tcp_fastopen.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. #include <linux/crypto.h>
  2. #include <linux/err.h>
  3. #include <linux/init.h>
  4. #include <linux/kernel.h>
  5. #include <linux/list.h>
  6. #include <linux/tcp.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/rculist.h>
  9. #include <net/inetpeer.h>
  10. #include <net/tcp.h>
  11. int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
  12. struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
  13. static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
  14. void tcp_fastopen_init_key_once(bool publish)
  15. {
  16. static u8 key[TCP_FASTOPEN_KEY_LENGTH];
  17. /* tcp_fastopen_reset_cipher publishes the new context
  18. * atomically, so we allow this race happening here.
  19. *
  20. * All call sites of tcp_fastopen_cookie_gen also check
  21. * for a valid cookie, so this is an acceptable risk.
  22. */
  23. if (net_get_random_once(key, sizeof(key)) && publish)
  24. tcp_fastopen_reset_cipher(key, sizeof(key));
  25. }
  26. static void tcp_fastopen_ctx_free(struct rcu_head *head)
  27. {
  28. struct tcp_fastopen_context *ctx =
  29. container_of(head, struct tcp_fastopen_context, rcu);
  30. crypto_free_cipher(ctx->tfm);
  31. kfree(ctx);
  32. }
  33. int tcp_fastopen_reset_cipher(void *key, unsigned int len)
  34. {
  35. int err;
  36. struct tcp_fastopen_context *ctx, *octx;
  37. ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  38. if (!ctx)
  39. return -ENOMEM;
  40. ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
  41. if (IS_ERR(ctx->tfm)) {
  42. err = PTR_ERR(ctx->tfm);
  43. error: kfree(ctx);
  44. pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
  45. return err;
  46. }
  47. err = crypto_cipher_setkey(ctx->tfm, key, len);
  48. if (err) {
  49. pr_err("TCP: TFO cipher key error: %d\n", err);
  50. crypto_free_cipher(ctx->tfm);
  51. goto error;
  52. }
  53. memcpy(ctx->key, key, len);
  54. spin_lock(&tcp_fastopen_ctx_lock);
  55. octx = rcu_dereference_protected(tcp_fastopen_ctx,
  56. lockdep_is_held(&tcp_fastopen_ctx_lock));
  57. rcu_assign_pointer(tcp_fastopen_ctx, ctx);
  58. spin_unlock(&tcp_fastopen_ctx_lock);
  59. if (octx)
  60. call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
  61. return err;
  62. }
  63. static bool __tcp_fastopen_cookie_gen(const void *path,
  64. struct tcp_fastopen_cookie *foc)
  65. {
  66. struct tcp_fastopen_context *ctx;
  67. bool ok = false;
  68. rcu_read_lock();
  69. ctx = rcu_dereference(tcp_fastopen_ctx);
  70. if (ctx) {
  71. crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
  72. foc->len = TCP_FASTOPEN_COOKIE_SIZE;
  73. ok = true;
  74. }
  75. rcu_read_unlock();
  76. return ok;
  77. }
  78. /* Generate the fastopen cookie by doing aes128 encryption on both
  79. * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
  80. * addresses. For the longer IPv6 addresses use CBC-MAC.
  81. *
  82. * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
  83. */
  84. static bool tcp_fastopen_cookie_gen(struct request_sock *req,
  85. struct sk_buff *syn,
  86. struct tcp_fastopen_cookie *foc)
  87. {
  88. if (req->rsk_ops->family == AF_INET) {
  89. const struct iphdr *iph = ip_hdr(syn);
  90. __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
  91. return __tcp_fastopen_cookie_gen(path, foc);
  92. }
  93. #if IS_ENABLED(CONFIG_IPV6)
  94. if (req->rsk_ops->family == AF_INET6) {
  95. const struct ipv6hdr *ip6h = ipv6_hdr(syn);
  96. struct tcp_fastopen_cookie tmp;
  97. if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
  98. struct in6_addr *buf = &tmp.addr;
  99. int i;
  100. for (i = 0; i < 4; i++)
  101. buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
  102. return __tcp_fastopen_cookie_gen(buf, foc);
  103. }
  104. }
  105. #endif
  106. return false;
  107. }
  108. /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
  109. * queue this additional data / FIN.
  110. */
  111. void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
  112. {
  113. struct tcp_sock *tp = tcp_sk(sk);
  114. if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
  115. return;
  116. skb = skb_clone(skb, GFP_ATOMIC);
  117. if (!skb)
  118. return;
  119. skb_dst_drop(skb);
  120. /* segs_in has been initialized to 1 in tcp_create_openreq_child().
  121. * Hence, reset segs_in to 0 before calling tcp_segs_in()
  122. * to avoid double counting. Also, tcp_segs_in() expects
  123. * skb->len to include the tcp_hdrlen. Hence, it should
  124. * be called before __skb_pull().
