tlb.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985
  1. /*
  2. * TLB Management (flush/create/diagnostics) for ARC700
  3. *
  4. * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * vineetg: Aug 2011
  11. * -Reintroduce duplicate PD fixup - some customer chips still have the issue
  12. *
  13. * vineetg: May 2011
  14. * -No need to flush_cache_page( ) for each call to update_mmu_cache()
  15. * some of the LMBench tests improved amazingly
  16. * = page-fault thrice as fast (75 usec to 28 usec)
  17. * = mmap twice as fast (9.6 msec to 4.6 msec),
  18. * = fork (5.3 msec to 3.7 msec)
  19. *
  20. * vineetg: April 2011 :
  21. * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
  22. * helps avoid a shift when preparing PD0 from PTE
  23. *
  24. * vineetg: April 2011 : Preparing for MMU V3
  25. * -MMU v2/v3 BCRs decoded differently
  26. * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
  27. * -tlb_entry_erase( ) can be void
  28. * -local_flush_tlb_range( ):
  29. * = need not "ceil" @end
  30. * = walks MMU only if range spans < 32 entries, as opposed to 256
  31. *
  32. * Vineetg: Sept 10th 2008
  33. * -Changes related to MMU v2 (Rel 4.8)
  34. *
  35. * Vineetg: Aug 29th 2008
  36. * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
  37. * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
  38. * it fails. Thus need to load it with ANY valid value before invoking
  39. * TLBIVUTLB cmd
  40. *
  41. * Vineetg: Aug 21th 2008:
  42. * -Reduced the duration of IRQ lockouts in TLB Flush routines
  43. * -Multiple copies of TLB erase code seperated into a "single" function
  44. * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
  45. * in interrupt-safe region.
  46. *
  47. * Vineetg: April 23rd Bug #93131
  48. * Problem: tlb_flush_kernel_range() doesn't do anything if the range to
  49. * flush is more than the size of TLB itself.
  50. *
  51. * Rahul Trivedi : Codito Technologies 2004
  52. */
  53. #include <linux/module.h>
  54. #include <linux/bug.h>
  55. #include <asm/arcregs.h>
  56. #include <asm/setup.h>
  57. #include <asm/mmu_context.h>
  58. #include <asm/mmu.h>
  59. /* Need for ARC MMU v2
  60. *
  61. * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
  62. * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
  63. * map into same set, there would be contention for the 2 ways causing severe
  64. * Thrashing.
  65. *
  66. * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
  67. * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
  68. * Given this, the thrasing problem should never happen because once the 3
  69. * J-TLB entries are created (even though 3rd will knock out one of the prev
  70. * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
  71. *
  72. * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
  73. * This is a simple design for keeping them in sync. So what do we do?
  74. * The solution which James came up was pretty neat. It utilised the assoc
  75. * of uTLBs by not invalidating always but only when absolutely necessary.
  76. *
  77. * - Existing TLB commands work as before
  78. * - New command (TLBWriteNI) for TLB write without clearing uTLBs
  79. * - New command (TLBIVUTLB) to invalidate uTLBs.
  80. *
  81. * The uTLBs need only be invalidated when pages are being removed from the
  82. * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
  83. * as a result of a miss, the removed entry is still allowed to exist in the
  84. * uTLBs as it is still valid and present in the OS page table. This allows the
  85. * full associativity of the uTLBs to hide the limited associativity of the main
  86. * TLB.
  87. *
  88. * During a miss handler, the new "TLBWriteNI" command is used to load
  89. * entries without clearing the uTLBs.
  90. *
  91. * When the OS page table is updated, TLB entries that may be associated with a
  92. * removed page are removed (flushed) from the TLB using TLBWrite. In this
  93. * circumstance, the uTLBs must also be cleared. This is done by using the
  94. * existing TLBWrite command. An explicit IVUTLB is also required for those
  95. * corner cases when TLBWrite was not executed at all because the corresp
  96. * J-TLB entry got evicted/replaced.
