123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985 |
- /*
- * TLB Management (flush/create/diagnostics) for ARC700
- *
- * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * vineetg: Aug 2011
- * -Reintroduce duplicate PD fixup - some customer chips still have the issue
- *
- * vineetg: May 2011
- * -No need to flush_cache_page( ) for each call to update_mmu_cache()
- * some of the LMBench tests improved amazingly
- * = page-fault thrice as fast (75 usec to 28 usec)
- * = mmap twice as fast (9.6 msec to 4.6 msec),
- * = fork (5.3 msec to 3.7 msec)
- *
- * vineetg: April 2011 :
- * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
- * helps avoid a shift when preparing PD0 from PTE
- *
- * vineetg: April 2011 : Preparing for MMU V3
- * -MMU v2/v3 BCRs decoded differently
- * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
- * -tlb_entry_erase( ) can be void
- * -local_flush_tlb_range( ):
- * = need not "ceil" @end
- * = walks MMU only if range spans < 32 entries, as opposed to 256
- *
- * Vineetg: Sept 10th 2008
- * -Changes related to MMU v2 (Rel 4.8)
- *
- * Vineetg: Aug 29th 2008
- * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
- * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
- * it fails. Thus need to load it with ANY valid value before invoking
- * TLBIVUTLB cmd
- *
- * Vineetg: Aug 21th 2008:
- * -Reduced the duration of IRQ lockouts in TLB Flush routines
- * -Multiple copies of TLB erase code seperated into a "single" function
- * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
- * in interrupt-safe region.
- *
- * Vineetg: April 23rd Bug #93131
- * Problem: tlb_flush_kernel_range() doesn't do anything if the range to
- * flush is more than the size of TLB itself.
- *
- * Rahul Trivedi : Codito Technologies 2004
- */
- #include <linux/module.h>
- #include <linux/bug.h>
- #include <asm/arcregs.h>
- #include <asm/setup.h>
- #include <asm/mmu_context.h>
- #include <asm/mmu.h>
- /* Need for ARC MMU v2
- *
- * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
- * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
- * map into same set, there would be contention for the 2 ways causing severe
- * Thrashing.
- *
- * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
- * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
- * Given this, the thrasing problem should never happen because once the 3
- * J-TLB entries are created (even though 3rd will knock out one of the prev
- * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
- *
- * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
- * This is a simple design for keeping them in sync. So what do we do?
- * The solution which James came up was pretty neat. It utilised the assoc
- * of uTLBs by not invalidating always but only when absolutely necessary.
- *
- * - Existing TLB commands work as before
- * - New command (TLBWriteNI) for TLB write without clearing uTLBs
- * - New command (TLBIVUTLB) to invalidate uTLBs.
- *
- * The uTLBs need only be invalidated when pages are being removed from the
- * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
- * as a result of a miss, the removed entry is still allowed to exist in the
- * uTLBs as it is still valid and present in the OS page table. This allows the
- * full associativity of the uTLBs to hide the limited associativity of the main
- * TLB.
- *
- * During a miss handler, the new "TLBWriteNI" command is used to load
- * entries without clearing the uTLBs.
- *
- * When the OS page table is updated, TLB entries that may be associated with a
- * removed page are removed (flushed) from the TLB using TLBWrite. In this
- * circumstance, the uTLBs must also be cleared. This is done by using the
- * existing TLBWrite command. An explicit IVUTLB is also required for those
- * corner cases when TLBWrite was not executed at all because the corresp
- * J-TLB entry got evicted/replaced.
- */
- /* A copy of the ASID from the PID reg is kept in asid_cache */
- DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
- /*
- * Utility Routine to erase a J-TLB entry
- * Caller needs to setup Index Reg (manually or via getIndex)
- */
- static inline void __tlb_entry_erase(void)
- {
- write_aux_reg(ARC_REG_TLBPD1, 0);
- if (is_pae40_enabled())
- write_aux_reg(ARC_REG_TLBPD1HI, 0);
- write_aux_reg(ARC_REG_TLBPD0, 0);
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
- }
- #if (CONFIG_ARC_MMU_VER < 4)
- static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
- {
- unsigned int idx;
- write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
- idx = read_aux_reg(ARC_REG_TLBINDEX);
- return idx;
- }
- static void tlb_entry_erase(unsigned int vaddr_n_asid)
- {
- unsigned int idx;
- /* Locate the TLB entry for this vaddr + ASID */
- idx = tlb_entry_lkup(vaddr_n_asid);
- /* No error means entry found, zero it out */
- if (likely(!(idx & TLB_LKUP_ERR))) {
- __tlb_entry_erase();
- } else {
- /* Duplicate entry error */
- WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
- vaddr_n_asid);
- }
- }
- /****************************************************************************
- * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
- *
- * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
- *
- * utlb_invalidate ( )
- * -For v2 MMU calls Flush uTLB Cmd
- * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
- * This is because in v1 TLBWrite itself invalidate uTLBs
- ***************************************************************************/
- static void utlb_invalidate(void)
- {
- #if (CONFIG_ARC_MMU_VER >= 2)
- #if (CONFIG_ARC_MMU_VER == 2)
- /* MMU v2 introduced the uTLB Flush command.
