123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- /*
- * arch/arm/kernel/topology.c
- *
- * Copyright (C) 2011 Linaro Limited.
- * Written by: Vincent Guittot
- *
- * based on arch/sh/kernel/topology.c
- *
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- */
- #include <linux/cpu.h>
- #include <linux/cpumask.h>
- #include <linux/export.h>
- #include <linux/init.h>
- #include <linux/percpu.h>
- #include <linux/node.h>
- #include <linux/nodemask.h>
- #include <linux/of.h>
- #include <linux/sched.h>
- #include <linux/slab.h>
- #include <asm/cputype.h>
- #include <asm/topology.h>
- /*
- * cpu capacity scale management
- */
- /*
- * cpu capacity table
- * This per cpu data structure describes the relative capacity of each core.
- * On a heteregenous system, cores don't have the same computation capacity
- * and we reflect that difference in the cpu_capacity field so the scheduler
- * can take this difference into account during load balance. A per cpu
- * structure is preferred because each CPU updates its own cpu_capacity field
- * during the load balance except for idle cores. One idle core is selected
- * to run the rebalance_domains for all idle cores and the cpu_capacity can be
- * updated during this sequence.
- */
- static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
- unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
- {
- return per_cpu(cpu_scale, cpu);
- }
- static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
- {
- per_cpu(cpu_scale, cpu) = capacity;
- }
- #ifdef CONFIG_OF
- struct cpu_efficiency {
- const char *compatible;
- unsigned long efficiency;
- };
- /*
- * Table of relative efficiency of each processors
- * The efficiency value must fit in 20bit and the final
- * cpu_scale value must be in the range
- * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
- * in order to return at most 1 when DIV_ROUND_CLOSEST
- * is used to compute the capacity of a CPU.
- * Processors that are not defined in the table,
- * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
- */
- static const struct cpu_efficiency table_efficiency[] = {
- {"arm,cortex-a15", 3891},
- {"arm,cortex-a7", 2048},
- {NULL, },
- };
- static unsigned long *__cpu_capacity;
- #define cpu_capacity(cpu) __cpu_capacity[cpu]
- static unsigned long middle_capacity = 1;
- /*
- * Iterate all CPUs' descriptor in DT and compute the efficiency
- * (as per table_efficiency). Also calculate a middle efficiency
- * as close as possible to (max{eff_i} - min{eff_i}) / 2
- * This is later used to scale the cpu_capacity field such that an
- * 'average' CPU is of middle capacity. Also see the comments near
- * table_efficiency[] and update_cpu_capacity().
- */
- static void __init parse_dt_topology(void)
- {
- const struct cpu_efficiency *cpu_eff;
- struct device_node *cn = NULL;
- unsigned long min_capacity = ULONG_MAX;
- unsigned long max_capacity = 0;
- unsigned long capacity = 0;
- int cpu = 0;
- __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
- GFP_NOWAIT);
- for_each_possible_cpu(cpu) {
- const u32 *rate;
- int len;
- /* too early to use cpu->of_node */
- cn = of_get_cpu_node(cpu, NULL);
- if (!cn) {
- pr_err("missing device node for CPU %d\n", cpu);
- continue;
- }
- for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
- if (of_device_is_compatible(cn, cpu_eff->compatible))
- break;
- if (cpu_eff->compatible == NULL)
- continue;
- rate = of_get_property(cn, "clock-frequency", &len);
- if (!rate || len != 4) {
- pr_err("%s missing clock-frequency property\n",
- cn->full_name);
- continue;
- }
- capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
- /* Save min capacity of the system */
- if (capacity < min_capacity)
- min_capacity = capacity;
- /* Save max capacity of the system */
- if (capacity > max_capacity)
- max_capacity = capacity;
- cpu_capacity(cpu) = capacity;
- }
- /* If min and max capacities are equals, we bypass the update of the
- * cpu_scale because all CPUs have the same capacity. Otherwise, we
- * compute a middle_capacity factor that will ensure that the capacity
- * of an 'average' CPU of the system will be as close as possible to
- * SCHED_CAPACITY_SCALE, which is the default value, but with the
- * constraint explained near table_efficiency[].