  97. */
  98. /* A copy of the ASID from the PID reg is kept in asid_cache */
  99. DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
  100. /*
  101. * Utility Routine to erase a J-TLB entry
  102. * Caller needs to setup Index Reg (manually or via getIndex)
  103. */
  104. static inline void __tlb_entry_erase(void)
  105. {
  106. write_aux_reg(ARC_REG_TLBPD1, 0);
  107. if (is_pae40_enabled())
  108. write_aux_reg(ARC_REG_TLBPD1HI, 0);
  109. write_aux_reg(ARC_REG_TLBPD0, 0);
  110. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  111. }
  112. #if (CONFIG_ARC_MMU_VER < 4)
  113. static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
  114. {
  115. unsigned int idx;
  116. write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
  117. write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
  118. idx = read_aux_reg(ARC_REG_TLBINDEX);
  119. return idx;
  120. }
  121. static void tlb_entry_erase(unsigned int vaddr_n_asid)
  122. {
  123. unsigned int idx;
  124. /* Locate the TLB entry for this vaddr + ASID */
  125. idx = tlb_entry_lkup(vaddr_n_asid);
  126. /* No error means entry found, zero it out */
  127. if (likely(!(idx & TLB_LKUP_ERR))) {
  128. __tlb_entry_erase();
  129. } else {
  130. /* Duplicate entry error */
  131. WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
  132. vaddr_n_asid);
  133. }
  134. }
  135. /****************************************************************************
  136. * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
  137. *
  138. * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
  139. *
  140. * utlb_invalidate ( )
  141. * -For v2 MMU calls Flush uTLB Cmd
  142. * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
  143. * This is because in v1 TLBWrite itself invalidate uTLBs
  144. ***************************************************************************/
  145. static void utlb_invalidate(void)
  146. {
  147. #if (CONFIG_ARC_MMU_VER >= 2)
  148. #if (CONFIG_ARC_MMU_VER == 2)
  149. /* MMU v2 introduced the uTLB Flush command.
  150. * There was however an obscure hardware bug, where uTLB flush would
  151. * fail when a prior probe for J-TLB (both totally unrelated) would
  152. * return lkup err - because the entry didn't exist in MMU.
  153. * The Workround was to set Index reg with some valid value, prior to
  154. * flush. This was fixed in MMU v3 hence not needed any more
  155. */
  156. unsigned int idx;
  157. /* make sure INDEX Reg is valid */
  158. idx = read_aux_reg(ARC_REG_TLBINDEX);
  159. /* If not write some dummy val */
  160. if (unlikely(idx & TLB_LKUP_ERR))
  161. write_aux_reg(ARC_REG_TLBINDEX, 0xa);
  162. #endif
  163. write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
  164. #endif
  165. }
  166. static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
  167. {
  168. unsigned int idx;
  169. /*
  170. * First verify if entry for this vaddr+ASID already exists
  171. * This also sets up PD0 (vaddr, ASID..) for final commit
  172. */
  173. idx = tlb_entry_lkup(pd0);
  174. /*
  175. * If Not already present get a free slot from MMU.
  176. * Otherwise, Probe would have located the entry and set INDEX Reg
  177. * with existing location. This will cause Write CMD to over-write
  178. * existing entry with new PD0 and PD1
  179. */
  180. if (likely(idx & TLB_LKUP_ERR))
  181. write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
  182. /* setup the other half of TLB entry (pfn, rwx..) */
  183. write_aux_reg(ARC_REG_TLBPD1, pd1);
  184. /*
  185. * Commit the Entry to MMU
  186. * It doesn't sound safe to use the TLBWriteNI cmd here
  187. * which doesn't flush uTLBs. I'd rather be safe than sorry.
