send.c 154 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491
  1. /*
  2. * Copyright (C) 2012 Alexander Block. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/bsearch.h>
  19. #include <linux/fs.h>
  20. #include <linux/file.h>
  21. #include <linux/sort.h>
  22. #include <linux/mount.h>
  23. #include <linux/xattr.h>
  24. #include <linux/posix_acl_xattr.h>
  25. #include <linux/radix-tree.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/string.h>
  28. #include "send.h"
  29. #include "backref.h"
  30. #include "hash.h"
  31. #include "locking.h"
  32. #include "disk-io.h"
  33. #include "btrfs_inode.h"
  34. #include "transaction.h"
  35. #include "compression.h"
  36. /*
  37. * A fs_path is a helper to dynamically build path names with unknown size.
  38. * It reallocates the internal buffer on demand.
  39. * It allows fast adding of path elements on the right side (normal path) and
  40. * fast adding to the left side (reversed path). A reversed path can also be
  41. * unreversed if needed.
  42. */
  43. struct fs_path {
  44. union {
  45. struct {
  46. char *start;
  47. char *end;
  48. char *buf;
  49. unsigned short buf_len:15;
  50. unsigned short reversed:1;
  51. char inline_buf[];
  52. };
  53. /*
  54. * Average path length does not exceed 200 bytes, we'll have
  55. * better packing in the slab and higher chance to satisfy
  56. * a allocation later during send.
  57. */
  58. char pad[256];
  59. };
  60. };
  61. #define FS_PATH_INLINE_SIZE \
  62. (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  63. /* reused for each extent */
  64. struct clone_root {
  65. struct btrfs_root *root;
  66. u64 ino;
  67. u64 offset;
  68. u64 found_refs;
  69. };
  70. #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  71. #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  72. struct send_ctx {
  73. struct file *send_filp;
  74. loff_t send_off;
  75. char *send_buf;
  76. u32 send_size;
  77. u32 send_max_size;
  78. u64 total_send_size;
  79. u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  80. u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
  81. struct btrfs_root *send_root;
  82. struct btrfs_root *parent_root;
  83. struct clone_root *clone_roots;
  84. int clone_roots_cnt;
  85. /* current state of the compare_tree call */
  86. struct btrfs_path *left_path;
  87. struct btrfs_path *right_path;
  88. struct btrfs_key *cmp_key;
  89. /*
  90. * infos of the currently processed inode. In case of deleted inodes,
  91. * these are the values from the deleted inode.
  92. */
  93. u64 cur_ino;
  94. u64 cur_inode_gen;
  95. int cur_inode_new;
  96. int cur_inode_new_gen;
  97. int cur_inode_deleted;
  98. u64 cur_inode_size;
  99. u64 cur_inode_mode;
  100. u64 cur_inode_rdev;
  101. u64 cur_inode_last_extent;
  102. u64 send_progress;
  103. struct list_head new_refs;
  104. struct list_head deleted_refs;
  105. struct radix_tree_root name_cache;
  106. struct list_head name_cache_list;
  107. int name_cache_size;
  108. struct file_ra_state ra;
  109. char *read_buf;
  110. /*
  111. * We process inodes by their increasing order, so if before an
  112. * incremental send we reverse the parent/child relationship of
  113. * directories such that a directory with a lower inode number was
  114. * the parent of a directory with a higher inode number, and the one
  115. * becoming the new parent got renamed too, we can't rename/move the
  116. * directory with lower inode number when we finish processing it - we
  117. * must process the directory with higher inode number first, then
  118. * rename/move it and then rename/move the directory with lower inode
  119. * number. Example follows.
  120. *
  121. * Tree state when the first send was performed:
  122. *
  123. * .
  124. * |-- a (ino 257)
  125. * |-- b (ino 258)
  126. * |
  127. * |
  128. * |-- c (ino 259)
  129. * | |-- d (ino 260)
  130. * |
  131. * |-- c2 (ino 261)
  132. *
  133. * Tree state when the second (incremental) send is performed:
  134. *
  135. * .
  136. * |-- a (ino 257)
  137. * |-- b (ino 258)
  138. * |-- c2 (ino 261)
  139. * |-- d2 (ino 260)
  140. * |-- cc (ino 259)
  141. *
  142. * The sequence of steps that lead to the second state was:
  143. *
  144. * mv /a/b/c/d /a/b/c2/d2
  145. * mv /a/b/c /a/b/c2/d2/cc
  146. *
  147. * "c" has lower inode number, but we can't move it (2nd mv operation)
  148. * before we move "d", which has higher inode number.
  149. *
  150. * So we just memorize which move/rename operations must be performed
  151. * later when their respective parent is processed and moved/renamed.
  152. */
  153. /* Indexed by parent directory inode number. */
  154. struct rb_root pending_dir_moves;
  155. /*
  156. * Reverse index, indexed by the inode number of a directory that
  157. * is waiting for the move/rename of its immediate parent before its
  158. * own move/rename can be performed.
  159. */
  160. struct rb_root waiting_dir_moves;
  161. /*
  162. * A directory that is going to be rm'ed might have a child directory
  163. * which is in the pending directory moves index above. In this case,
  164. * the directory can only be removed after the move/rename of its child
  165. * is performed. Example:
  166. *
  167. * Parent snapshot:
  168. *
  169. * . (ino 256)
  170. * |-- a/ (ino 257)
  171. * |-- b/ (ino 258)
  172. * |-- c/ (ino 259)
  173. * | |-- x/ (ino 260)
  174. * |
  175. * |-- y/ (ino 261)
  176. *
  177. * Send snapshot:
  178. *
  179. * . (ino 256)
  180. * |-- a/ (ino 257)
  181. * |-- b/ (ino 258)
  182. * |-- YY/ (ino 261)
  183. * |-- x/ (ino 260)
  184. *
  185. * Sequence of steps that lead to the send snapshot:
  186. * rm -f /a/b/c/foo.txt
  187. * mv /a/b/y /a/b/YY
  188. * mv /a/b/c/x /a/b/YY
  189. * rmdir /a/b/c
  190. *
  191. * When the child is processed, its move/rename is delayed until its
  192. * parent is processed (as explained above), but all other operations
  193. * like update utimes, chown, chgrp, etc, are performed and the paths
  194. * that it uses for those operations must use the orphanized name of
  195. * its parent (the directory we're going to rm later), so we need to
  196. * memorize that name.
  197. *
  198. * Indexed by the inode number of the directory to be deleted.
  199. */
  200. struct rb_root orphan_dirs;
  201. };
  202. struct pending_dir_move {
  203. struct rb_node node;
  204. struct list_head list;
  205. u64 parent_ino;
  206. u64 ino;
  207. u64 gen;
  208. struct list_head update_refs;
  209. };
  210. struct waiting_dir_move {
  211. struct rb_node node;
  212. u64 ino;
  213. /*
  214. * There might be some directory that could not be removed because it
  215. * was waiting for this directory inode to be moved first. Therefore
  216. * after this directory is moved, we can try to rmdir the ino rmdir_ino.
  217. */
  218. u64 rmdir_ino;
  219. bool orphanized;
  220. };
  221. struct orphan_dir_info {
  222. struct rb_node node;
  223. u64 ino;
  224. u64 gen;
  225. };
  226. struct name_cache_entry {
  227. struct list_head list;
  228. /*
  229. * radix_tree has only 32bit entries but we need to handle 64bit inums.
  230. * We use the lower 32bit of the 64bit inum to store it in the tree. If
  231. * more then one inum would fall into the same entry, we use radix_list
  232. * to store the additional entries. radix_list is also used to store
  233. * entries where two entries have the same inum but different
  234. * generations.
  235. */
  236. struct list_head radix_list;
  237. u64 ino;
  238. u64 gen;
  239. u64 parent_ino;
  240. u64 parent_gen;
  241. int ret;
  242. int need_later_update;
  243. int name_len;
  244. char name[];
  245. };
  246. static void inconsistent_snapshot_error(struct send_ctx *sctx,
  247. enum btrfs_compare_tree_result result,
  248. const char *what)
  249. {
  250. const char *result_string;
  251. switch (result) {
  252. case BTRFS_COMPARE_TREE_NEW:
  253. result_string = "new";
  254. break;
  255. case BTRFS_COMPARE_TREE_DELETED:
  256. result_string = "deleted";
  257. break;
  258. case BTRFS_COMPARE_TREE_CHANGED:
  259. result_string = "updated";
  260. break;
  261. case BTRFS_COMPARE_TREE_SAME:
  262. ASSERT(0);
  263. result_string = "unchanged";
  264. break;
  265. default:
  266. ASSERT(0);
  267. result_string = "unexpected";
  268. }
  269. btrfs_err(sctx->send_root->fs_info,
  270. "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
  271. result_string, what, sctx->cmp_key->objectid,
  272. sctx->send_root->root_key.objectid,
  273. (sctx->parent_root ?