- * There was however an obscure hardware bug, where uTLB flush would
- * fail when a prior probe for J-TLB (both totally unrelated) would
- * return lkup err - because the entry didn't exist in MMU.
- * The Workround was to set Index reg with some valid value, prior to
- * flush. This was fixed in MMU v3 hence not needed any more
- */
- unsigned int idx;
- /* make sure INDEX Reg is valid */
- idx = read_aux_reg(ARC_REG_TLBINDEX);
- /* If not write some dummy val */
- if (unlikely(idx & TLB_LKUP_ERR))
- write_aux_reg(ARC_REG_TLBINDEX, 0xa);
- #endif
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
- #endif
- }
- static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
- {
- unsigned int idx;
- /*
- * First verify if entry for this vaddr+ASID already exists
- * This also sets up PD0 (vaddr, ASID..) for final commit
- */
- idx = tlb_entry_lkup(pd0);
- /*
- * If Not already present get a free slot from MMU.
- * Otherwise, Probe would have located the entry and set INDEX Reg
- * with existing location. This will cause Write CMD to over-write
- * existing entry with new PD0 and PD1
- */
- if (likely(idx & TLB_LKUP_ERR))
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
- /* setup the other half of TLB entry (pfn, rwx..) */
- write_aux_reg(ARC_REG_TLBPD1, pd1);
- /*
- * Commit the Entry to MMU
- * It doesn't sound safe to use the TLBWriteNI cmd here
- * which doesn't flush uTLBs. I'd rather be safe than sorry.
- */
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
- }
- #else /* CONFIG_ARC_MMU_VER >= 4) */
- static void utlb_invalidate(void)
- {
- /* No need since uTLB is always in sync with JTLB */
- }
- static void tlb_entry_erase(unsigned int vaddr_n_asid)
- {
- write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
- }
- static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
- {
- write_aux_reg(ARC_REG_TLBPD0, pd0);
- write_aux_reg(ARC_REG_TLBPD1, pd1);
- if (is_pae40_enabled())
- write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
- }
- #endif
- /*
- * Un-conditionally (without lookup) erase the entire MMU contents
- */
- noinline void local_flush_tlb_all(void)
- {
- struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
- unsigned long flags;
- unsigned int entry;
- int num_tlb = mmu->sets * mmu->ways;
- local_irq_save(flags);
- /* Load PD0 and PD1 with template for a Blank Entry */
- write_aux_reg(ARC_REG_TLBPD1, 0);
- if (is_pae40_enabled())
- write_aux_reg(ARC_REG_TLBPD1HI, 0);
- write_aux_reg(ARC_REG_TLBPD0, 0);
- for (entry = 0; entry < num_tlb; entry++) {
- /* write this entry to the TLB */
- write_aux_reg(ARC_REG_TLBINDEX, entry);
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
- }
- if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
- const int stlb_idx = 0x800;
- /* Blank sTLB entry */
- write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
- for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
- write_aux_reg(ARC_REG_TLBINDEX, entry);
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
- }
- }
- utlb_invalidate();
- local_irq_restore(flags);
- }
- /*
- * Flush the entrie MM for userland. The fastest way is to move to Next ASID
- */
- noinline void local_flush_tlb_mm(struct mm_struct *mm)
- {
- /*
- * Small optimisation courtesy IA64
- * flush_mm called during fork,exit,munmap etc, multiple times as well.
- * Only for fork( ) do we need to move parent to a new MMU ctxt,
- * all other cases are NOPs, hence this check.