  188. */
  189. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  190. }
  191. #else /* CONFIG_ARC_MMU_VER >= 4) */
  192. static void utlb_invalidate(void)
  193. {
  194. /* No need since uTLB is always in sync with JTLB */
  195. }
  196. static void tlb_entry_erase(unsigned int vaddr_n_asid)
  197. {
  198. write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
  199. write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
  200. }
  201. static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
  202. {
  203. write_aux_reg(ARC_REG_TLBPD0, pd0);
  204. write_aux_reg(ARC_REG_TLBPD1, pd1);
  205. if (is_pae40_enabled())
  206. write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
  207. write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
  208. }
  209. #endif
  210. /*
  211. * Un-conditionally (without lookup) erase the entire MMU contents
  212. */
  213. noinline void local_flush_tlb_all(void)
  214. {
  215. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  216. unsigned long flags;
  217. unsigned int entry;
  218. int num_tlb = mmu->sets * mmu->ways;
  219. local_irq_save(flags);
  220. /* Load PD0 and PD1 with template for a Blank Entry */
  221. write_aux_reg(ARC_REG_TLBPD1, 0);
  222. if (is_pae40_enabled())
  223. write_aux_reg(ARC_REG_TLBPD1HI, 0);
  224. write_aux_reg(ARC_REG_TLBPD0, 0);
  225. for (entry = 0; entry < num_tlb; entry++) {
  226. /* write this entry to the TLB */
  227. write_aux_reg(ARC_REG_TLBINDEX, entry);
  228. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  229. }
  230. if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
  231. const int stlb_idx = 0x800;
  232. /* Blank sTLB entry */
  233. write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
  234. for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
  235. write_aux_reg(ARC_REG_TLBINDEX, entry);
  236. write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
  237. }
  238. }
  239. utlb_invalidate();
  240. local_irq_restore(flags);
  241. }
  242. /*
  243. * Flush the entrie MM for userland. The fastest way is to move to Next ASID
  244. */
  245. noinline void local_flush_tlb_mm(struct mm_struct *mm)
  246. {
  247. /*
  248. * Small optimisation courtesy IA64
  249. * flush_mm called during fork,exit,munmap etc, multiple times as well.
  250. * Only for fork( ) do we need to move parent to a new MMU ctxt,
  251. * all other cases are NOPs, hence this check.
  252. */
  253. if (atomic_read(&mm->mm_users) == 0)
  254. return;
  255. /*
  256. * - Move to a new ASID, but only if the mm is still wired in
  257. * (Android Binder ended up calling this for vma->mm != tsk->mm,
  258. * causing h/w - s/w ASID to get out of sync)
  259. * - Also get_new_mmu_context() new implementation allocates a new
  260. * ASID only if it is not allocated already - so unallocate first
  261. */
  262. destroy_context(mm);
  263. if (current->mm == mm)
  264. get_new_mmu_context(mm);
  265. }
  266. /*
  267. * Flush a Range of TLB entries for userland.
  268. * @start is inclusive, while @end is exclusive
  269. * Difference between this and Kernel Range Flush is
  270. * -Here the fastest way (if range is too large) is to move to next ASID
  271. * without doing any explicit Shootdown
  272. * -In case of kernel Flush, entry has to be shot down explictly
  273. */
  274. void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  275. unsigned long end)
  276. {
  277. const unsigned int cpu = smp_processor_id();
  278. unsigned long flags;
  279. /* If range @start to @end is more than 32 TLB entries deep,
  280. * its better to move to a new ASID rather than searching for
  281. * individual entries and then shooting them down
  282. *
  283. * The calc above is rough, doesn't account for unaligned parts,
  284. * since this is heuristics based anyways
  285. */
  286. if (unlikely((end - start) >= PAGE_SIZE * 32)) {
  287. local_flush_tlb_mm(vma->vm_mm);
  288. return;
  289. }
  290. /*
  291. * @start moved to page start: this alone suffices for checking
  292. * loop end condition below, w/o need for aligning @end to end
  293. * e.g. 2000 to 4001 will anyhow loop twice
  294. */
  295. start &= PAGE_MASK;
  296. local_irq_save(flags);
  297. if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
  298. while (start < end) {
  299. tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
  300. start += PAGE_SIZE;
  301. }
  302. }
  303. utlb_invalidate();
  304. local_irq_restore(flags);
  305. }
  306. /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
  307. * @start, @end interpreted as kvaddr
  308. * Interestingly, shared TLB entries can also be flushed using just
  309. * @start,@end alone (interpreted as user vaddr), although technically SASID
  310. * is also needed. However our smart TLbProbe lookup takes care of that.
