery code iff
- // val1_is_nat || (val1==8 && val2_is_nat)
- //
- // XXX Fixme
- // - there must be a better way of doing the test
- //
- cmp.eq p8,p9=8,val1 // p6 = val1 had zero (disambiguate)
- tnat.nz p6,p7=val1 // test NaT on val1
- (p6) br.cond.spnt .recover // jump to recovery if val1 is NaT
- ;;
- //
- // if we come here p7 is true, i.e., initialized for // cmp
- //
- cmp.eq.and p7,p0=8,val1// val1==8?
- tnat.nz.and p7,p0=val2 // test NaT if val2
- (p7) br.cond.spnt .recover // jump to recovery if val2 is NaT
- ;;
- (p8) mov val1=val2 // the other test got us out of the loop
- (p8) adds src=-16,src // correct position when 3 ahead
- (p9) adds src=-24,src // correct position when 4 ahead
- ;;
- sub ret0=src,orig // distance from base
- sub tmp=8,val1 // which byte in word
- mov pr=saved_pr,0xffffffffffff0000
- ;;
- sub ret0=ret0,tmp // adjust
- mov ar.pfs=saved_pfs // because of ar.ec, restore no matter what
- br.ret.sptk.many rp // end of normal execution
- //
- // Outlined recovery code when speculation failed
- //
- // This time we don't use speculation and rely on the normal exception
- // mechanism. that's why the loop is not as good as the previous one
- // because read ahead is not possible
- //
- // IMPORTANT:
- // Please note that in the case of strlen() as opposed to strlen_user()
- // we don't use the exception mechanism, as this function is not
- // supposed to fail. If that happens it means we have a bug and the
- // code will cause of kernel fault.
- //
- // XXX Fixme
- // - today we restart from the beginning of the string instead
- // of trying to continue where we left off.
- //
- .recover:
- ld8 val=[base],8 // will fail if unrecoverable fault
- ;;
- or val=val,mask // remask first bytes
- cmp.eq p0,p6=r0,r0 // nullify first ld8 in loop
- ;;
- //
- // ar.ec is still zero here
- //
- 2:
- (p6) ld8 val=[base],8 // will fail if unrecoverable fault
- ;;
- czx1.r val1=val // search 0 byte from right
- ;;
- cmp.eq p6,p0=8,val1 // val1==8 ?
- (p6) br.wtop.dptk 2b // loop until p6 == 0
- ;; // (avoid WAW on p63)
- sub ret0=base,orig // distance from base
- sub tmp=8,val1
- mov pr=saved_pr,0xffffffffffff0000
- ;;
- sub ret0=ret0,tmp // length=now - back -1
- mov ar.pfs=saved_pfs // because of ar.ec, restore no matter what
- br.ret.sptk.many rp // end of successful recovery code
- END(strlen)
- EXPORT_SYMBOL(strlen)
|