  274. sctx->parent_root->root_key.objectid : 0));
  275. }
  276. static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
  277. static struct waiting_dir_move *
  278. get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
  279. static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
  280. static int need_send_hole(struct send_ctx *sctx)
  281. {
  282. return (sctx->parent_root && !sctx->cur_inode_new &&
  283. !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
  284. S_ISREG(sctx->cur_inode_mode));
  285. }
  286. static void fs_path_reset(struct fs_path *p)
  287. {
  288. if (p->reversed) {
  289. p->start = p->buf + p->buf_len - 1;
  290. p->end = p->start;
  291. *p->start = 0;
  292. } else {
  293. p->start = p->buf;
  294. p->end = p->start;
  295. *p->start = 0;
  296. }
  297. }
  298. static struct fs_path *fs_path_alloc(void)
  299. {
  300. struct fs_path *p;
  301. p = kmalloc(sizeof(*p), GFP_KERNEL);
  302. if (!p)
  303. return NULL;
  304. p->reversed = 0;
  305. p->buf = p->inline_buf;
  306. p->buf_len = FS_PATH_INLINE_SIZE;
  307. fs_path_reset(p);
  308. return p;
  309. }
  310. static struct fs_path *fs_path_alloc_reversed(void)
  311. {
  312. struct fs_path *p;
  313. p = fs_path_alloc();
  314. if (!p)
  315. return NULL;
  316. p->reversed = 1;
  317. fs_path_reset(p);
  318. return p;
  319. }
  320. static void fs_path_free(struct fs_path *p)
  321. {
  322. if (!p)
  323. return;
  324. if (p->buf != p->inline_buf)
  325. kfree(p->buf);
  326. kfree(p);
  327. }
  328. static int fs_path_len(struct fs_path *p)
  329. {
  330. return p->end - p->start;
  331. }
  332. static int fs_path_ensure_buf(struct fs_path *p, int len)
  333. {
  334. char *tmp_buf;
  335. int path_len;
  336. int old_buf_len;
  337. len++;
  338. if (p->buf_len >= len)
  339. return 0;
  340. if (len > PATH_MAX) {
  341. WARN_ON(1);
  342. return -ENOMEM;
  343. }
  344. path_len = p->end - p->start;
  345. old_buf_len = p->buf_len;
  346. /*
  347. * First time the inline_buf does not suffice
  348. */
  349. if (p->buf == p->inline_buf) {
  350. tmp_buf = kmalloc(len, GFP_KERNEL);
  351. if (tmp_buf)
  352. memcpy(tmp_buf, p->buf, old_buf_len);
  353. } else {
  354. tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
  355. }
  356. if (!tmp_buf)
  357. return -ENOMEM;
  358. p->buf = tmp_buf;
  359. /*
  360. * The real size of the buffer is bigger, this will let the fast path
  361. * happen most of the time
  362. */
  363. p->buf_len = ksize(p->buf);
  364. if (p->reversed) {
  365. tmp_buf = p->buf + old_buf_len - path_len - 1;
  366. p->end = p->buf + p->buf_len - 1;
  367. p->start = p->end - path_len;
  368. memmove(p->start, tmp_buf, path_len + 1);
  369. } else {
  370. p->start = p->buf;
  371. p->end = p->start + path_len;
  372. }
  373. return 0;
  374. }
  375. static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
  376. char **prepared)
  377. {
  378. int ret;
  379. int new_len;
  380. new_len = p->end - p->start + name_len;
  381. if (p->start != p->end)
  382. new_len++;
  383. ret = fs_path_ensure_buf(p, new_len);
  384. if (ret < 0)
  385. goto out;
  386. if (p->reversed) {
  387. if (p->start != p->end)
  388. *--p->start = '/';
  389. p->start -= name_len;
  390. *prepared = p->start;
  391. } else {
  392. if (p->start != p->end)
  393. *p->end++ = '/';
  394. *prepared = p->end;
  395. p->end += name_len;
  396. *p->end = 0;
  397. }
  398. out:
  399. return ret;
  400. }
  401. static int fs_path_add(struct fs_path *p, const char *name, int name_len)
  402. {
  403. int ret;
  404. char *prepared;
  405. ret = fs_path_prepare_for_add(p, name_len, &prepared);
  406. if (ret < 0)
  407. goto out;
  408. memcpy(prepared, name, name_len);
  409. out:
  410. return ret;
  411. }
  412. static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
  413. {
  414. int ret;
  415. char *prepared;
  416. ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
  417. if (ret < 0)
  418. goto out;
  419. memcpy(prepared, p2->start, p2->end - p2->start);
  420. out:
  421. return ret;
  422. }
  423. static int fs_path_add_from_extent_buffer(struct fs_path *p,
  424. struct extent_buffer *eb,
  425. unsigned long off, int len)
  426. {
  427. int ret;
  428. char *prepared;
  429. ret = fs_path_prepare_for_add(p, len, &prepared);
  430. if (ret < 0)
  431. goto out;
  432. read_extent_buffer(eb, prepared, off, len);
  433. out:
  434. return ret;
  435. }
  436. static int fs_path_copy(struct fs_path *p, struct fs_path *from)
  437. {
  438. int ret;
  439. p->reversed = from->reversed;
  440. fs_path_reset(p);
  441. ret = fs_path_add_path(p, from);
  442. return ret;
  443. }
  444. static void fs_path_unreverse(struct fs_path *p)
  445. {
  446. char *tmp;
  447. int len;
  448. if (!p->reversed)
  449. return;
  450. tmp = p->start;
  451. len = p->end - p->start;
  452. p->start = p->buf;
  453. p->end = p->start + len;
  454. memmove(p->start, tmp, len + 1);
  455. p->reversed = 0;
  456. }
  457. static struct btrfs_path *alloc_path_for_send(void)
  458. {
  459. struct btrfs_path *path;
  460. path = btrfs_alloc_path();
  461. if (!path)
  462. return NULL;
  463. path->search_commit_root = 1;
  464. path->skip_locking = 1;
  465. path->need_commit_sem = 1;
  466. return path;
  467. }
  468. static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
  469. {
  470. int ret;
  471. mm_segment_t old_fs;
  472. u32 pos = 0;
  473. old_fs = get_fs();
  474. set_fs(KERNEL_DS);
  475. while (pos < len) {
  476. ret = vfs_write(filp, (__force const char __user *)buf + pos,
  477. len - pos, off);
  478. /* TODO handle that correctly */
  479. /*if (ret == -ERESTARTSYS) {
  480. continue;
  481. }*/
  482. if (ret < 0)
  483. goto out;
  484. if (ret == 0) {
  485. ret = -EIO;
  486. goto out;
  487. }
  488. pos += ret;
  489. }
  490. ret = 0;
  491. out:
  492. set_fs(old_fs);
  493. return ret;
  494. }
  495. static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
  496. {
  497. struct btrfs_tlv_header *hdr;
  498. int total_len = sizeof(*hdr) + len;
  499. int left = sctx->send_max_size - sctx->send_size;
  500. if (unlikely(left < total_len))
  501. return -EOVERFLOW;
  502. hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
  503. hdr->tlv_type = cpu_to_le16(attr);
  504. hdr->tlv_len = cpu_to_le16(len);
  505. memcpy(hdr + 1, data, len);
  506. sctx->send_size += total_len;
  507. return 0;
  508. }
  509. #define TLV_PUT_DEFINE_INT(bits) \
  510. static int tlv_put_u##bits(struct send_ctx *sctx, \
  511. u##bits attr, u##bits value) \
  512. { \
  513. __le##bits __tmp = cpu_to_le##bits(value); \
  514. return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
  515. }
  516. TLV_PUT_DEFINE_INT(64)
  517. static int tlv_put_string(struct send_ctx *sctx, u16 attr,
  518. const char *str, int len)
  519. {
  520. if (len == -1)
  521. len = strlen(str);
  522. return tlv_put(sctx, attr, str, len);
  523. }
  524. static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
  525. const u8 *uuid)
  526. {
  527. return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
  528. }
  529. static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
  530. struct extent_buffer *eb,
  531. struct btrfs_timespec *ts)
  532. {
  533. struct btrfs_timespec bts;
  534. read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
  535. return tlv_put(sctx, attr, &bts, sizeof(bts));
  536. }
  537. #define TLV_PUT(sctx, attrtype, attrlen, data) \
  538. do { \
  539. ret = tlv_put(sctx, attrtype, attrlen, data); \
  540. if (ret < 0) \
  541. goto tlv_put_failure; \
  542. } while (0)
  543. #define TLV_PUT_INT(sctx, attrtype, bits, value) \
  544. do { \
  545. ret = tlv_put_u##bits(sctx, attrtype, value); \
  546. if (ret < 0) \
  547. goto tlv_put_failure; \
  548. } while (0)
  549. #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
  550. #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
  551. #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
  552. #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
  553. #define TLV_PUT_STRING(sctx, attrtype, str, len) \
  554. do { \
  555. ret = tlv_put_string(sctx, attrtype, str, len); \
  556. if (ret < 0) \
  557. goto tlv_put_failure; \
  558. } while (0)
  559. #define TLV_PUT_PATH(sctx, attrtype, p) \
  560. do { \
  561. ret = tlv_put_string(sctx, attrtype, p->start, \
  562. p->end - p->start); \
  563. if (ret < 0) \
  564. goto tlv_put_failure; \
  565. } while(0)
  566. #define TLV_PUT_UUID(sctx, attrtype, uuid) \
  567. do { \
  568. ret = tlv_put_uuid(sctx, attrtype, uuid); \
  569. if (ret < 0) \
  570. goto tlv_put_failure; \
  571. } while (0)
  572. #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
  573. do { \
  574. ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
  575. if (ret < 0) \
  576. goto tlv_put_failure; \
  577. } while (0)
  578. static int send_header(struct send_ctx *sctx)
  579. {
  580. struct btrfs_stream_header hdr;
  581. strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
  582. hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
  583. return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
  584. &sctx->send_off);
  585. }
  586. /*
  587. * For each command/item we want to send to userspace, we call this function.
  588. */
  589. static int begin_cmd(struct send_ctx *sctx, int cmd)
  590. {
  591. struct btrfs_cmd_header *hdr;
  592. if (WARN_ON(!sctx->send_buf))
  593. return -EINVAL;
  594. BUG_ON(sctx->send_size);
  595. sctx->send_size += sizeof(*hdr);
  596. hdr = (struct btrfs_cmd_header *)sctx->send_buf;
  597. hdr->cmd = cpu_to_le16(cmd);
  598. return 0;
  599. }
  600. static int send_cmd(struct send_ctx *sctx)
  601. {
  602. int ret;
  603. struct btrfs_cmd_header *hdr;
  604. u32 crc;
  605. hdr = (struct btrfs_cmd_header *)sctx->send_buf;
  606. hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
  607. hdr->crc = 0;
  608. crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
  609. hdr->crc = cpu_to_le32(crc);
  610. ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
  611. &sctx->send_off);
  612. sctx->total_send_size += sctx->send_size;
  613. sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
  614. sctx->send_size = 0;
  615. return ret;
  616. }
  617. /*
  618. * Sends a move instruction to user space
  619. */
  620. static int send_rename(struct send_ctx *sctx,
  621. struct fs_path *from, struct fs_path *to)
  622. {
  623. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  624. int ret;
  625. btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
  626. ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
  627. if (ret < 0)
  628. goto out;
  629. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
  630. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
  631. ret = send_cmd(sctx);
  632. tlv_put_failure:
  633. out:
  634. return ret;
  635. }
  636. /*
  637. * Sends a link instruction to user space
  638. */
  639. static int send_link(struct send_ctx *sctx,
  640. struct fs_path *path, struct fs_path *lnk)
  641. {
  642. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  643. int ret;
  644. btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
  645. ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
  646. if (ret < 0)
  647. goto out;
  648. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
  649. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
  650. ret = send_cmd(sctx);
  651. tlv_put_failure:
  652. out:
  653. return ret;
  654. }
  655. /*
  656. * Sends an unlink instruction to user space
  657. */
  658. static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
  659. {
  660. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  661. int ret;
  662. btrfs_debug(fs_info, "send_unlink %s", path->start);
  663. ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
  664. if (ret < 0)
  665. goto out;
  666. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
  667. ret = send_cmd(sctx);
  668. tlv_put_failure:
  669. out:
  670. return ret;
  671. }
  672. /*
  673. * Sends a rmdir instruction to user space
  674. */
  675. static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
  676. {
  677. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  678. int ret;
  679. btrfs_debug(fs_info, "send_rmdir %s", path->start);
  680. ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
  681. if (ret < 0)
  682. goto out;
  683. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
  684. ret = send_cmd(sctx);
  685. tlv_put_failure:
  686. out:
  687. return ret;
  688. }
  689. /*
  690. * Helper function to retrieve some fields from an inode item.