  311. */
  312. void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  313. {
  314. unsigned long flags;
  315. /* exactly same as above, except for TLB entry not taking ASID */
  316. if (unlikely((end - start) >= PAGE_SIZE * 32)) {
  317. local_flush_tlb_all();
  318. return;
  319. }
  320. start &= PAGE_MASK;
  321. local_irq_save(flags);
  322. while (start < end) {
  323. tlb_entry_erase(start);
  324. start += PAGE_SIZE;
  325. }
  326. utlb_invalidate();
  327. local_irq_restore(flags);
  328. }
  329. /*
  330. * Delete TLB entry in MMU for a given page (??? address)
  331. * NOTE One TLB entry contains translation for single PAGE
  332. */
  333. void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  334. {
  335. const unsigned int cpu = smp_processor_id();
  336. unsigned long flags;
  337. /* Note that it is critical that interrupts are DISABLED between
  338. * checking the ASID and using it flush the TLB entry
  339. */
  340. local_irq_save(flags);
  341. if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
  342. tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
  343. utlb_invalidate();
  344. }
  345. local_irq_restore(flags);
  346. }
  347. #ifdef CONFIG_SMP
  348. struct tlb_args {
  349. struct vm_area_struct *ta_vma;
  350. unsigned long ta_start;
  351. unsigned long ta_end;
  352. };
  353. static inline void ipi_flush_tlb_page(void *arg)
  354. {
  355. struct tlb_args *ta = arg;
  356. local_flush_tlb_page(ta->ta_vma, ta->ta_start);
  357. }
  358. static inline void ipi_flush_tlb_range(void *arg)
  359. {
  360. struct tlb_args *ta = arg;
  361. local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
  362. }
  363. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  364. static inline void ipi_flush_pmd_tlb_range(void *arg)
  365. {
  366. struct tlb_args *ta = arg;
  367. local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
  368. }
  369. #endif
  370. static inline void ipi_flush_tlb_kernel_range(void *arg)
  371. {
  372. struct tlb_args *ta = (struct tlb_args *)arg;
  373. local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
  374. }
  375. void flush_tlb_all(void)
  376. {
  377. on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
  378. }
  379. void flush_tlb_mm(struct mm_struct *mm)
  380. {
  381. on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
  382. mm, 1);
  383. }
  384. void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
  385. {
  386. struct tlb_args ta = {
  387. .ta_vma = vma,
  388. .ta_start = uaddr
  389. };
  390. on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
  391. }
  392. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  393. unsigned long end)
  394. {
  395. struct tlb_args ta = {
  396. .ta_vma = vma,
  397. .ta_start = start,
  398. .ta_end = end
  399. };
  400. on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
  401. }
  402. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  403. void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
  404. unsigned long end)
  405. {
  406. struct tlb_args ta = {
  407. .ta_vma = vma,
  408. .ta_start = start,
  409. .ta_end = end
  410. };
  411. on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
  412. }
  413. #endif
  414. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  415. {
  416. struct tlb_args ta = {
  417. .ta_start = start,
  418. .ta_end = end
  419. };
  420. on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
  421. }
  422. #endif
  423. /*
  424. * Routine to create a TLB entry
  425. */
  426. void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
  427. {
  428. unsigned long flags;
  429. unsigned int asid_or_sasid, rwx;
  430. unsigned long pd0;
  431. pte_t pd1;
  432. /*
  433. * create_tlb() assumes that current->mm == vma->mm, since
  434. * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
  435. * -completes the lazy write to SASID reg (again valid for curr tsk)
  436. *
  437. * Removing the assumption involves
  438. * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
  439. * -Fix the TLB paranoid debug code to not trigger false negatives.
  440. * -More importantly it makes this handler inconsistent with fast-path
  441. * TLB Refill handler which always deals with "current"
  442. *
  443. * Lets see the use cases when current->mm != vma->mm and we land here
  444. * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
  445. * Here VM wants to pre-install a TLB entry for user stack while
  446. * current->mm still points to pre-execve mm (hence the condition).
  447. * However the stack vaddr is soon relocated (randomization) and
  448. * move_page_tables() tries to undo that TLB entry.
  449. * Thus not creating TLB entry is not any worse.
  450. *
  451. * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
  452. * breakpoint in debugged task. Not creating a TLB now is not
  453. * performance critical.
  454. *
  455. * Both the cases above are not good enough for code churn.