  125. */
  126. tp->segs_in = 0;
  127. tcp_segs_in(tp, skb);
  128. __skb_pull(skb, tcp_hdrlen(skb));
  129. sk_forced_mem_schedule(sk, skb->truesize);
  130. skb_set_owner_r(skb, sk);
  131. TCP_SKB_CB(skb)->seq++;
  132. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
  133. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  134. __skb_queue_tail(&sk->sk_receive_queue, skb);
  135. tp->syn_data_acked = 1;
  136. /* u64_stats_update_begin(&tp->syncp) not needed here,
  137. * as we certainly are not changing upper 32bit value (0)
  138. */
  139. tp->bytes_received = skb->len;
  140. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  141. tcp_fin(sk);
  142. }
  143. static struct sock *tcp_fastopen_create_child(struct sock *sk,
  144. struct sk_buff *skb,
  145. struct dst_entry *dst,
  146. struct request_sock *req)
  147. {
  148. struct tcp_sock *tp;
  149. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  150. struct sock *child;
  151. bool own_req;
  152. req->num_retrans = 0;
  153. req->num_timeout = 0;
  154. req->sk = NULL;
  155. child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
  156. NULL, &own_req);
  157. if (!child)
  158. return NULL;
  159. spin_lock(&queue->fastopenq.lock);
  160. queue->fastopenq.qlen++;
  161. spin_unlock(&queue->fastopenq.lock);
  162. /* Initialize the child socket. Have to fix some values to take
  163. * into account the child is a Fast Open socket and is created
  164. * only out of the bits carried in the SYN packet.
  165. */
  166. tp = tcp_sk(child);
  167. tp->fastopen_rsk = req;
  168. tcp_rsk(req)->tfo_listener = true;
  169. /* RFC1323: The window in SYN & SYN/ACK segments is never
  170. * scaled. So correct it appropriately.
  171. */
  172. tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
  173. tp->max_window = tp->snd_wnd;
  174. /* Activate the retrans timer so that SYNACK can be retransmitted.
  175. * The request socket is not added to the ehash
  176. * because it's been added to the accept queue directly.
  177. */
  178. inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
  179. TCP_TIMEOUT_INIT, TCP_RTO_MAX);
  180. atomic_set(&req->rsk_refcnt, 2);
  181. /* Now finish processing the fastopen child socket. */
  182. inet_csk(child)->icsk_af_ops->rebuild_header(child);
  183. tcp_init_congestion_control(child);
  184. tcp_mtup_init(child);
  185. tcp_init_metrics(child);
  186. tcp_init_buffer_space(child);
  187. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  188. tcp_fastopen_add_skb(child, skb);
  189. tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
  190. tp->rcv_wup = tp->rcv_nxt;
  191. /* tcp_conn_request() is sending the SYNACK,
  192. * and queues the child into listener accept queue.
  193. */
  194. return child;
  195. }
  196. static bool tcp_fastopen_queue_check(struct sock *sk)
  197. {
  198. struct fastopen_queue *fastopenq;
  199. /* Make sure the listener has enabled fastopen, and we don't
  200. * exceed the max # of pending TFO requests allowed before trying
  201. * to validating the cookie in order to avoid burning CPU cycles
  202. * unnecessarily.
  203. *
  204. * XXX (TFO) - The implication of checking the max_qlen before
  205. * processing a cookie request is that clients can't differentiate
  206. * between qlen overflow causing Fast Open to be disabled
  207. * temporarily vs a server not supporting Fast Open at all.
  208. */
  209. fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
  210. if (fastopenq->max_qlen == 0)
  211. return false;
  212. if (fastopenq->qlen >= fastopenq->max_qlen) {
  213. struct request_sock *req1;
  214. spin_lock(&fastopenq->lock);
  215. req1 = fastopenq->rskq_rst_head;
  216. if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
  217. __NET_INC_STATS(sock_net(sk),
  218. LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
  219. spin_unlock(&fastopenq->lock);
  220. return false;
  221. }
  222. fastopenq->rskq_rst_head = req1->dl_next;
  223. fastopenq->qlen--;
  224. spin_unlock(&fastopenq->lock);
  225. reqsk_put(req1);
  226. }
  227. return true;
  228. }
  229. /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
  230. * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
  231. * cookie request (foc->len == 0).
  232. */
  233. struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
  234. struct request_sock *req,
  235. struct tcp_fastopen_cookie *foc,
  236. struct dst_entry *dst)
  237. {
  238. struct tcp_fastopen_cookie valid_foc = { .len = -1 };
  239. bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
  240. struct sock *child;
  241. if (foc->len == 0) /* Client requests a cookie */
  242. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
  243. if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
  244. (syn_data || foc->len >= 0) &&
  245. tcp_fastopen_queue_check(sk))) {
  246. foc->len = -1;
  247. return NULL;
  248. }
  249. if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
  250. goto fastopen;
  251. if (foc->len >= 0 && /* Client presents or requests a cookie */
  252. tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
  253. foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
  254. foc->len == valid_foc.len &&
  255. !memcmp(foc->val, valid_foc.val, foc->len)) {
  256. /* Cookie is valid. Create a (full) child socket to accept
  257. * the data in SYN before returning a SYN-ACK to ack the
  258. * data. If we fail to create the socket, fall back and
  259. * ack the ISN only but includes the same cookie.
  260. *
  261. * Note: Data-less SYN with valid cookie is allowed to send
  262. * data in SYN_RECV state.
  263. */
  264. fastopen:
  265. child = tcp_fastopen_create_child(sk, skb, dst, req);
  266. if (child) {
  267. foc->len = -1;
  268. NET_INC_STATS(sock_net(sk),
  269. LINUX_MIB_TCPFASTOPENPASSIVE);
  270. return child;
  271. }
  272. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
  273. } else if (foc->len > 0) /* Client presents an invalid cookie */
  274. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
  275. valid_foc.exp = foc->exp;
  276. *foc = valid_foc;
  277. return NULL;
  278. }