  691. */
  692. static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
  693. u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
  694. u64 *gid, u64 *rdev)
  695. {
  696. int ret;
  697. struct btrfs_inode_item *ii;
  698. struct btrfs_key key;
  699. key.objectid = ino;
  700. key.type = BTRFS_INODE_ITEM_KEY;
  701. key.offset = 0;
  702. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  703. if (ret) {
  704. if (ret > 0)
  705. ret = -ENOENT;
  706. return ret;
  707. }
  708. ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
  709. struct btrfs_inode_item);
  710. if (size)
  711. *size = btrfs_inode_size(path->nodes[0], ii);
  712. if (gen)
  713. *gen = btrfs_inode_generation(path->nodes[0], ii);
  714. if (mode)
  715. *mode = btrfs_inode_mode(path->nodes[0], ii);
  716. if (uid)
  717. *uid = btrfs_inode_uid(path->nodes[0], ii);
  718. if (gid)
  719. *gid = btrfs_inode_gid(path->nodes[0], ii);
  720. if (rdev)
  721. *rdev = btrfs_inode_rdev(path->nodes[0], ii);
  722. return ret;
  723. }
  724. static int get_inode_info(struct btrfs_root *root,
  725. u64 ino, u64 *size, u64 *gen,
  726. u64 *mode, u64 *uid, u64 *gid,
  727. u64 *rdev)
  728. {
  729. struct btrfs_path *path;
  730. int ret;
  731. path = alloc_path_for_send();
  732. if (!path)
  733. return -ENOMEM;
  734. ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
  735. rdev);
  736. btrfs_free_path(path);
  737. return ret;
  738. }
  739. typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
  740. struct fs_path *p,
  741. void *ctx);
  742. /*
  743. * Helper function to iterate the entries in ONE btrfs_inode_ref or
  744. * btrfs_inode_extref.
  745. * The iterate callback may return a non zero value to stop iteration. This can
  746. * be a negative value for error codes or 1 to simply stop it.
  747. *
  748. * path must point to the INODE_REF or INODE_EXTREF when called.
  749. */
  750. static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
  751. struct btrfs_key *found_key, int resolve,
  752. iterate_inode_ref_t iterate, void *ctx)
  753. {
  754. struct extent_buffer *eb = path->nodes[0];
  755. struct btrfs_item *item;
  756. struct btrfs_inode_ref *iref;
  757. struct btrfs_inode_extref *extref;
  758. struct btrfs_path *tmp_path;
  759. struct fs_path *p;
  760. u32 cur = 0;
  761. u32 total;
  762. int slot = path->slots[0];
  763. u32 name_len;
  764. char *start;
  765. int ret = 0;
  766. int num = 0;
  767. int index;
  768. u64 dir;
  769. unsigned long name_off;
  770. unsigned long elem_size;
  771. unsigned long ptr;
  772. p = fs_path_alloc_reversed();
  773. if (!p)
  774. return -ENOMEM;
  775. tmp_path = alloc_path_for_send();
  776. if (!tmp_path) {
  777. fs_path_free(p);
  778. return -ENOMEM;
  779. }
  780. if (found_key->type == BTRFS_INODE_REF_KEY) {
  781. ptr = (unsigned long)btrfs_item_ptr(eb, slot,
  782. struct btrfs_inode_ref);
  783. item = btrfs_item_nr(slot);
  784. total = btrfs_item_size(eb, item);
  785. elem_size = sizeof(*iref);
  786. } else {
  787. ptr = btrfs_item_ptr_offset(eb, slot);
  788. total = btrfs_item_size_nr(eb, slot);
  789. elem_size = sizeof(*extref);
  790. }
  791. while (cur < total) {
  792. fs_path_reset(p);
  793. if (found_key->type == BTRFS_INODE_REF_KEY) {
  794. iref = (struct btrfs_inode_ref *)(ptr + cur);
  795. name_len = btrfs_inode_ref_name_len(eb, iref);
  796. name_off = (unsigned long)(iref + 1);
  797. index = btrfs_inode_ref_index(eb, iref);
  798. dir = found_key->offset;
  799. } else {
  800. extref = (struct btrfs_inode_extref *)(ptr + cur);
  801. name_len = btrfs_inode_extref_name_len(eb, extref);
  802. name_off = (unsigned long)&extref->name;
  803. index = btrfs_inode_extref_index(eb, extref);
  804. dir = btrfs_inode_extref_parent(eb, extref);
  805. }
  806. if (resolve) {
  807. start = btrfs_ref_to_path(root, tmp_path, name_len,
  808. name_off, eb, dir,
  809. p->buf, p->buf_len);
  810. if (IS_ERR(start)) {
  811. ret = PTR_ERR(start);
  812. goto out;
  813. }
  814. if (start < p->buf) {
  815. /* overflow , try again with larger buffer */
  816. ret = fs_path_ensure_buf(p,
  817. p->buf_len + p->buf - start);
  818. if (ret < 0)
  819. goto out;
  820. start = btrfs_ref_to_path(root, tmp_path,
  821. name_len, name_off,
  822. eb, dir,
  823. p->buf, p->buf_len);
  824. if (IS_ERR(start)) {
  825. ret = PTR_ERR(start);
  826. goto out;
  827. }
  828. BUG_ON(start < p->buf);
  829. }
  830. p->start = start;
  831. } else {
  832. ret = fs_path_add_from_extent_buffer(p, eb, name_off,
  833. name_len);
  834. if (ret < 0)
  835. goto out;
  836. }
  837. cur += elem_size + name_len;
  838. ret = iterate(num, dir, index, p, ctx);
  839. if (ret)
  840. goto out;
  841. num++;
  842. }
  843. out:
  844. btrfs_free_path(tmp_path);
  845. fs_path_free(p);
  846. return ret;
  847. }
  848. typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
  849. const char *name, int name_len,
  850. const char *data, int data_len,
  851. u8 type, void *ctx);
  852. /*
  853. * Helper function to iterate the entries in ONE btrfs_dir_item.
  854. * The iterate callback may return a non zero value to stop iteration. This can
  855. * be a negative value for error codes or 1 to simply stop it.
  856. *
  857. * path must point to the dir item when called.
  858. */
  859. static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
  860. struct btrfs_key *found_key,
  861. iterate_dir_item_t iterate, void *ctx)
  862. {
  863. int ret = 0;
  864. struct extent_buffer *eb;
  865. struct btrfs_item *item;
  866. struct btrfs_dir_item *di;
  867. struct btrfs_key di_key;
  868. char *buf = NULL;
  869. int buf_len;
  870. u32 name_len;
  871. u32 data_len;
  872. u32 cur;
  873. u32 len;
  874. u32 total;
  875. int slot;
  876. int num;
  877. u8 type;
  878. /*
  879. * Start with a small buffer (1 page). If later we end up needing more
  880. * space, which can happen for xattrs on a fs with a leaf size greater
  881. * then the page size, attempt to increase the buffer. Typically xattr
  882. * values are small.
  883. */
  884. buf_len = PATH_MAX;
  885. buf = kmalloc(buf_len, GFP_KERNEL);
  886. if (!buf) {
  887. ret = -ENOMEM;
  888. goto out;
  889. }
  890. eb = path->nodes[0];
  891. slot = path->slots[0];
  892. item = btrfs_item_nr(slot);
  893. di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
  894. cur = 0;
  895. len = 0;
  896. total = btrfs_item_size(eb, item);
  897. num = 0;
  898. while (cur < total) {
  899. name_len = btrfs_dir_name_len(eb, di);
  900. data_len = btrfs_dir_data_len(eb, di);
  901. type = btrfs_dir_type(eb, di);
  902. btrfs_dir_item_key_to_cpu(eb, di, &di_key);
  903. if (type == BTRFS_FT_XATTR) {
  904. if (name_len > XATTR_NAME_MAX) {
  905. ret = -ENAMETOOLONG;
  906. goto out;
  907. }
  908. if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
  909. ret = -E2BIG;
  910. goto out;
  911. }
  912. } else {
  913. /*
  914. * Path too long
  915. */
  916. if (name_len + data_len > PATH_MAX) {
  917. ret = -ENAMETOOLONG;
  918. goto out;
  919. }
  920. }
  921. if (name_len + data_len > buf_len) {
  922. buf_len = name_len + data_len;
  923. if (is_vmalloc_addr(buf)) {
  924. vfree(buf);
  925. buf = NULL;
  926. } else {
  927. char *tmp = krealloc(buf, buf_len,
  928. GFP_KERNEL | __GFP_NOWARN);
  929. if (!tmp)
  930. kfree(buf);
  931. buf = tmp;
  932. }
  933. if (!buf) {
  934. buf = vmalloc(buf_len);
  935. if (!buf) {
  936. ret = -ENOMEM;
  937. goto out;
  938. }
  939. }
  940. }
  941. read_extent_buffer(eb, buf, (unsigned long)(di + 1),
  942. name_len + data_len);
  943. len = sizeof(*di) + name_len + data_len;
  944. di = (struct btrfs_dir_item *)((char *)di + len);
  945. cur += len;
  946. ret = iterate(num, &di_key, buf, name_len, buf + name_len,
  947. data_len, type, ctx);
  948. if (ret < 0)
  949. goto out;
  950. if (ret) {
  951. ret = 0;
  952. goto out;
  953. }
  954. num++;
  955. }
  956. out:
  957. kvfree(buf);
  958. return ret;
  959. }
  960. static int __copy_first_ref(int num, u64 dir, int index,
  961. struct fs_path *p, void *ctx)
  962. {
  963. int ret;
  964. struct fs_path *pt = ctx;
  965. ret = fs_path_copy(pt, p);
  966. if (ret < 0)
  967. return ret;
  968. /* we want the first only */
  969. return 1;
  970. }
  971. /*
  972. * Retrieve the first path of an inode. If an inode has more then one
  973. * ref/hardlink, this is ignored.
  974. */
  975. static int get_inode_path(struct btrfs_root *root,
  976. u64 ino, struct fs_path *path)
  977. {
  978. int ret;
  979. struct btrfs_key key, found_key;
  980. struct btrfs_path *p;
  981. p = alloc_path_for_send();
  982. if (!p)
  983. return -ENOMEM;
  984. fs_path_reset(path);
  985. key.objectid = ino;
  986. key.type = BTRFS_INODE_REF_KEY;
  987. key.offset = 0;
  988. ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
  989. if (ret < 0)
  990. goto out;
  991. if (ret) {
  992. ret = 1;
  993. goto out;
  994. }
  995. btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
  996. if (found_key.objectid != ino ||
  997. (found_key.type != BTRFS_INODE_REF_KEY &&
  998. found_key.type != BTRFS_INODE_EXTREF_KEY)) {
  999. ret = -ENOENT;
  1000. goto out;
  1001. }
  1002. ret = iterate_inode_ref(root, p, &found_key, 1,
  1003. __copy_first_ref, path);
  1004. if (ret < 0)
  1005. goto out;
  1006. ret = 0;
  1007. out:
  1008. btrfs_free_path(p);
  1009. return ret;
  1010. }
  1011. struct backref_ctx {
  1012. struct send_ctx *sctx;
  1013. struct btrfs_path *path;
  1014. /* number of total found references */
  1015. u64 found;
  1016. /*
  1017. * used for clones found in send_root. clones found behind cur_objectid
  1018. * and cur_offset are not considered as allowed clones.
  1019. */
  1020. u64 cur_objectid;
  1021. u64 cur_offset;
  1022. /* may be truncated in case it's the last extent in a file */
  1023. u64 extent_len;
  1024. /* data offset in the file extent item */
  1025. u64 data_offset;
  1026. /* Just to check for bugs in backref resolving */
  1027. int found_itself;
  1028. };
  1029. static int __clone_root_cmp_bsearch(const void *key, const void *elt)
  1030. {
  1031. u64 root = (u64)(uintptr_t)key;
  1032. struct clone_root *cr = (struct clone_root *)elt;
  1033. if (root < cr->root->objectid)
  1034. return -1;
  1035. if (root > cr->root->objectid)
  1036. return 1;
  1037. return 0;
  1038. }
  1039. static int __clone_root_cmp_sort(const void *e1, const void *e2)
  1040. {
  1041. struct clone_root *cr1 = (struct clone_root *)e1;
  1042. struct clone_root *cr2 = (struct clone_root *)e2;
  1043. if (cr1->root->objectid < cr2->root->objectid)
  1044. return -1;
  1045. if (cr1->root->objectid > cr2->root->objectid)
  1046. return 1;
  1047. return 0;
  1048. }
  1049. /*
  1050. * Called for every backref that is found for the current extent.