  456. */
  457. if (current->active_mm != vma->vm_mm)
  458. return;
  459. local_irq_save(flags);
  460. tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
  461. vaddr &= PAGE_MASK;
  462. /* update this PTE credentials */
  463. pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
  464. /* Create HW TLB(PD0,PD1) from PTE */
  465. /* ASID for this task */
  466. asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
  467. pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
  468. /*
  469. * ARC MMU provides fully orthogonal access bits for K/U mode,
  470. * however Linux only saves 1 set to save PTE real-estate
  471. * Here we convert 3 PTE bits into 6 MMU bits:
  472. * -Kernel only entries have Kr Kw Kx 0 0 0
  473. * -User entries have mirrored K and U bits
  474. */
  475. rwx = pte_val(*ptep) & PTE_BITS_RWX;
  476. if (pte_val(*ptep) & _PAGE_GLOBAL)
  477. rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
  478. else
  479. rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
  480. pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
  481. tlb_entry_insert(pd0, pd1);
  482. local_irq_restore(flags);
  483. }
  484. /*
  485. * Called at the end of pagefault, for a userspace mapped page
  486. * -pre-install the corresponding TLB entry into MMU
  487. * -Finalize the delayed D-cache flush of kernel mapping of page due to
  488. * flush_dcache_page(), copy_user_page()
  489. *
  490. * Note that flush (when done) involves both WBACK - so physical page is
  491. * in sync as well as INV - so any non-congruent aliases don't remain
  492. */
  493. void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
  494. pte_t *ptep)
  495. {
  496. unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
  497. phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
  498. struct page *page = pfn_to_page(pte_pfn(*ptep));
  499. create_tlb(vma, vaddr, ptep);
  500. if (page == ZERO_PAGE(0)) {
  501. return;
  502. }
  503. /*
  504. * Exec page : Independent of aliasing/page-color considerations,
  505. * since icache doesn't snoop dcache on ARC, any dirty
  506. * K-mapping of a code page needs to be wback+inv so that
  507. * icache fetch by userspace sees code correctly.
  508. * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
  509. * so userspace sees the right data.
  510. * (Avoids the flush for Non-exec + congruent mapping case)
  511. */
  512. if ((vma->vm_flags & VM_EXEC) ||
  513. addr_not_cache_congruent(paddr, vaddr)) {
  514. int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
  515. if (dirty) {
  516. /* wback + inv dcache lines (K-mapping) */
  517. __flush_dcache_page(paddr, paddr);
  518. /* invalidate any existing icache lines (U-mapping) */
  519. if (vma->vm_flags & VM_EXEC)
  520. __inv_icache_page(paddr, vaddr);
  521. }
  522. }
  523. }
  524. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  525. /*
  526. * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
  527. * support.
  528. *
  529. * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
  530. * new bit "SZ" in TLB page descriptor to distinguish between them.
  531. * Super Page size is configurable in hardware (4K to 16M), but fixed once
  532. * RTL builds.
  533. *
  534. * The exact THP size a Linx configuration will support is a function of:
  535. * - MMU page size (typical 8K, RTL fixed)
  536. * - software page walker address split between PGD:PTE:PFN (typical
  537. * 11:8:13, but can be changed with 1 line)
  538. * So for above default, THP size supported is 8K * (2^8) = 2M
  539. *
  540. * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
  541. * reduces to 1 level (as PTE is folded into PGD and canonically referred
  542. * to as PMD).
  543. * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
  544. */
  545. void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
  546. pmd_t *pmd)
  547. {
  548. pte_t pte = __pte(pmd_val(*pmd));
  549. update_mmu_cache(vma, addr, &pte);
  550. }
  551. void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  552. pgtable_t pgtable)
  553. {
  554. struct list_head *lh = (struct list_head *) pgtable;
  555. assert_spin_locked(&mm->page_table_lock);
  556. /* FIFO */
  557. if (!pmd_huge_pte(mm, pmdp))
  558. INIT_LIST_HEAD(lh);
  559. else
  560. list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
  561. pmd_huge_pte(mm, pmdp) = pgtable;
  562. }
  563. pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
  564. {
  565. struct list_head *lh;
  566. pgtable_t pgtable;
  567. assert_spin_locked(&mm->page_table_lock);
  568. pgtable = pmd_huge_pte(mm, pmdp);
  569. lh = (struct list_head *) pgtable;
  570. if (list_empty(lh))
  571. pmd_huge_pte(mm, pmdp) = NULL;
  572. else {
  573. pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
  574. list_del(lh);
  575. }
  576. pte_val(pgtable[0]) = 0;
  577. pte_val(pgtable[1]) = 0;
  578. return pgtable;
  579. }
  580. void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
  581. unsigned long end)
  582. {
  583. unsigned int cpu;
  584. unsigned long flags;
  585. local_irq_save(flags);
  586. cpu = smp_processor_id();
  587. if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
  588. unsigned int asid = hw_pid(vma->vm_mm, cpu);
  589. /* No need to loop here: this will always be for 1 Huge Page */
  590. tlb_entry_erase(start | _PAGE_HW_SZ | asid);
  591. }
  592. local_irq_restore(flags);
  593. }
  594. #endif
  595. /* Read the Cache Build Confuration Registers, Decode them and save into
  596. * the cpuinfo structure for later use.