- */
- if (4*max_capacity < (3*(max_capacity + min_capacity)))
- middle_capacity = (min_capacity + max_capacity)
- >> (SCHED_CAPACITY_SHIFT+1);
- else
- middle_capacity = ((max_capacity / 3)
- >> (SCHED_CAPACITY_SHIFT-1)) + 1;
- }
- /*
- * Look for a customed capacity of a CPU in the cpu_capacity table during the
- * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
- * function returns directly for SMP system.
- */
- static void update_cpu_capacity(unsigned int cpu)
- {
- if (!cpu_capacity(cpu))
- return;
- set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
- pr_info("CPU%u: update cpu_capacity %lu\n",
- cpu, arch_scale_cpu_capacity(NULL, cpu));
- }
- #else
- static inline void parse_dt_topology(void) {}
- static inline void update_cpu_capacity(unsigned int cpuid) {}
- #endif
- /*
- * cpu topology table
- */
- struct cputopo_arm cpu_topology[NR_CPUS];
- EXPORT_SYMBOL_GPL(cpu_topology);
- const struct cpumask *cpu_coregroup_mask(int cpu)
- {
- return &cpu_topology[cpu].core_sibling;
- }
- /*
- * The current assumption is that we can power gate each core independently.
- * This will be superseded by DT binding once available.
- */
- const struct cpumask *cpu_corepower_mask(int cpu)
- {
- return &cpu_topology[cpu].thread_sibling;
- }
- static void update_siblings_masks(unsigned int cpuid)
- {
- struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
- int cpu;
- /* update core and thread sibling masks */
- for_each_possible_cpu(cpu) {
- cpu_topo = &cpu_topology[cpu];
- if (cpuid_topo->socket_id != cpu_topo->socket_id)
- continue;
- cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
- if (cpu != cpuid)
- cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
- if (cpuid_topo->core_id != cpu_topo->core_id)
- continue;
- cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
- if (cpu != cpuid)
- cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
- }
- smp_wmb();
- }
- /*
- * store_cpu_topology is called at boot when only one cpu is running
- * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
- * which prevents simultaneous write access to cpu_topology array
- */
- void store_cpu_topology(unsigned int cpuid)
- {
- struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
- unsigned int mpidr;
- /* If the cpu topology has been already set, just return */
- if (cpuid_topo->core_id != -1)
- return;
- mpidr = read_cpuid_mpidr();
- /* create cpu topology mapping */
- if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
- /*
- * This is a multiprocessor system
- * multiprocessor format & multiprocessor mode field are set
- */
- if (mpidr & MPIDR_MT_BITMASK) {
- /* core performance interdependency */
- cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
- cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
- cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
- } else {
- /* largely independent cores */
- cpuid_topo->thread_id = -1;
- cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
- cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
- }
- } else {
- /*
- * This is an uniprocessor system
- * we are in multiprocessor format but uniprocessor system
- * or in the old uniprocessor format
- */
- cpuid_topo->thread_id = -1;
- cpuid_topo->core_id = 0;
- cpuid_topo->socket_id = -1;
- }
- update_siblings_masks(cpuid);
- update_cpu_capacity(cpuid);
- pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
- cpuid, cpu_topology[cpuid].thread_id,
- cpu_topology[cpuid].core_id,
- cpu_topology[cpuid].socket_id, mpidr);
- }
- static inline int cpu_corepower_flags(void)
- {
- return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN;
- }
- static struct sched_domain_topology_level arm_topology[] = {
- #ifdef CONFIG_SCHED_MC
- { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
- #endif
- { cpu_cpu_mask, SD_INIT_NAME(DIE) },
- { NULL, },
- };
- /*
- * init_cpu_topology is called at boot when only one cpu is running
- * which prevent simultaneous write access to cpu_topology array
- */
- void __init init_cpu_topology(void)
- {
- unsigned int cpu;
- /* init core mask and capacity */
- for_each_possible_cpu(cpu) {
- struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
- cpu_topo->thread_id = -1;
- cpu_topo->core_id = -1;
- cpu_topo->socket_id = -1;
- cpumask_clear(&cpu_topo->core_sibling);
- cpumask_clear(&cpu_topo->thread_sibling);
- }
- smp_wmb();
- parse_dt_topology();
- /* Set scheduler topology descriptor */
- set_sched_topology(arm_topology);
- }
|