  1051. * Results are collected in sctx->clone_roots->ino/offset/found_refs
  1052. */
  1053. static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
  1054. {
  1055. struct backref_ctx *bctx = ctx_;
  1056. struct clone_root *found;
  1057. int ret;
  1058. u64 i_size;
  1059. /* First check if the root is in the list of accepted clone sources */
  1060. found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
  1061. bctx->sctx->clone_roots_cnt,
  1062. sizeof(struct clone_root),
  1063. __clone_root_cmp_bsearch);
  1064. if (!found)
  1065. return 0;
  1066. if (found->root == bctx->sctx->send_root &&
  1067. ino == bctx->cur_objectid &&
  1068. offset == bctx->cur_offset) {
  1069. bctx->found_itself = 1;
  1070. }
  1071. /*
  1072. * There are inodes that have extents that lie behind its i_size. Don't
  1073. * accept clones from these extents.
  1074. */
  1075. ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
  1076. NULL, NULL, NULL);
  1077. btrfs_release_path(bctx->path);
  1078. if (ret < 0)
  1079. return ret;
  1080. if (offset + bctx->data_offset + bctx->extent_len > i_size)
  1081. return 0;
  1082. /*
  1083. * Make sure we don't consider clones from send_root that are
  1084. * behind the current inode/offset.
  1085. */
  1086. if (found->root == bctx->sctx->send_root) {
  1087. /*
  1088. * TODO for the moment we don't accept clones from the inode
  1089. * that is currently send. We may change this when
  1090. * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
  1091. * file.
  1092. */
  1093. if (ino >= bctx->cur_objectid)
  1094. return 0;
  1095. #if 0
  1096. if (ino > bctx->cur_objectid)
  1097. return 0;
  1098. if (offset + bctx->extent_len > bctx->cur_offset)
  1099. return 0;
  1100. #endif
  1101. }
  1102. bctx->found++;
  1103. found->found_refs++;
  1104. if (ino < found->ino) {
  1105. found->ino = ino;
  1106. found->offset = offset;
  1107. } else if (found->ino == ino) {
  1108. /*
  1109. * same extent found more then once in the same file.
  1110. */
  1111. if (found->offset > offset + bctx->extent_len)
  1112. found->offset = offset;
  1113. }
  1114. return 0;
  1115. }
  1116. /*
  1117. * Given an inode, offset and extent item, it finds a good clone for a clone
  1118. * instruction. Returns -ENOENT when none could be found. The function makes
  1119. * sure that the returned clone is usable at the point where sending is at the
  1120. * moment. This means, that no clones are accepted which lie behind the current
  1121. * inode+offset.
  1122. *
  1123. * path must point to the extent item when called.
  1124. */
  1125. static int find_extent_clone(struct send_ctx *sctx,
  1126. struct btrfs_path *path,
  1127. u64 ino, u64 data_offset,
  1128. u64 ino_size,
  1129. struct clone_root **found)
  1130. {
  1131. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  1132. int ret;
  1133. int extent_type;
  1134. u64 logical;
  1135. u64 disk_byte;
  1136. u64 num_bytes;
  1137. u64 extent_item_pos;
  1138. u64 flags = 0;
  1139. struct btrfs_file_extent_item *fi;
  1140. struct extent_buffer *eb = path->nodes[0];
  1141. struct backref_ctx *backref_ctx = NULL;
  1142. struct clone_root *cur_clone_root;
  1143. struct btrfs_key found_key;
  1144. struct btrfs_path *tmp_path;
  1145. int compressed;
  1146. u32 i;
  1147. tmp_path = alloc_path_for_send();
  1148. if (!tmp_path)
  1149. return -ENOMEM;
  1150. /* We only use this path under the commit sem */
  1151. tmp_path->need_commit_sem = 0;
  1152. backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
  1153. if (!backref_ctx) {
  1154. ret = -ENOMEM;
  1155. goto out;
  1156. }
  1157. backref_ctx->path = tmp_path;
  1158. if (data_offset >= ino_size) {
  1159. /*
  1160. * There may be extents that lie behind the file's size.
  1161. * I at least had this in combination with snapshotting while
  1162. * writing large files.
  1163. */
  1164. ret = 0;
  1165. goto out;
  1166. }
  1167. fi = btrfs_item_ptr(eb, path->slots[0],
  1168. struct btrfs_file_extent_item);
  1169. extent_type = btrfs_file_extent_type(eb, fi);
  1170. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  1171. ret = -ENOENT;
  1172. goto out;
  1173. }
  1174. compressed = btrfs_file_extent_compression(eb, fi);
  1175. num_bytes = btrfs_file_extent_num_bytes(eb, fi);
  1176. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  1177. if (disk_byte == 0) {
  1178. ret = -ENOENT;
  1179. goto out;
  1180. }
  1181. logical = disk_byte + btrfs_file_extent_offset(eb, fi);
  1182. down_read(&fs_info->commit_root_sem);
  1183. ret = extent_from_logical(fs_info, disk_byte, tmp_path,
  1184. &found_key, &flags);
  1185. up_read(&fs_info->commit_root_sem);
  1186. btrfs_release_path(tmp_path);
  1187. if (ret < 0)
  1188. goto out;
  1189. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1190. ret = -EIO;
  1191. goto out;
  1192. }
  1193. /*
  1194. * Setup the clone roots.
  1195. */
  1196. for (i = 0; i < sctx->clone_roots_cnt; i++) {
  1197. cur_clone_root = sctx->clone_roots + i;
  1198. cur_clone_root->ino = (u64)-1;
  1199. cur_clone_root->offset = 0;
  1200. cur_clone_root->found_refs = 0;
  1201. }
  1202. backref_ctx->sctx = sctx;
  1203. backref_ctx->found = 0;
  1204. backref_ctx->cur_objectid = ino;
  1205. backref_ctx->cur_offset = data_offset;
  1206. backref_ctx->found_itself = 0;
  1207. backref_ctx->extent_len = num_bytes;
  1208. /*
  1209. * For non-compressed extents iterate_extent_inodes() gives us extent
  1210. * offsets that already take into account the data offset, but not for
  1211. * compressed extents, since the offset is logical and not relative to
  1212. * the physical extent locations. We must take this into account to
  1213. * avoid sending clone offsets that go beyond the source file's size,
  1214. * which would result in the clone ioctl failing with -EINVAL on the
  1215. * receiving end.
  1216. */
  1217. if (compressed == BTRFS_COMPRESS_NONE)
  1218. backref_ctx->data_offset = 0;
  1219. else
  1220. backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
  1221. /*
  1222. * The last extent of a file may be too large due to page alignment.
  1223. * We need to adjust extent_len in this case so that the checks in
  1224. * __iterate_backrefs work.
  1225. */
  1226. if (data_offset + num_bytes >= ino_size)
  1227. backref_ctx->extent_len = ino_size - data_offset;
  1228. /*
  1229. * Now collect all backrefs.
  1230. */
  1231. if (compressed == BTRFS_COMPRESS_NONE)
  1232. extent_item_pos = logical - found_key.objectid;
  1233. else
  1234. extent_item_pos = 0;
  1235. ret = iterate_extent_inodes(fs_info,
  1236. found_key.objectid, extent_item_pos, 1,
  1237. __iterate_backrefs, backref_ctx);
  1238. if (ret < 0)
  1239. goto out;
  1240. if (!backref_ctx->found_itself) {
  1241. /* found a bug in backref code? */
  1242. ret = -EIO;
  1243. btrfs_err(fs_info,
  1244. "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
  1245. ino, data_offset, disk_byte, found_key.objectid);
  1246. goto out;
  1247. }
  1248. btrfs_debug(fs_info,
  1249. "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
  1250. data_offset, ino, num_bytes, logical);
  1251. if (!backref_ctx->found)
  1252. btrfs_debug(fs_info, "no clones found");
  1253. cur_clone_root = NULL;
  1254. for (i = 0; i < sctx->clone_roots_cnt; i++) {
  1255. if (sctx->clone_roots[i].found_refs) {
  1256. if (!cur_clone_root)
  1257. cur_clone_root = sctx->clone_roots + i;
  1258. else if (sctx->clone_roots[i].root == sctx->send_root)
  1259. /* prefer clones from send_root over others */
  1260. cur_clone_root = sctx->clone_roots + i;
  1261. }
  1262. }
  1263. if (cur_clone_root) {
  1264. *found = cur_clone_root;
  1265. ret = 0;
  1266. } else {
  1267. ret = -ENOENT;
  1268. }
  1269. out:
  1270. btrfs_free_path(tmp_path);
  1271. kfree(backref_ctx);
  1272. return ret;
  1273. }
  1274. static int read_symlink(struct btrfs_root *root,
  1275. u64 ino,
  1276. struct fs_path *dest)
  1277. {
  1278. int ret;
  1279. struct btrfs_path *path;
  1280. struct btrfs_key key;
  1281. struct btrfs_file_extent_item *ei;
  1282. u8 type;
  1283. u8 compression;
  1284. unsigned long off;
  1285. int len;
  1286. path = alloc_path_for_send();
  1287. if (!path)
  1288. return -ENOMEM;
  1289. key.objectid = ino;
  1290. key.type = BTRFS_EXTENT_DATA_KEY;
  1291. key.offset = 0;
  1292. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1293. if (ret < 0)
  1294. goto out;
  1295. if (ret) {
  1296. /*
  1297. * An empty symlink inode. Can happen in rare error paths when
  1298. * creating a symlink (transaction committed before the inode
  1299. * eviction handler removed the symlink inode items and a crash
  1300. * happened in between or the subvol was snapshoted in between).
  1301. * Print an informative message to dmesg/syslog so that the user
  1302. * can delete the symlink.
  1303. */
  1304. btrfs_err(root->fs_info,
  1305. "Found empty symlink inode %llu at root %llu",
  1306. ino, root->root_key.objectid);
  1307. ret = -EIO;
  1308. goto out;
  1309. }
  1310. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  1311. struct btrfs_file_extent_item);
  1312. type = btrfs_file_extent_type(path->nodes[0], ei);
  1313. compression = btrfs_file_extent_compression(path->nodes[0], ei);
  1314. BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
  1315. BUG_ON(compression);
  1316. off = btrfs_file_extent_inline_start(ei);
  1317. len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
  1318. ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
  1319. out:
  1320. btrfs_free_path(path);
  1321. return ret;
  1322. }
  1323. /*
  1324. * Helper function to generate a file name that is unique in the root of
  1325. * send_root and parent_root. This is used to generate names for orphan inodes.