  597. * No Validation is done here, simply read/convert the BCRs
  598. */
  599. void read_decode_mmu_bcr(void)
  600. {
  601. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  602. unsigned int tmp;
  603. struct bcr_mmu_1_2 {
  604. #ifdef CONFIG_CPU_BIG_ENDIAN
  605. unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
  606. #else
  607. unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
  608. #endif
  609. } *mmu2;
  610. struct bcr_mmu_3 {
  611. #ifdef CONFIG_CPU_BIG_ENDIAN
  612. unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
  613. u_itlb:4, u_dtlb:4;
  614. #else
  615. unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
  616. ways:4, ver:8;
  617. #endif
  618. } *mmu3;
  619. struct bcr_mmu_4 {
  620. #ifdef CONFIG_CPU_BIG_ENDIAN
  621. unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
  622. n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
  623. #else
  624. /* DTLB ITLB JES JE JA */
  625. unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
  626. pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
  627. #endif
  628. } *mmu4;
  629. tmp = read_aux_reg(ARC_REG_MMU_BCR);
  630. mmu->ver = (tmp >> 24);
  631. if (mmu->ver <= 2) {
  632. mmu2 = (struct bcr_mmu_1_2 *)&tmp;
  633. mmu->pg_sz_k = TO_KB(0x2000);
  634. mmu->sets = 1 << mmu2->sets;
  635. mmu->ways = 1 << mmu2->ways;
  636. mmu->u_dtlb = mmu2->u_dtlb;
  637. mmu->u_itlb = mmu2->u_itlb;
  638. } else if (mmu->ver == 3) {
  639. mmu3 = (struct bcr_mmu_3 *)&tmp;
  640. mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
  641. mmu->sets = 1 << mmu3->sets;
  642. mmu->ways = 1 << mmu3->ways;
  643. mmu->u_dtlb = mmu3->u_dtlb;
  644. mmu->u_itlb = mmu3->u_itlb;
  645. mmu->sasid = mmu3->sasid;
  646. } else {
  647. mmu4 = (struct bcr_mmu_4 *)&tmp;
  648. mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
  649. mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
  650. mmu->sets = 64 << mmu4->n_entry;
  651. mmu->ways = mmu4->n_ways * 2;
  652. mmu->u_dtlb = mmu4->u_dtlb * 4;
  653. mmu->u_itlb = mmu4->u_itlb * 4;
  654. mmu->sasid = mmu4->sasid;
  655. mmu->pae = mmu4->pae;
  656. }
  657. }
  658. char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
  659. {
  660. int n = 0;
  661. struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
  662. char super_pg[64] = "";
  663. if (p_mmu->s_pg_sz_m)
  664. scnprintf(super_pg, 64, "%dM Super Page %s",
  665. p_mmu->s_pg_sz_m,
  666. IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
  667. n += scnprintf(buf + n, len - n,
  668. "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
  669. p_mmu->ver, p_mmu->pg_sz_k, super_pg,
  670. p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
  671. p_mmu->u_dtlb, p_mmu->u_itlb,
  672. IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
  673. return buf;
  674. }
  675. void arc_mmu_init(void)
  676. {
  677. char str[256];
  678. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  679. printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
  680. /*
  681. * Can't be done in processor.h due to header include depenedencies
  682. */
  683. BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
  684. /*
  685. * stack top size sanity check,
  686. * Can't be done in processor.h due to header include depenedencies
  687. */
  688. BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
  689. /* For efficiency sake, kernel is compile time built for a MMU ver
  690. * This must match the hardware it is running on.
  691. * Linux built for MMU V2, if run on MMU V1 will break down because V1
  692. * hardware doesn't understand cmds such as WriteNI, or IVUTLB
  693. * On the other hand, Linux built for V1 if run on MMU V2 will do
  694. * un-needed workarounds to prevent memcpy thrashing.