- */
- if (atomic_read(&mm->mm_users) == 0)
- return;
- /*
- * - Move to a new ASID, but only if the mm is still wired in
- * (Android Binder ended up calling this for vma->mm != tsk->mm,
- * causing h/w - s/w ASID to get out of sync)
- * - Also get_new_mmu_context() new implementation allocates a new
- * ASID only if it is not allocated already - so unallocate first
- */
- destroy_context(mm);
- if (current->mm == mm)
- get_new_mmu_context(mm);
- }
- /*
- * Flush a Range of TLB entries for userland.
- * @start is inclusive, while @end is exclusive
- * Difference between this and Kernel Range Flush is
- * -Here the fastest way (if range is too large) is to move to next ASID
- * without doing any explicit Shootdown
- * -In case of kernel Flush, entry has to be shot down explictly
- */
- void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end)
- {
- const unsigned int cpu = smp_processor_id();
- unsigned long flags;
- /* If range @start to @end is more than 32 TLB entries deep,
- * its better to move to a new ASID rather than searching for
- * individual entries and then shooting them down
- *
- * The calc above is rough, doesn't account for unaligned parts,
- * since this is heuristics based anyways
- */
- if (unlikely((end - start) >= PAGE_SIZE * 32)) {
- local_flush_tlb_mm(vma->vm_mm);
- return;
- }
- /*
- * @start moved to page start: this alone suffices for checking
- * loop end condition below, w/o need for aligning @end to end
- * e.g. 2000 to 4001 will anyhow loop twice
- */
- start &= PAGE_MASK;
- local_irq_save(flags);
- if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
- while (start < end) {
- tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
- start += PAGE_SIZE;
- }
- }
- utlb_invalidate();
- local_irq_restore(flags);
- }
- /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
- * @start, @end interpreted as kvaddr
- * Interestingly, shared TLB entries can also be flushed using just
- * @start,@end alone (interpreted as user vaddr), although technically SASID
- * is also needed. However our smart TLbProbe lookup takes care of that.
- */
- void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
- {
- unsigned long flags;
- /* exactly same as above, except for TLB entry not taking ASID */
- if (unlikely((end - start) >= PAGE_SIZE * 32)) {
- local_flush_tlb_all();
- return;
- }
- start &= PAGE_MASK;
- local_irq_save(flags);
- while (start < end) {
- tlb_entry_erase(start);
- start += PAGE_SIZE;
- }
- utlb_invalidate();
- local_irq_restore(flags);
- }
- /*
- * Delete TLB entry in MMU for a given page (??? address)
- * NOTE One TLB entry contains translation for single PAGE
- */
- void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
- {
- const unsigned int cpu = smp_processor_id();
- unsigned long flags;
- /* Note that it is critical that interrupts are DISABLED between
- * checking the ASID and using it flush the TLB entry
- */
- local_irq_save(flags);
- if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
- tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
- utlb_invalidate();
- }
- local_irq_restore(flags);
- }
- #ifdef CONFIG_SMP
- struct tlb_args {
- struct vm_area_struct *ta_vma;
- unsigned long ta_start;
- unsigned long ta_end;
- };
- static inline void ipi_flush_tlb_page(void *arg)
- {
- struct tlb_args *ta = arg;
- local_flush_tlb_page(ta->ta_vma, ta->ta_start);
- }
- static inline void ipi_flush_tlb_range(void *arg)
- {
- struct tlb_args *ta = arg;
- local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
- }
- #ifdef CONFIG_TRANSPARENT_HUGEPAGE
- static inline void ipi_flush_pmd_tlb_range(void *arg)
- {
- struct tlb_args *ta = arg;
- local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
- }
- #endif
- static inline void ipi_flush_tlb_kernel_range(void *arg)
- {
- struct tlb_args *ta = (struct tlb_args *)arg;
- local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
- }
- void flush_tlb_all(void)
- {
- on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
- }
- void flush_tlb_mm(struct mm_struct *mm)
- {
- on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
- mm, 1);
- }
- void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
- {
- struct tlb_args ta = {
- .ta_vma = vma,
- .ta_start = uaddr
- };
- on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
- }
- void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end)
- {
- struct tlb_args ta = {
- .ta_vma = vma,
- .ta_start = start,
- .ta_end = end
- };
- on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
- }
- #ifdef CONFIG_TRANSPARENT_HUGEPAGE
- void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end)
- {
- struct tlb_args ta = {
- .ta_vma = vma,
- .ta_start = start,
- .ta_end = end
- };
- on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
- }
- #endif
- void flush_tlb_kernel_range(unsigned long start, unsigned long end)
- {
- struct tlb_args ta = {
- .ta_start = start,
- .ta_end = end
- };
- on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
- }
- #endif
- /*
- * Routine to create a TLB entry
- */
- void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
- {
- unsigned long flags;
- unsigned int asid_or_sasid, rwx;
- unsigned long pd0;
- pte_t pd1;
- /*
- * create_tlb() assumes that current->mm == vma->mm, since
- * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
- * -completes the lazy write to SASID reg (again valid for curr tsk)
- *
- * Removing the assumption involves
- * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
- * -Fix the TLB paranoid debug code to not trigger false negatives.