  1326. */
  1327. static int gen_unique_name(struct send_ctx *sctx,
  1328. u64 ino, u64 gen,
  1329. struct fs_path *dest)
  1330. {
  1331. int ret = 0;
  1332. struct btrfs_path *path;
  1333. struct btrfs_dir_item *di;
  1334. char tmp[64];
  1335. int len;
  1336. u64 idx = 0;
  1337. path = alloc_path_for_send();
  1338. if (!path)
  1339. return -ENOMEM;
  1340. while (1) {
  1341. len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
  1342. ino, gen, idx);
  1343. ASSERT(len < sizeof(tmp));
  1344. di = btrfs_lookup_dir_item(NULL, sctx->send_root,
  1345. path, BTRFS_FIRST_FREE_OBJECTID,
  1346. tmp, strlen(tmp), 0);
  1347. btrfs_release_path(path);
  1348. if (IS_ERR(di)) {
  1349. ret = PTR_ERR(di);
  1350. goto out;
  1351. }
  1352. if (di) {
  1353. /* not unique, try again */
  1354. idx++;
  1355. continue;
  1356. }
  1357. if (!sctx->parent_root) {
  1358. /* unique */
  1359. ret = 0;
  1360. break;
  1361. }
  1362. di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
  1363. path, BTRFS_FIRST_FREE_OBJECTID,
  1364. tmp, strlen(tmp), 0);
  1365. btrfs_release_path(path);
  1366. if (IS_ERR(di)) {
  1367. ret = PTR_ERR(di);
  1368. goto out;
  1369. }
  1370. if (di) {
  1371. /* not unique, try again */
  1372. idx++;
  1373. continue;
  1374. }
  1375. /* unique */
  1376. break;
  1377. }
  1378. ret = fs_path_add(dest, tmp, strlen(tmp));
  1379. out:
  1380. btrfs_free_path(path);
  1381. return ret;
  1382. }
  1383. enum inode_state {
  1384. inode_state_no_change,
  1385. inode_state_will_create,
  1386. inode_state_did_create,
  1387. inode_state_will_delete,
  1388. inode_state_did_delete,
  1389. };
  1390. static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
  1391. {
  1392. int ret;
  1393. int left_ret;
  1394. int right_ret;
  1395. u64 left_gen;
  1396. u64 right_gen;
  1397. ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
  1398. NULL, NULL);
  1399. if (ret < 0 && ret != -ENOENT)
  1400. goto out;
  1401. left_ret = ret;
  1402. if (!sctx->parent_root) {
  1403. right_ret = -ENOENT;
  1404. } else {
  1405. ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
  1406. NULL, NULL, NULL, NULL);
  1407. if (ret < 0 && ret != -ENOENT)
  1408. goto out;
  1409. right_ret = ret;
  1410. }
  1411. if (!left_ret && !right_ret) {
  1412. if (left_gen == gen && right_gen == gen) {
  1413. ret = inode_state_no_change;
  1414. } else if (left_gen == gen) {
  1415. if (ino < sctx->send_progress)
  1416. ret = inode_state_did_create;
  1417. else
  1418. ret = inode_state_will_create;
  1419. } else if (right_gen == gen) {
  1420. if (ino < sctx->send_progress)
  1421. ret = inode_state_did_delete;
  1422. else
  1423. ret = inode_state_will_delete;
  1424. } else {
  1425. ret = -ENOENT;
  1426. }
  1427. } else if (!left_ret) {
  1428. if (left_gen == gen) {
  1429. if (ino < sctx->send_progress)
  1430. ret = inode_state_did_create;
  1431. else
  1432. ret = inode_state_will_create;
  1433. } else {
  1434. ret = -ENOENT;
  1435. }
  1436. } else if (!right_ret) {
  1437. if (right_gen == gen) {
  1438. if (ino < sctx->send_progress)
  1439. ret = inode_state_did_delete;
  1440. else
  1441. ret = inode_state_will_delete;
  1442. } else {
  1443. ret = -ENOENT;
  1444. }
  1445. } else {
  1446. ret = -ENOENT;
  1447. }
  1448. out:
  1449. return ret;
  1450. }
  1451. static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
  1452. {
  1453. int ret;
  1454. if (ino == BTRFS_FIRST_FREE_OBJECTID)
  1455. return 1;
  1456. ret = get_cur_inode_state(sctx, ino, gen);
  1457. if (ret < 0)
  1458. goto out;
  1459. if (ret == inode_state_no_change ||
  1460. ret == inode_state_did_create ||
  1461. ret == inode_state_will_delete)
  1462. ret = 1;
  1463. else
  1464. ret = 0;
  1465. out:
  1466. return ret;
  1467. }
  1468. /*
  1469. * Helper function to lookup a dir item in a dir.
  1470. */
  1471. static int lookup_dir_item_inode(struct btrfs_root *root,
  1472. u64 dir, const char *name, int name_len,
  1473. u64 *found_inode,
  1474. u8 *found_type)
  1475. {
  1476. int ret = 0;
  1477. struct btrfs_dir_item *di;
  1478. struct btrfs_key key;
  1479. struct btrfs_path *path;
  1480. path = alloc_path_for_send();
  1481. if (!path)
  1482. return -ENOMEM;
  1483. di = btrfs_lookup_dir_item(NULL, root, path,
  1484. dir, name, name_len, 0);
  1485. if (!di) {
  1486. ret = -ENOENT;
  1487. goto out;
  1488. }
  1489. if (IS_ERR(di)) {
  1490. ret = PTR_ERR(di);
  1491. goto out;
  1492. }
  1493. btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
  1494. if (key.type == BTRFS_ROOT_ITEM_KEY) {
  1495. ret = -ENOENT;
  1496. goto out;
  1497. }
  1498. *found_inode = key.objectid;
  1499. *found_type = btrfs_dir_type(path->nodes[0], di);
  1500. out:
  1501. btrfs_free_path(path);
  1502. return ret;
  1503. }
  1504. /*
  1505. * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
  1506. * generation of the parent dir and the name of the dir entry.
  1507. */
  1508. static int get_first_ref(struct btrfs_root *root, u64 ino,
  1509. u64 *dir, u64 *dir_gen, struct fs_path *name)
  1510. {
  1511. int ret;
  1512. struct btrfs_key key;
  1513. struct btrfs_key found_key;
  1514. struct btrfs_path *path;
  1515. int len;
  1516. u64 parent_dir;
  1517. path = alloc_path_for_send();
  1518. if (!path)
  1519. return -ENOMEM;
  1520. key.objectid = ino;
  1521. key.type = BTRFS_INODE_REF_KEY;
  1522. key.offset = 0;
  1523. ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
  1524. if (ret < 0)
  1525. goto out;
  1526. if (!ret)
  1527. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  1528. path->slots[0]);
  1529. if (ret || found_key.objectid != ino ||
  1530. (found_key.type != BTRFS_INODE_REF_KEY &&
  1531. found_key.type != BTRFS_INODE_EXTREF_KEY)) {
  1532. ret = -ENOENT;
  1533. goto out;
  1534. }
  1535. if (found_key.type == BTRFS_INODE_REF_KEY) {
  1536. struct btrfs_inode_ref *iref;
  1537. iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
  1538. struct btrfs_inode_ref);
  1539. len = btrfs_inode_ref_name_len(path->nodes[0], iref);
  1540. ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
  1541. (unsigned long)(iref + 1),
  1542. len);
  1543. parent_dir = found_key.offset;
  1544. } else {
  1545. struct btrfs_inode_extref *extref;
  1546. extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
  1547. struct btrfs_inode_extref);
  1548. len = btrfs_inode_extref_name_len(path->nodes[0], extref);
  1549. ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
  1550. (unsigned long)&extref->name, len);
  1551. parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
  1552. }
  1553. if (ret < 0)
  1554. goto out;
  1555. btrfs_release_path(path);
  1556. if (dir_gen) {
  1557. ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
  1558. NULL, NULL, NULL);
  1559. if (ret < 0)
  1560. goto out;
  1561. }
  1562. *dir = parent_dir;
  1563. out:
  1564. btrfs_free_path(path);
  1565. return ret;
  1566. }
  1567. static int is_first_ref(struct btrfs_root *root,
  1568. u64 ino, u64 dir,
  1569. const char *name, int name_len)
  1570. {
  1571. int ret;
  1572. struct fs_path *tmp_name;
  1573. u64 tmp_dir;
  1574. tmp_name = fs_path_alloc();
  1575. if (!tmp_name)
  1576. return -ENOMEM;
  1577. ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
  1578. if (ret < 0)
  1579. goto out;
  1580. if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
  1581. ret = 0;
  1582. goto out;
  1583. }
  1584. ret = !memcmp(tmp_name->start, name, name_len);
  1585. out:
  1586. fs_path_free(tmp_name);
  1587. return ret;
  1588. }
  1589. /*
  1590. * Used by process_recorded_refs to determine if a new ref would overwrite an
  1591. * already existing ref. In case it detects an overwrite, it returns the
  1592. * inode/gen in who_ino/who_gen.
  1593. * When an overwrite is detected, process_recorded_refs does proper orphanizing
  1594. * to make sure later references to the overwritten inode are possible.
  1595. * Orphanizing is however only required for the first ref of an inode.
  1596. * process_recorded_refs does an additional is_first_ref check to see if
  1597. * orphanizing is really required.
  1598. */
  1599. static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
  1600. const char *name, int name_len,
  1601. u64 *who_ino, u64 *who_gen)
  1602. {
  1603. int ret = 0;
  1604. u64 gen;
  1605. u64 other_inode = 0;
  1606. u8 other_type = 0;
  1607. if (!sctx->parent_root)
  1608. goto out;
  1609. ret = is_inode_existent(sctx, dir, dir_gen);
  1610. if (ret <= 0)
  1611. goto out;
  1612. /*
  1613. * If we have a parent root we need to verify that the parent dir was
  1614. * not deleted and then re-created, if it was then we have no overwrite
  1615. * and we can just unlink this entry.
  1616. */
  1617. if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
  1618. ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
  1619. NULL, NULL, NULL);
  1620. if (ret < 0 && ret != -ENOENT)
  1621. goto out;
  1622. if (ret) {
  1623. ret = 0;
  1624. goto out;
  1625. }
  1626. if (gen != dir_gen)
  1627. goto out;
  1628. }
  1629. ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
  1630. &other_inode, &other_type);
  1631. if (ret < 0 && ret != -ENOENT)
  1632. goto out;
  1633. if (ret) {
  1634. ret = 0;
  1635. goto out;
  1636. }
  1637. /*
  1638. * Check if the overwritten ref was already processed. If yes, the ref
  1639. * was already unlinked/moved, so we can safely assume that we will not
  1640. * overwrite anything at this point in time.
  1641. */
  1642. if (other_inode > sctx->send_progress ||
  1643. is_waiting_for_move(sctx, other_inode)) {
  1644. ret = get_inode_info(sctx->parent_root, other_inode, NULL,
  1645. who_gen, NULL, NULL, NULL, NULL);
  1646. if (ret < 0)
  1647. goto out;
  1648. ret = 1;
  1649. *who_ino = other_inode;
  1650. } else {
  1651. ret = 0;
  1652. }
  1653. out:
  1654. return ret;
  1655. }
  1656. /*
  1657. * Checks if the ref was overwritten by an already processed inode. This is
  1658. * used by __get_cur_name_and_parent to find out if the ref was orphanized and
  1659. * thus the orphan name needs be used.
  1660. * process_recorded_refs also uses it to avoid unlinking of refs that were
  1661. * overwritten.