  695. * Similarly MMU V3 has new features which won't work on older MMU
  696. */
  697. if (mmu->ver != CONFIG_ARC_MMU_VER) {
  698. panic("MMU ver %d doesn't match kernel built for %d...\n",
  699. mmu->ver, CONFIG_ARC_MMU_VER);
  700. }
  701. if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
  702. panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
  703. if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
  704. mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
  705. panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
  706. (unsigned long)TO_MB(HPAGE_PMD_SIZE));
  707. if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
  708. panic("Hardware doesn't support PAE40\n");
  709. /* Enable the MMU */
  710. write_aux_reg(ARC_REG_PID, MMU_ENABLE);
  711. /* In smp we use this reg for interrupt 1 scratch */
  712. #ifndef CONFIG_SMP
  713. /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
  714. write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
  715. #endif
  716. }
  717. /*
  718. * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
  719. * The mapping is Column-first.
  720. * --------------------- -----------
  721. * |way0|way1|way2|way3| |way0|way1|
  722. * --------------------- -----------
  723. * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
  724. * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
  725. * ~ ~ ~ ~
  726. * [set127] | 508| 509| 510| 511| | 254| 255|
  727. * --------------------- -----------
  728. * For normal operations we don't(must not) care how above works since
  729. * MMU cmd getIndex(vaddr) abstracts that out.
  730. * However for walking WAYS of a SET, we need to know this
  731. */
  732. #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
  733. /* Handling of Duplicate PD (TLB entry) in MMU.
  734. * -Could be due to buggy customer tapeouts or obscure kernel bugs
  735. * -MMU complaints not at the time of duplicate PD installation, but at the
  736. * time of lookup matching multiple ways.
  737. * -Ideally these should never happen - but if they do - workaround by deleting
  738. * the duplicate one.
  739. * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
  740. */
  741. volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
  742. void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
  743. struct pt_regs *regs)
  744. {
  745. struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
  746. unsigned int pd0[mmu->ways];
  747. unsigned long flags;
  748. int set;
  749. local_irq_save(flags);
  750. /* loop thru all sets of TLB */
  751. for (set = 0; set < mmu->sets; set++) {
  752. int is_valid, way;
  753. /* read out all the ways of current set */
  754. for (way = 0, is_valid = 0; way < mmu->ways; way++) {
  755. write_aux_reg(ARC_REG_TLBINDEX,
  756. SET_WAY_TO_IDX(mmu, set, way));
  757. write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
  758. pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
  759. is_valid |= pd0[way] & _PAGE_PRESENT;
  760. pd0[way] &= PAGE_MASK;
  761. }
  762. /* If all the WAYS in SET are empty, skip to next SET */
  763. if (!is_valid)
  764. continue;
  765. /* Scan the set for duplicate ways: needs a nested loop */
  766. for (way = 0; way < mmu->ways - 1; way++) {
  767. int n;
  768. if (!pd0[way])
  769. continue;
  770. for (n = way + 1; n < mmu->ways; n++) {
  771. if (pd0[way] != pd0[n])
  772. continue;
  773. if (!dup_pd_silent)
  774. pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
  775. pd0[way], set, way, n);
  776. /*
  777. * clear entry @way and not @n.
  778. * This is critical to our optimised loop
  779. */
  780. pd0[way] = 0;
  781. write_aux_reg(ARC_REG_TLBINDEX,
  782. SET_WAY_TO_IDX(mmu, set, way));
  783. __tlb_entry_erase();
  784. }
  785. }
  786. }
  787. local_irq_restore(flags);
  788. }
  789. /***********************************************************************
  790. * Diagnostic Routines
  791. * -Called from Low Level TLB Hanlders if things don;t look good
  792. **********************************************************************/
  793. #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
  794. /*
  795. * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
  796. * don't match
  797. */
  798. void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
  799. {
  800. pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
  801. is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
  802. __asm__ __volatile__("flag 1");
  803. }
  804. void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
  805. {
  806. unsigned int mmu_asid;
  807. mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
  808. /*
  809. * At the time of a TLB miss/installation
  810. * - HW version needs to match SW version
  811. * - SW needs to have a valid ASID
  812. */
  813. if (addr < 0x70000000 &&
  814. ((mm_asid == MM_CTXT_NO_ASID) ||
  815. (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
  816. print_asid_mismatch(mm_asid, mmu_asid, 0);
  817. }
  818. #endif