- * -More importantly it makes this handler inconsistent with fast-path
- * TLB Refill handler which always deals with "current"
- *
- * Lets see the use cases when current->mm != vma->mm and we land here
- * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
- * Here VM wants to pre-install a TLB entry for user stack while
- * current->mm still points to pre-execve mm (hence the condition).
- * However the stack vaddr is soon relocated (randomization) and
- * move_page_tables() tries to undo that TLB entry.
- * Thus not creating TLB entry is not any worse.
- *
- * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
- * breakpoint in debugged task. Not creating a TLB now is not
- * performance critical.
- *
- * Both the cases above are not good enough for code churn.
- */
- if (current->active_mm != vma->vm_mm)
- return;
- local_irq_save(flags);
- tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
- vaddr &= PAGE_MASK;
- /* update this PTE credentials */
- pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
- /* Create HW TLB(PD0,PD1) from PTE */
- /* ASID for this task */
- asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
- pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
- /*
- * ARC MMU provides fully orthogonal access bits for K/U mode,
- * however Linux only saves 1 set to save PTE real-estate
- * Here we convert 3 PTE bits into 6 MMU bits:
- * -Kernel only entries have Kr Kw Kx 0 0 0
- * -User entries have mirrored K and U bits
- */
- rwx = pte_val(*ptep) & PTE_BITS_RWX;
- if (pte_val(*ptep) & _PAGE_GLOBAL)
- rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
- else
- rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
- pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
- tlb_entry_insert(pd0, pd1);
- local_irq_restore(flags);
- }
- /*
- * Called at the end of pagefault, for a userspace mapped page
- * -pre-install the corresponding TLB entry into MMU
- * -Finalize the delayed D-cache flush of kernel mapping of page due to
- * flush_dcache_page(), copy_user_page()
- *
- * Note that flush (when done) involves both WBACK - so physical page is
- * in sync as well as INV - so any non-congruent aliases don't remain
- */
- void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
- pte_t *ptep)
- {
- unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
- phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
- struct page *page = pfn_to_page(pte_pfn(*ptep));
- create_tlb(vma, vaddr, ptep);
- if (page == ZERO_PAGE(0)) {
- return;
- }
- /*
- * Exec page : Independent of aliasing/page-color considerations,
- * since icache doesn't snoop dcache on ARC, any dirty
- * K-mapping of a code page needs to be wback+inv so that
- * icache fetch by userspace sees code correctly.
- * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
- * so userspace sees the right data.
- * (Avoids the flush for Non-exec + congruent mapping case)
- */
- if ((vma->vm_flags & VM_EXEC) ||
- addr_not_cache_congruent(paddr, vaddr)) {
- int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
- if (dirty) {
- /* wback + inv dcache lines (K-mapping) */
- __flush_dcache_page(paddr, paddr);
- /* invalidate any existing icache lines (U-mapping) */
- if (vma->vm_flags & VM_EXEC)
- __inv_icache_page(paddr, vaddr);
- }
- }
- }
- #ifdef CONFIG_TRANSPARENT_HUGEPAGE
- /*
- * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
- * support.
- *
- * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
- * new bit "SZ" in TLB page descriptor to distinguish between them.
- * Super Page size is configurable in hardware (4K to 16M), but fixed once
- * RTL builds.
- *
- * The exact THP size a Linx configuration will support is a function of:
- * - MMU page size (typical 8K, RTL fixed)
- * - software page walker address split between PGD:PTE:PFN (typical
- * 11:8:13, but can be changed with 1 line)
- * So for above default, THP size supported is 8K * (2^8) = 2M
- *
- * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
- * reduces to 1 level (as PTE is folded into PGD and canonically referred
- * to as PMD).
- * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
- */
- void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
- pmd_t *pmd)
- {
- pte_t pte = __pte(pmd_val(*pmd));
- update_mmu_cache(vma, addr, &pte);
- }
- void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
- pgtable_t pgtable)
- {
- struct list_head *lh = (struct list_head *) pgtable;
- assert_spin_locked(&mm->page_table_lock);
- /* FIFO */
- if (!pmd_huge_pte(mm, pmdp))
- INIT_LIST_HEAD(lh);
- else
- list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
- pmd_huge_pte(mm, pmdp) = pgtable;
- }
- pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
- {
- struct list_head *lh;
- pgtable_t pgtable;
- assert_spin_locked(&mm->page_table_lock);
- pgtable = pmd_huge_pte(mm, pmdp);
- lh = (struct list_head *) pgtable;
- if (list_empty(lh))
- pmd_huge_pte(mm, pmdp) = NULL;
- else {
- pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
- list_del(lh);
- }
- pte_val(pgtable[0]) = 0;
- pte_val(pgtable[1]) = 0;
- return pgtable;
- }
- void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end)
- {
- unsigned int cpu;
- unsigned long flags;
- local_irq_save(flags);
- cpu = smp_processor_id();
- if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
- unsigned int asid = hw_pid(vma->vm_mm, cpu);
- /* No need to loop here: this will always be for 1 Huge Page */
- tlb_entry_erase(start | _PAGE_HW_SZ | asid);
- }
- local_irq_restore(flags);
- }
- #endif
- /* Read the Cache Build Confuration Registers, Decode them and save into
- * the cpuinfo structure for later use.
- * No Validation is done here, simply read/convert the BCRs
- */
- void read_decode_mmu_bcr(void)
- {
- struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
- unsigned int tmp;
- struct bcr_mmu_1_2 {
- #ifdef CONFIG_CPU_BIG_ENDIAN
- unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
- #else
- unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
- #endif
- } *mmu2;
- struct bcr_mmu_3 {
- #ifdef CONFIG_CPU_BIG_ENDIAN
- unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
- u_itlb:4, u_dtlb:4;
- #else
- unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
- ways:4, ver:8;
- #endif
- } *mmu3;
- struct bcr_mmu_4 {
- #ifdef CONFIG_CPU_BIG_ENDIAN
- unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
- n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
- #else
- /* DTLB ITLB JES JE JA */
- unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
- pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
- #endif
- } *mmu4;
- tmp = read_aux_reg(ARC_REG_MMU_BCR);
- mmu->ver = (tmp >> 24);
- if (mmu->ver <= 2) {
- mmu2 = (struct bcr_mmu_1_2 *)&tmp;
- mmu->pg_sz_k = TO_KB(0x2000);
- mmu->sets = 1 << mmu2->sets;
- mmu->ways = 1 << mmu2->ways;
- mmu->u_dtlb = mmu2->u_dtlb;
- mmu->u_itlb = mmu2->u_itlb;
- } else if (mmu->ver == 3) {
- mmu3 = (struct bcr_mmu_3 *)&tmp;
- mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
- mmu->sets = 1 << mmu3->sets;
- mmu->ways = 1 << mmu3->ways;
- mmu->u_dtlb = mmu3->u_dtlb;
- mmu->u_itlb = mmu3->u_itlb;
- mmu->sasid = mmu3->sasid;
- } else {
- mmu4 = (struct bcr_mmu_4 *)&tmp;
- mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
- mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
- mmu->sets = 64 << mmu4->n_entry;
- mmu->ways = mmu4->n_ways * 2;
- mmu->u_dtlb = mmu4->u_dtlb * 4;
- mmu->u_itlb = mmu4->u_itlb * 4;
- mmu->sasid = mmu4->sasid;
- mmu->pae = mmu4->pae;
- }
- }
- char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
- {
- int n = 0;
- struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
- char super_pg[64] = "";
- if (p_mmu->s_pg_sz_m)
- scnprintf(super_pg, 64, "%dM Super Page %s",
- p_mmu->s_pg_sz_m,
- IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
- n += scnprintf(buf + n, len - n,
- "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
- p_mmu->ver, p_mmu->pg_sz_k, super_pg,
- p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
- p_mmu->u_dtlb, p_mmu->u_itlb,
- IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
- return buf;
- }
- void arc_mmu_init(void)
- {
- char str[256];
- struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
- printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
- /*
- * Can't be done in processor.h due to header include depenedencies
- */
- BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
- /*
- * stack top size sanity check,
- * Can't be done in processor.h due to header include depenedencies
- */
- BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
- /* For efficiency sake, kernel is compile time built for a MMU ver
- * This must match the hardware it is running on.