  1662. */
  1663. static int did_overwrite_ref(struct send_ctx *sctx,
  1664. u64 dir, u64 dir_gen,
  1665. u64 ino, u64 ino_gen,
  1666. const char *name, int name_len)
  1667. {
  1668. int ret = 0;
  1669. u64 gen;
  1670. u64 ow_inode;
  1671. u8 other_type;
  1672. if (!sctx->parent_root)
  1673. goto out;
  1674. ret = is_inode_existent(sctx, dir, dir_gen);
  1675. if (ret <= 0)
  1676. goto out;
  1677. /* check if the ref was overwritten by another ref */
  1678. ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
  1679. &ow_inode, &other_type);
  1680. if (ret < 0 && ret != -ENOENT)
  1681. goto out;
  1682. if (ret) {
  1683. /* was never and will never be overwritten */
  1684. ret = 0;
  1685. goto out;
  1686. }
  1687. ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
  1688. NULL, NULL);
  1689. if (ret < 0)
  1690. goto out;
  1691. if (ow_inode == ino && gen == ino_gen) {
  1692. ret = 0;
  1693. goto out;
  1694. }
  1695. /*
  1696. * We know that it is or will be overwritten. Check this now.
  1697. * The current inode being processed might have been the one that caused
  1698. * inode 'ino' to be orphanized, therefore check if ow_inode matches
  1699. * the current inode being processed.
  1700. */
  1701. if ((ow_inode < sctx->send_progress) ||
  1702. (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
  1703. gen == sctx->cur_inode_gen))
  1704. ret = 1;
  1705. else
  1706. ret = 0;
  1707. out:
  1708. return ret;
  1709. }
  1710. /*
  1711. * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
  1712. * that got overwritten. This is used by process_recorded_refs to determine
  1713. * if it has to use the path as returned by get_cur_path or the orphan name.
  1714. */
  1715. static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
  1716. {
  1717. int ret = 0;
  1718. struct fs_path *name = NULL;
  1719. u64 dir;
  1720. u64 dir_gen;
  1721. if (!sctx->parent_root)
  1722. goto out;
  1723. name = fs_path_alloc();
  1724. if (!name)
  1725. return -ENOMEM;
  1726. ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
  1727. if (ret < 0)
  1728. goto out;
  1729. ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
  1730. name->start, fs_path_len(name));
  1731. out:
  1732. fs_path_free(name);
  1733. return ret;
  1734. }
  1735. /*
  1736. * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
  1737. * so we need to do some special handling in case we have clashes. This function
  1738. * takes care of this with the help of name_cache_entry::radix_list.
  1739. * In case of error, nce is kfreed.
  1740. */
  1741. static int name_cache_insert(struct send_ctx *sctx,
  1742. struct name_cache_entry *nce)
  1743. {
  1744. int ret = 0;
  1745. struct list_head *nce_head;
  1746. nce_head = radix_tree_lookup(&sctx->name_cache,
  1747. (unsigned long)nce->ino);
  1748. if (!nce_head) {
  1749. nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
  1750. if (!nce_head) {
  1751. kfree(nce);
  1752. return -ENOMEM;
  1753. }
  1754. INIT_LIST_HEAD(nce_head);
  1755. ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
  1756. if (ret < 0) {
  1757. kfree(nce_head);
  1758. kfree(nce);
  1759. return ret;
  1760. }
  1761. }
  1762. list_add_tail(&nce->radix_list, nce_head);
  1763. list_add_tail(&nce->list, &sctx->name_cache_list);
  1764. sctx->name_cache_size++;
  1765. return ret;
  1766. }
  1767. static void name_cache_delete(struct send_ctx *sctx,
  1768. struct name_cache_entry *nce)
  1769. {
  1770. struct list_head *nce_head;
  1771. nce_head = radix_tree_lookup(&sctx->name_cache,
  1772. (unsigned long)nce->ino);
  1773. if (!nce_head) {
  1774. btrfs_err(sctx->send_root->fs_info,
  1775. "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
  1776. nce->ino, sctx->name_cache_size);
  1777. }
  1778. list_del(&nce->radix_list);
  1779. list_del(&nce->list);
  1780. sctx->name_cache_size--;
  1781. /*
  1782. * We may not get to the final release of nce_head if the lookup fails
  1783. */
  1784. if (nce_head && list_empty(nce_head)) {
  1785. radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
  1786. kfree(nce_head);
  1787. }
  1788. }
  1789. static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
  1790. u64 ino, u64 gen)
  1791. {
  1792. struct list_head *nce_head;
  1793. struct name_cache_entry *cur;
  1794. nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
  1795. if (!nce_head)
  1796. return NULL;
  1797. list_for_each_entry(cur, nce_head, radix_list) {
  1798. if (cur->ino == ino && cur->gen == gen)
  1799. return cur;
  1800. }
  1801. return NULL;
  1802. }
  1803. /*
  1804. * Removes the entry from the list and adds it back to the end. This marks the
  1805. * entry as recently used so that name_cache_clean_unused does not remove it.
  1806. */
  1807. static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
  1808. {
  1809. list_del(&nce->list);
  1810. list_add_tail(&nce->list, &sctx->name_cache_list);
  1811. }
  1812. /*
  1813. * Remove some entries from the beginning of name_cache_list.
  1814. */
  1815. static void name_cache_clean_unused(struct send_ctx *sctx)
  1816. {
  1817. struct name_cache_entry *nce;
  1818. if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
  1819. return;
  1820. while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
  1821. nce = list_entry(sctx->name_cache_list.next,
  1822. struct name_cache_entry, list);
  1823. name_cache_delete(sctx, nce);
  1824. kfree(nce);
  1825. }
  1826. }
  1827. static void name_cache_free(struct send_ctx *sctx)
  1828. {
  1829. struct name_cache_entry *nce;
  1830. while (!list_empty(&sctx->name_cache_list)) {
  1831. nce = list_entry(sctx->name_cache_list.next,
  1832. struct name_cache_entry, list);
  1833. name_cache_delete(sctx, nce);
  1834. kfree(nce);
  1835. }
  1836. }
  1837. /*
  1838. * Used by get_cur_path for each ref up to the root.
  1839. * Returns 0 if it succeeded.
  1840. * Returns 1 if the inode is not existent or got overwritten. In that case, the
  1841. * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
  1842. * is returned, parent_ino/parent_gen are not guaranteed to be valid.
  1843. * Returns <0 in case of error.
  1844. */
  1845. static int __get_cur_name_and_parent(struct send_ctx *sctx,
  1846. u64 ino, u64 gen,
  1847. u64 *parent_ino,
  1848. u64 *parent_gen,
  1849. struct fs_path *dest)
  1850. {
  1851. int ret;
  1852. int nce_ret;
  1853. struct name_cache_entry *nce = NULL;
  1854. /*
  1855. * First check if we already did a call to this function with the same
  1856. * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
  1857. * return the cached result.
  1858. */
  1859. nce = name_cache_search(sctx, ino, gen);
  1860. if (nce) {
  1861. if (ino < sctx->send_progress && nce->need_later_update) {
  1862. name_cache_delete(sctx, nce);
  1863. kfree(nce);
  1864. nce = NULL;
  1865. } else {
  1866. name_cache_used(sctx, nce);
  1867. *parent_ino = nce->parent_ino;
  1868. *parent_gen = nce->parent_gen;
  1869. ret = fs_path_add(dest, nce->name, nce->name_len);
  1870. if (ret < 0)
  1871. goto out;
  1872. ret = nce->ret;
  1873. goto out;
  1874. }
  1875. }
  1876. /*
  1877. * If the inode is not existent yet, add the orphan name and return 1.
  1878. * This should only happen for the parent dir that we determine in
  1879. * __record_new_ref
  1880. */
  1881. ret = is_inode_existent(sctx, ino, gen);
  1882. if (ret < 0)
  1883. goto out;
  1884. if (!ret) {
  1885. ret = gen_unique_name(sctx, ino, gen, dest);
  1886. if (ret < 0)
  1887. goto out;
  1888. ret = 1;
  1889. goto out_cache;
  1890. }
  1891. /*
  1892. * Depending on whether the inode was already processed or not, use
  1893. * send_root or parent_root for ref lookup.
  1894. */
  1895. if (ino < sctx->send_progress)
  1896. ret = get_first_ref(sctx->send_root, ino,
  1897. parent_ino, parent_gen, dest);
  1898. else
  1899. ret = get_first_ref(sctx->parent_root, ino,
  1900. parent_ino, parent_gen, dest);
  1901. if (ret < 0)
  1902. goto out;
  1903. /*
  1904. * Check if the ref was overwritten by an inode's ref that was processed
  1905. * earlier. If yes, treat as orphan and return 1.
  1906. */
  1907. ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
  1908. dest->start, dest->end - dest->start);
  1909. if (ret < 0)
  1910. goto out;
  1911. if (ret) {
  1912. fs_path_reset(dest);
  1913. ret = gen_unique_name(sctx, ino, gen, dest);
  1914. if (ret < 0)
  1915. goto out;
  1916. ret = 1;
  1917. }
  1918. out_cache:
  1919. /*
  1920. * Store the result of the lookup in the name cache.
  1921. */
  1922. nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
  1923. if (!nce) {
  1924. ret = -ENOMEM;
  1925. goto out;
  1926. }
  1927. nce->ino = ino;
  1928. nce->gen = gen;
  1929. nce->parent_ino = *parent_ino;
  1930. nce->parent_gen = *parent_gen;
  1931. nce->name_len = fs_path_len(dest);
  1932. nce->ret = ret;
  1933. strcpy(nce->name, dest->start);
  1934. if (ino < sctx->send_progress)
  1935. nce->need_later_update = 0;
  1936. else
  1937. nce->need_later_update = 1;
  1938. nce_ret = name_cache_insert(sctx, nce);
  1939. if (nce_ret < 0)
  1940. ret = nce_ret;
  1941. name_cache_clean_unused(sctx);
  1942. out:
  1943. return ret;
  1944. }
  1945. /*
  1946. * Magic happens here. This function returns the first ref to an inode as it
  1947. * would look like while receiving the stream at this point in time.
  1948. * We walk the path up to the root. For every inode in between, we check if it
  1949. * was already processed/sent. If yes, we continue with the parent as found
  1950. * in send_root. If not, we continue with the parent as found in parent_root.
  1951. * If we encounter an inode that was deleted at this point in time, we use the
  1952. * inodes "orphan" name instead of the real name and stop. Same with new inodes
  1953. * that were not created yet and overwritten inodes/refs.
  1954. *
  1955. * When do we have have orphan inodes:
  1956. * 1. When an inode is freshly created and thus no valid refs are available yet
  1957. * 2. When a directory lost all it's refs (deleted) but still has dir items
  1958. * inside which were not processed yet (pending for move/delete). If anyone
  1959. * tried to get the path to the dir items, it would get a path inside that
  1960. * orphan directory.
  1961. * 3. When an inode is moved around or gets new links, it may overwrite the ref
  1962. * of an unprocessed inode. If in that case the first ref would be
  1963. * overwritten, the overwritten inode gets "orphanized". Later when we
  1964. * process this overwritten inode, it is restored at a new place by moving
  1965. * the orphan inode.
  1966. *
  1967. * sctx->send_progress tells this function at which point in time receiving
  1968. * would be.
