123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- /*
- * This routine clears to zero a linear memory buffer in user space.
- *
- * Inputs:
- * in0: address of buffer
- * in1: length of buffer in bytes
- * Outputs:
- * r8: number of bytes that didn't get cleared due to a fault
- *
- * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co
- * Stephane Eranian <eranian@hpl.hp.com>
- */
- #include <asm/asmmacro.h>
- #include <asm/export.h>
- //
- // arguments
- //
- #define buf r32
- #define len r33
- //
- // local registers
- //
- #define cnt r16
- #define buf2 r17
- #define saved_lc r18
- #define saved_pfs r19
- #define tmp r20
- #define len2 r21
- #define len3 r22
- //
- // Theory of operations:
- // - we check whether or not the buffer is small, i.e., less than 17
- // in which case we do the byte by byte loop.
- //
- // - Otherwise we go progressively from 1 byte store to 8byte store in
- // the head part, the body is a 16byte store loop and we finish we the
- // tail for the last 15 bytes.
- // The good point about this breakdown is that the long buffer handling
- // contains only 2 branches.
- //
- // The reason for not using shifting & masking for both the head and the
- // tail is to stay semantically correct. This routine is not supposed
- // to write bytes outside of the buffer. While most of the time this would
- // be ok, we can't tolerate a mistake. A classical example is the case
- // of multithreaded code were to the extra bytes touched is actually owned
- // by another thread which runs concurrently to ours. Another, less likely,
- // example is with device drivers where reading an I/O mapped location may
- // have side effects (same thing for writing).
- //
- GLOBAL_ENTRY(__do_clear_user)
- .prologue
- .save ar.pfs, saved_pfs
- alloc saved_pfs=ar.pfs,2,0,0,0
- cmp.eq p6,p0=r0,len // check for zero length
- .save ar.lc, saved_lc
- mov saved_lc=ar.lc // preserve ar.lc (slow)
- .body
- ;; // avoid WAW on CFM
- adds tmp=-1,len // br.ctop is repeat/until
- mov ret0=len // return value is length at this point
- (p6) br.ret.spnt.many rp
- ;;
- cmp.lt p6,p0=16,len // if len > 16 then long memset
- mov ar.lc=tmp // initialize lc for small count
- (p6) br.cond.dptk .long_do_clear
- ;; // WAR on ar.lc
- //
- // worst case 16 iterations, avg 8 iterations
- //
- // We could have played with the predicates to use the extra
- // M slot for 2 stores/iteration but the cost the initialization
- // the various counters compared to how long the loop is supposed
- // to last on average does not make this solution viable.
- //
- 1:
- EX( .Lexit1, st1 [buf]=r0,1 )
- adds len=-1,len // countdown length using len
- br.cloop.dptk 1b
- ;; // avoid RAW on ar.lc
- //
- // .Lexit4: comes from byte by byte loop
- // len contains bytes left
- .Lexit1:
- mov ret0=len // faster than using ar.lc
- mov ar.lc=saved_lc
- br.ret.sptk.many rp // end of short clear_user
- //
- // At this point we know we have more than 16 bytes to copy
- // so we focus on alignment (no branches required)
- //
- // The use of len/len2 for countdown of the number of bytes left
- // instead of ret0 is due to the fact that the exception code
- // changes the values of r8.
- //
- .long_do_clear:
- tbit.nz p6,p0=buf,0 // odd alignment (for long_do_clear)
- ;;
- EX( .Lexit3, (p6) st1 [buf]=r0,1 ) // 1-byte aligned
- (p6) adds len=-1,len;; // sync because buf is modified
- tbit.nz p6,p0=buf,1
- ;;
- EX( .Lexit3, (p6) st2 [buf]=r0,2 ) // 2-byte aligned
- (p6) adds len=-2,len;;
- tbit.nz p6,p0=buf,2
- ;;
- EX( .Lexit3, (p6) st4 [buf]=r0,4 ) // 4-byte aligned
- (p6) adds len=-4,len;;
- tbit.nz p6,p0=buf,3
- ;;
- EX( .Lexit3, (p6) st8 [buf]=r0,8 ) // 8-byte aligned
- (p6) adds len=-8,len;;
- shr.u cnt=len,4 // number of 128-bit (2x64bit) words
- ;;
- cmp.eq p6,p0=r0,cnt
- adds tmp=-1,cnt
- (p6) br.cond.dpnt .dotail // we have less than 16 bytes left
- ;;
- adds buf2=8,buf // setup second base pointer
- mov ar.lc=tmp
- ;;
- //
- // 16bytes/iteration core loop
- //
- // The second store can never generate a fault because
- // we come into the loop only when we are 16-byte aligned.
- // This means that if we cross a page then it will always be
- // in the first store and never in the second.
- //
- //
- // We need to keep track of the remaining length. A possible (optimistic)
- // way would be to use ar.lc and derive how many byte were left by
- // doing : left= 16*ar.lc + 16. this would avoid the addition at
- // every iteration.
- // However we need to keep the synchronization point. A template
- // M;;MB does not exist and thus we can keep the addition at no
- // extra cycle cost (use a nop slot anyway). It also simplifies the
- // (unlikely) error recovery code
- //
- 2: EX(.Lexit3, st8 [buf]=r0,16 )
- ;; // needed to get len correct when error
- st8 [buf2]=r0,16
- adds len=-16,len
- br.cloop.dptk 2b
- ;;
- mov ar.lc=saved_lc
- //
- // tail correction based on len only
- //
- // We alternate the use of len3,len2 to allow parallelism and correct
- // error handling. We also reuse p6/p7 to return correct value.
- // The addition of len2/len3 does not cost anything more compared to
- // the regular memset as we had empty slots.
- //
- .dotail:
- mov len2=len // for parallelization of error handling
- mov len3=len
- tbit.nz p6,p0=len,3
- ;;
- EX( .Lexit2, (p6) st8 [buf]=r0,8 ) // at least 8 bytes
- (p6) adds len3=-8,len2
- tbit.nz p7,p6=len,2
- ;;
- EX( .Lexit2, (p7) st4 [buf]=r0,4 ) // at least 4 bytes
- (p7) adds len2=-4,len3
- tbit.nz p6,p7=len,1
- ;;
- EX( .Lexit2, (p6) st2 [buf]=r0,2 ) // at least 2 bytes
- (p6) adds len3=-2,len2
- tbit.nz p7,p6=len,0
- ;;
- EX( .Lexit2, (p7) st1 [buf]=r0 ) // only 1 byte left
- mov ret0=r0 // success
- br.ret.sptk.many rp // end of most likely path
- //
- // Outlined error handling code
- //
- //
- // .Lexit3: comes from core loop, need restore pr/lc
- // len contains bytes left
- //
- //
- // .Lexit2:
- // if p6 -> coming from st8 or st2 : len2 contains what's left
- // if p7 -> coming from st4 or st1 : len3 contains what's left
- // We must restore lc/pr even though might not have been used.
- .Lexit2:
- .pred.rel "mutex", p6, p7
- (p6) mov len=len2
- (p7) mov len=len3
- ;;
- //
- // .Lexit4: comes from head, need not restore pr/lc
- // len contains bytes left
- //
- .Lexit3:
- mov ret0=len
- mov ar.lc=saved_lc
- br.ret.sptk.many rp
- END(__do_clear_user)
- EXPORT_SYMBOL(__do_clear_user)
|