- * Linux built for MMU V2, if run on MMU V1 will break down because V1
- * hardware doesn't understand cmds such as WriteNI, or IVUTLB
- * On the other hand, Linux built for V1 if run on MMU V2 will do
- * un-needed workarounds to prevent memcpy thrashing.
- * Similarly MMU V3 has new features which won't work on older MMU
- */
- if (mmu->ver != CONFIG_ARC_MMU_VER) {
- panic("MMU ver %d doesn't match kernel built for %d...\n",
- mmu->ver, CONFIG_ARC_MMU_VER);
- }
- if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
- panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
- if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
- mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
- panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
- (unsigned long)TO_MB(HPAGE_PMD_SIZE));
- if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
- panic("Hardware doesn't support PAE40\n");
- /* Enable the MMU */
- write_aux_reg(ARC_REG_PID, MMU_ENABLE);
- /* In smp we use this reg for interrupt 1 scratch */
- #ifndef CONFIG_SMP
- /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
- write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
- #endif
- }
- /*
- * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
- * The mapping is Column-first.
- * --------------------- -----------
- * |way0|way1|way2|way3| |way0|way1|
- * --------------------- -----------
- * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
- * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
- * ~ ~ ~ ~
- * [set127] | 508| 509| 510| 511| | 254| 255|
- * --------------------- -----------
- * For normal operations we don't(must not) care how above works since
- * MMU cmd getIndex(vaddr) abstracts that out.
- * However for walking WAYS of a SET, we need to know this
- */
- #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
- /* Handling of Duplicate PD (TLB entry) in MMU.
- * -Could be due to buggy customer tapeouts or obscure kernel bugs
- * -MMU complaints not at the time of duplicate PD installation, but at the
- * time of lookup matching multiple ways.
- * -Ideally these should never happen - but if they do - workaround by deleting
- * the duplicate one.
- * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
- */
- volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
- void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
- struct pt_regs *regs)
- {
- struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
- unsigned int pd0[mmu->ways];
- unsigned long flags;
- int set;
- local_irq_save(flags);
- /* loop thru all sets of TLB */
- for (set = 0; set < mmu->sets; set++) {
- int is_valid, way;
- /* read out all the ways of current set */
- for (way = 0, is_valid = 0; way < mmu->ways; way++) {
- write_aux_reg(ARC_REG_TLBINDEX,
- SET_WAY_TO_IDX(mmu, set, way));
- write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
- pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
- is_valid |= pd0[way] & _PAGE_PRESENT;
- pd0[way] &= PAGE_MASK;
- }
- /* If all the WAYS in SET are empty, skip to next SET */
- if (!is_valid)
- continue;
- /* Scan the set for duplicate ways: needs a nested loop */
- for (way = 0; way < mmu->ways - 1; way++) {
- int n;
- if (!pd0[way])
- continue;
- for (n = way + 1; n < mmu->ways; n++) {
- if (pd0[way] != pd0[n])
- continue;
- if (!dup_pd_silent)
- pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
- pd0[way], set, way, n);
- /*
- * clear entry @way and not @n.
- * This is critical to our optimised loop
- */
- pd0[way] = 0;
- write_aux_reg(ARC_REG_TLBINDEX,
- SET_WAY_TO_IDX(mmu, set, way));
- __tlb_entry_erase();
- }
- }
- }
- local_irq_restore(flags);
- }
- /***********************************************************************
- * Diagnostic Routines
- * -Called from Low Level TLB Hanlders if things don;t look good
- **********************************************************************/
- #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
- /*
- * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
- * don't match
- */
- void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
- {
- pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
- is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
- __asm__ __volatile__("flag 1");
- }
- void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
- {
- unsigned int mmu_asid;
- mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
- /*
- * At the time of a TLB miss/installation
- * - HW version needs to match SW version
- * - SW needs to have a valid ASID
- */
- if (addr < 0x70000000 &&
- ((mm_asid == MM_CTXT_NO_ASID) ||
- (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
- print_asid_mismatch(mm_asid, mmu_asid, 0);
- }
- #endif
|