  1969. */
  1970. static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
  1971. struct fs_path *dest)
  1972. {
  1973. int ret = 0;
  1974. struct fs_path *name = NULL;
  1975. u64 parent_inode = 0;
  1976. u64 parent_gen = 0;
  1977. int stop = 0;
  1978. name = fs_path_alloc();
  1979. if (!name) {
  1980. ret = -ENOMEM;
  1981. goto out;
  1982. }
  1983. dest->reversed = 1;
  1984. fs_path_reset(dest);
  1985. while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
  1986. struct waiting_dir_move *wdm;
  1987. fs_path_reset(name);
  1988. if (is_waiting_for_rm(sctx, ino)) {
  1989. ret = gen_unique_name(sctx, ino, gen, name);
  1990. if (ret < 0)
  1991. goto out;
  1992. ret = fs_path_add_path(dest, name);
  1993. break;
  1994. }
  1995. wdm = get_waiting_dir_move(sctx, ino);
  1996. if (wdm && wdm->orphanized) {
  1997. ret = gen_unique_name(sctx, ino, gen, name);
  1998. stop = 1;
  1999. } else if (wdm) {
  2000. ret = get_first_ref(sctx->parent_root, ino,
  2001. &parent_inode, &parent_gen, name);
  2002. } else {
  2003. ret = __get_cur_name_and_parent(sctx, ino, gen,
  2004. &parent_inode,
  2005. &parent_gen, name);
  2006. if (ret)
  2007. stop = 1;
  2008. }
  2009. if (ret < 0)
  2010. goto out;
  2011. ret = fs_path_add_path(dest, name);
  2012. if (ret < 0)
  2013. goto out;
  2014. ino = parent_inode;
  2015. gen = parent_gen;
  2016. }
  2017. out:
  2018. fs_path_free(name);
  2019. if (!ret)
  2020. fs_path_unreverse(dest);
  2021. return ret;
  2022. }
  2023. /*
  2024. * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
  2025. */
  2026. static int send_subvol_begin(struct send_ctx *sctx)
  2027. {
  2028. int ret;
  2029. struct btrfs_root *send_root = sctx->send_root;
  2030. struct btrfs_root *parent_root = sctx->parent_root;
  2031. struct btrfs_path *path;
  2032. struct btrfs_key key;
  2033. struct btrfs_root_ref *ref;
  2034. struct extent_buffer *leaf;
  2035. char *name = NULL;
  2036. int namelen;
  2037. path = btrfs_alloc_path();
  2038. if (!path)
  2039. return -ENOMEM;
  2040. name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
  2041. if (!name) {
  2042. btrfs_free_path(path);
  2043. return -ENOMEM;
  2044. }
  2045. key.objectid = send_root->objectid;
  2046. key.type = BTRFS_ROOT_BACKREF_KEY;
  2047. key.offset = 0;
  2048. ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
  2049. &key, path, 1, 0);
  2050. if (ret < 0)
  2051. goto out;
  2052. if (ret) {
  2053. ret = -ENOENT;
  2054. goto out;
  2055. }
  2056. leaf = path->nodes[0];
  2057. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2058. if (key.type != BTRFS_ROOT_BACKREF_KEY ||
  2059. key.objectid != send_root->objectid) {
  2060. ret = -ENOENT;
  2061. goto out;
  2062. }
  2063. ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
  2064. namelen = btrfs_root_ref_name_len(leaf, ref);
  2065. read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
  2066. btrfs_release_path(path);
  2067. if (parent_root) {
  2068. ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
  2069. if (ret < 0)
  2070. goto out;
  2071. } else {
  2072. ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
  2073. if (ret < 0)
  2074. goto out;
  2075. }
  2076. TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
  2077. if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
  2078. TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
  2079. sctx->send_root->root_item.received_uuid);
  2080. else
  2081. TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
  2082. sctx->send_root->root_item.uuid);
  2083. TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
  2084. le64_to_cpu(sctx->send_root->root_item.ctransid));
  2085. if (parent_root) {
  2086. if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
  2087. TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
  2088. parent_root->root_item.received_uuid);
  2089. else
  2090. TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
  2091. parent_root->root_item.uuid);
  2092. TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
  2093. le64_to_cpu(sctx->parent_root->root_item.ctransid));
  2094. }
  2095. ret = send_cmd(sctx);
  2096. tlv_put_failure:
  2097. out:
  2098. btrfs_free_path(path);
  2099. kfree(name);
  2100. return ret;
  2101. }
  2102. static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
  2103. {
  2104. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  2105. int ret = 0;
  2106. struct fs_path *p;
  2107. btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
  2108. p = fs_path_alloc();
  2109. if (!p)
  2110. return -ENOMEM;
  2111. ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
  2112. if (ret < 0)
  2113. goto out;
  2114. ret = get_cur_path(sctx, ino, gen, p);
  2115. if (ret < 0)
  2116. goto out;
  2117. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
  2118. TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
  2119. ret = send_cmd(sctx);
  2120. tlv_put_failure:
  2121. out:
  2122. fs_path_free(p);
  2123. return ret;
  2124. }
  2125. static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
  2126. {
  2127. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  2128. int ret = 0;
  2129. struct fs_path *p;
  2130. btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
  2131. p = fs_path_alloc();
  2132. if (!p)
  2133. return -ENOMEM;
  2134. ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
  2135. if (ret < 0)
  2136. goto out;
  2137. ret = get_cur_path(sctx, ino, gen, p);
  2138. if (ret < 0)
  2139. goto out;
  2140. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
  2141. TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
  2142. ret = send_cmd(sctx);
  2143. tlv_put_failure:
  2144. out:
  2145. fs_path_free(p);
  2146. return ret;
  2147. }
  2148. static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
  2149. {
  2150. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  2151. int ret = 0;
  2152. struct fs_path *p;
  2153. btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
  2154. ino, uid, gid);
  2155. p = fs_path_alloc();
  2156. if (!p)
  2157. return -ENOMEM;
  2158. ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
  2159. if (ret < 0)
  2160. goto out;
  2161. ret = get_cur_path(sctx, ino, gen, p);
  2162. if (ret < 0)
  2163. goto out;
  2164. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
  2165. TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
  2166. TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
  2167. ret = send_cmd(sctx);
  2168. tlv_put_failure:
  2169. out:
  2170. fs_path_free(p);
  2171. return ret;
  2172. }
  2173. static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
  2174. {
  2175. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  2176. int ret = 0;
  2177. struct fs_path *p = NULL;
  2178. struct btrfs_inode_item *ii;
  2179. struct btrfs_path *path = NULL;
  2180. struct extent_buffer *eb;
  2181. struct btrfs_key key;
  2182. int slot;
  2183. btrfs_debug(fs_info, "send_utimes %llu", ino);
  2184. p = fs_path_alloc();
  2185. if (!p)
  2186. return -ENOMEM;
  2187. path = alloc_path_for_send();
  2188. if (!path) {
  2189. ret = -ENOMEM;
  2190. goto out;
  2191. }
  2192. key.objectid = ino;
  2193. key.type = BTRFS_INODE_ITEM_KEY;
  2194. key.offset = 0;
  2195. ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
  2196. if (ret > 0)
  2197. ret = -ENOENT;
  2198. if (ret < 0)
  2199. goto out;
  2200. eb = path->nodes[0];
  2201. slot = path->slots[0];
  2202. ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
  2203. ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
  2204. if (ret < 0)
  2205. goto out;
  2206. ret = get_cur_path(sctx, ino, gen, p);
  2207. if (ret < 0)
  2208. goto out;
  2209. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
  2210. TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
  2211. TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
  2212. TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
  2213. /* TODO Add otime support when the otime patches get into upstream */
  2214. ret = send_cmd(sctx);
  2215. tlv_put_failure:
  2216. out:
  2217. fs_path_free(p);
  2218. btrfs_free_path(path);
  2219. return ret;
  2220. }
  2221. /*
  2222. * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
  2223. * a valid path yet because we did not process the refs yet. So, the inode
  2224. * is created as orphan.
  2225. */
  2226. static int send_create_inode(struct send_ctx *sctx, u64 ino)
  2227. {
  2228. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  2229. int ret = 0;
  2230. struct fs_path *p;
  2231. int cmd;
  2232. u64 gen;
  2233. u64 mode;
  2234. u64 rdev;
  2235. btrfs_debug(fs_info, "send_create_inode %llu", ino);
  2236. p = fs_path_alloc();
  2237. if (!p)
  2238. return -ENOMEM;
  2239. if (ino != sctx->cur_ino) {
  2240. ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
  2241. NULL, NULL, &rdev);
  2242. if (ret < 0)
  2243. goto out;
  2244. } else {
  2245. gen = sctx->cur_inode_gen;
  2246. mode = sctx->cur_inode_mode;
  2247. rdev = sctx->cur_inode_rdev;
  2248. }
  2249. if (S_ISREG(mode)) {
  2250. cmd = BTRFS_SEND_C_MKFILE;
  2251. } else if (S_ISDIR(mode)) {
  2252. cmd = BTRFS_SEND_C_MKDIR;
  2253. } else if (S_ISLNK(mode)) {
  2254. cmd = BTRFS_SEND_C_SYMLINK;
  2255. } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
  2256. cmd = BTRFS_SEND_C_MKNOD;
  2257. } else if (S_ISFIFO(mode)) {
  2258. cmd = BTRFS_SEND_C_MKFIFO;
  2259. } else if (S_ISSOCK(mode)) {
  2260. cmd = BTRFS_SEND_C_MKSOCK;
  2261. } else {
  2262. btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
  2263. (int)(mode & S_IFMT));
  2264. ret = -ENOTSUPP;
  2265. goto out;
  2266. }
  2267. ret = begin_cmd(sctx, cmd);
  2268. if (ret < 0)
  2269. goto out;
  2270. ret = gen_unique_name(sctx, ino, gen, p);
  2271. if (ret < 0)
  2272. goto out;
  2273. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
  2274. TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
  2275. if (S_ISLNK(mode)) {
  2276. fs_path_reset(p);
  2277. ret = read_symlink(sctx->send_root, ino, p);
  2278. if (ret < 0)
  2279. goto out;
  2280. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
  2281. } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
  2282. S_ISFIFO(mode) || S_ISSOCK(mode)) {
  2283. TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
  2284. TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
  2285. }
  2286. ret = send_cmd(sctx);
  2287. if (ret < 0)
  2288. goto out;
  2289. tlv_put_failure:
  2290. out:
  2291. fs_path_free(p);
  2292. return ret;
  2293. }
  2294. /*
  2295. * We need some special handling for inodes that get processed before the parent
  2296. * directory got created. See process_recorded_refs for details.
  2297. * This function does the check if we already created the dir out of order.
  2298. */
  2299. static int did_create_dir(struct send_ctx *sctx, u64 dir)
  2300. {
  2301. int ret = 0;
  2302. struct btrfs_path *path = NULL;
  2303. struct btrfs_key key;
  2304. struct btrfs_key found_key;
  2305. struct btrfs_key di_key;
  2306. struct extent_buffer *eb;
  2307. struct btrfs_dir_item *di;
  2308. int slot;
  2309. path = alloc_path_for_send();
  2310. if (!path) {
  2311. ret = -ENOMEM;
  2312. goto out;
  2313. }
  2314. key.objectid = dir;
  2315. key.type = BTRFS_DIR_INDEX_KEY;
  2316. key.offset = 0;
  2317. ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
  2318. if (ret < 0)
  2319. goto out;
  2320. while (1) {
  2321. eb = path->nodes[0];
  2322. slot = path->slots[0];
  2323. if (slot >= btrfs_header_nritems(eb)) {
  2324. ret = btrfs_next_leaf(sctx->send_root, path);
  2325. if (ret < 0) {
  2326. goto out;
  2327. } else if (ret > 0) {
  2328. ret = 0;
  2329. break;
  2330. }
  2331. continue;
  2332. }
  2333. btrfs_item_key_to_cpu(eb, &found_key, slot);
  2334. if (found_key.objectid != key.objectid ||
  2335. found_key.type != key.type) {
  2336. ret = 0;
  2337. goto out;
  2338. }
  2339. di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
  2340. btrfs_dir_item_key_to_cpu(eb, di, &di_key);
  2341. if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
  2342. di_key.objectid < sctx->send_progress) {
  2343. ret = 1;
  2344. goto out;
  2345. }
  2346. path->slots[0]++;
  2347. }
  2348. out:
  2349. btrfs_free_path(path);
  2350. return ret;
  2351. }
  2352. /*
  2353. * Only creates the inode if it is:
  2354. * 1. Not a directory
  2355. * 2. Or a directory which was not created already due to out of order
  2356. * directories. See did_create_dir and process_recorded_refs for details.
  2357. */
  2358. static int send_create_inode_if_needed(struct send_ctx *sctx)
  2359. {
  2360. int ret;
  2361. if (S_ISDIR(sctx->cur_inode_mode)) {
  2362. ret = did_create_dir(sctx, sctx->cur_ino);
  2363. if (ret < 0)
  2364. goto out;
  2365. if (ret) {
  2366. ret = 0;
  2367. goto out;
  2368. }
  2369. }
  2370. ret = send_create_inode(sctx, sctx->cur_ino);
  2371. if (ret < 0)
  2372. goto out;
  2373. out:
  2374. return ret;
  2375. }
  2376. struct recorded_ref {
  2377. struct list_head list;
  2378. char *dir_path;
  2379. char *name;
  2380. struct fs_path *full_path;
  2381. u64 dir;
  2382. u64 dir_gen;
  2383. int dir_path_len;
  2384. int name_len;
  2385. };
  2386. /*
  2387. * We need to process new refs before deleted refs, but compare_tree gives us
  2388. * everything mixed. So we first record all refs and later process them.
  2389. * This function is a helper to record one ref.
  2390. */
  2391. static int __record_ref(struct list_head *head, u64 dir,
  2392. u64 dir_gen, struct fs_path *path)
  2393. {
  2394. struct recorded_ref *ref;
  2395. ref = kmalloc(sizeof(*ref), GFP_KERNEL);
  2396. if (!ref)
  2397. return -ENOMEM;
  2398. ref->dir = dir;
  2399. ref->dir_gen = dir_gen;
  2400. ref->full_path = path;
  2401. ref->name = (char *)kbasename(ref->full_path->start);
  2402. ref->name_len = ref->full_path->end - ref->name;
  2403. ref->dir_path = ref->full_path->start;
  2404. if (ref->name == ref->full_path->start)
  2405. ref->dir_path_len = 0;
  2406. else
  2407. ref->dir_path_len = ref->full_path->end -
  2408. ref->full_path->start - 1 - ref->name_len;
  2409. list_add_tail(&ref->list, head);
  2410. return 0;
  2411. }
  2412. static int dup_ref(struct recorded_ref *ref, struct list_head *list)
  2413. {
  2414. struct recorded_ref *new;
  2415. new = kmalloc(sizeof(*ref), GFP_KERNEL);
  2416. if (!new)
  2417. return -ENOMEM;
  2418. new->dir = ref->dir;
  2419. new->dir_gen = ref->dir_gen;
  2420. new->full_path = NULL;
  2421. INIT_LIST_HEAD(&new->list);
  2422. list_add_tail(&new->list, list);
  2423. return 0;
  2424. }
  2425. static void __free_recorded_refs(struct list_head *head)
  2426. {
  2427. struct recorded_ref *cur;
  2428. while (!list_empty(head)) {
  2429. cur = list_entry(head->next, struct recorded_ref, list);
  2430. fs_path_free(cur->full_path);
  2431. list_del(&cur->list);
  2432. kfree(cur);
  2433. }
  2434. }
  2435. static void free_recorded_refs(struct send_ctx *sctx)
  2436. {
  2437. __free_recorded_refs(&sctx->new_refs);
  2438. __free_recorded_refs(&sctx->deleted_refs);
  2439. }
  2440. /*
  2441. * Renames/moves a file/dir to its orphan name. Used when the first
  2442. * ref of an unprocessed inode gets overwritten and for all non empty
  2443. * directories.
  2444. */
  2445. static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
  2446. struct fs_path *path)
  2447. {
  2448. int ret;
  2449. struct fs_path *orphan;
  2450. orphan = fs_path_alloc();
  2451. if (!orphan)
  2452. return -ENOMEM;
  2453. ret = gen_unique_name(sctx, ino, gen, orphan);
  2454. if (ret < 0)
  2455. goto out;
  2456. ret = send_rename(sctx, path, orphan);
  2457. out:
  2458. fs_path_free(orphan);
  2459. return ret;
  2460. }
  2461. static struct orphan_dir_info *
  2462. add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
  2463. {
  2464. struct rb_node **p = &sctx->orphan_dirs.rb_node;
  2465. struct rb_node *parent = NULL;
  2466. struct orphan_dir_info *entry, *odi;
  2467. odi = kmalloc(sizeof(*odi), GFP_KERNEL);
  2468. if (!odi)
  2469. return ERR_PTR(-ENOMEM);
  2470. odi->ino = dir_ino;
  2471. odi->gen = 0;
  2472. while (*p) {
  2473. parent = *p;
  2474. entry = rb_entry(parent, struct orphan_dir_info, node);
  2475. if (dir_ino < entry->ino) {
  2476. p = &(*p)->rb_left;
  2477. } else if (dir_ino > entry->ino) {
  2478. p = &(*p)->rb_right;
  2479. } else {
  2480. kfree(odi);
  2481. return entry;
  2482. }
  2483. }
  2484. rb_link_node(&odi->node, parent, p);
  2485. rb_insert_color(&odi->node, &sctx->orphan_dirs);
  2486. return odi;
  2487. }
  2488. static struct orphan_dir_info *
  2489. get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
  2490. {
  2491. struct rb_node *n = sctx->orphan_dirs.rb_node;
  2492. struct orphan_dir_info *entry;
  2493. while (n) {
  2494. entry = rb_entry(n, struct orphan_dir_info, node);
  2495. if (dir_ino < entry->ino)
  2496. n = n->rb_left;
  2497. else if (dir_ino > entry->ino)
  2498. n = n->rb_right;
  2499. else
  2500. return entry;
  2501. }
  2502. return NULL;
  2503. }
  2504. static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
  2505. {
  2506. struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
  2507. return odi != NULL;
  2508. }
  2509. static void free_orphan_dir_info(struct send_ctx *sctx,
  2510. struct orphan_dir_info *odi)
  2511. {
  2512. if (!odi)
  2513. return;
  2514. rb_erase(&odi->node, &sctx->orphan_dirs);
  2515. kfree(odi);
  2516. }
  2517. /*
  2518. * Returns 1 if a directory can be removed at this point in time.
  2519. * We check this by iterating all dir items and checking if the inode behind
  2520. * the dir item was already processed.
  2521. */
  2522. static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
  2523. u64 send_progress)
  2524. {
  2525. int ret = 0;
  2526. struct btrfs_root *root = sctx->parent_root;
  2527. struct btrfs_path *path;
  2528. struct btrfs_key key;
  2529. struct btrfs_key found_key;
  2530. struct btrfs_key loc;
  2531. struct btrfs_dir_item *di;
  2532. /*
  2533. * Don't try to rmdir the top/root subvolume dir.
  2534. */
  2535. if (dir == BTRFS_FIRST_FREE_OBJECTID)
  2536. return 0;
  2537. path = alloc_path_for_send();
  2538. if (!path)
  2539. return -ENOMEM;
  2540. key.objectid = dir;
  2541. key.type = BTRFS_DIR_INDEX_KEY;
  2542. key.offset = 0;
  2543. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2544. if (ret < 0)
  2545. goto out;
  2546. while (1) {
  2547. struct waiting_dir_move *dm;
  2548. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
  2549. ret = btrfs_next_leaf(root, path);
  2550. if (ret < 0)
  2551. goto out;
  2552. else if (ret > 0)
  2553. break;
  2554. continue;
  2555. }
  2556. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  2557. path->slots[0]);
  2558. if (found_key.objectid != key.objectid ||
  2559. found_key.type != key.type)
  2560. break;
  2561. di = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2562. struct btrfs_dir_item);
  2563. btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
  2564. dm = get_waiting_dir_move(sctx, loc.objectid);
  2565. if (dm) {
  2566. struct orphan_dir_info *odi;
  2567. odi = add_orphan_dir_info(sctx, dir);
  2568. if (IS_ERR(odi)) {
  2569. ret = PTR_ERR(odi);
  2570. goto out;
  2571. }
  2572. odi->gen = dir_gen;
  2573. dm->rmdir_ino = dir;
  2574. ret = 0;
  2575. goto out;
  2576. }
  2577. if (loc.objectid > send_progress) {
  2578. struct orphan_dir_info *odi;
  2579. odi = get_orphan_dir_info(sctx, dir);
  2580. free_orphan_dir_info(sctx, odi);
  2581. ret = 0;
  2582. goto out;
  2583. }
  2584. path->slots[0]++;
  2585. }
  2586. ret = 1;
  2587. out:
  2588. btrfs_free_path(path);
  2589. return ret;
  2590. }
  2591. static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
  2592. {
  2593. struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
  2594. return entry != NULL;
  2595. }
  2596. static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
  2597. {
  2598. struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
  2599. struct rb_node *parent = NULL;
  2600. struct waiting_dir_move *entry, *dm;
  2601. dm = kmalloc(sizeof(*dm), GFP_KERNEL);
  2602. if (!dm)
  2603. return -ENOMEM;
  2604. dm->ino = ino;
  2605. dm->rmdir_ino = 0;
  2606. dm->orphanized = orphanized;
  2607. while (*p) {
  2608. parent = *p;
  2609. entry = rb_entry(parent, struct waiting_dir_move, node);
  2610. if (ino < entry->ino) {
  2611. p = &(*p)->rb_left;
  2612. } else if (ino > entry->ino) {
  2613. p = &(*p)->rb_right;
  2614. } else {
  2615. kfree(dm);
  2616. return -EEXIST;
  2617. }
  2618. }
  2619. rb_link_node(&dm->node, parent, p);
  2620. rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
  2621. return 0;
  2622. }
  2623. static struct waiting_dir_move *
  2624. get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
  2625. {
  2626. struct rb_node *n = sctx->waiting_dir_moves.rb_node;
  2627. struct waiting_dir_move *entry;
  2628. while (n) {
  2629. entry = rb_entry(n, struct waiting_dir_move, node);
  2630. if (ino < entry->ino)
  2631. n = n->rb_left;
  2632. else if (ino > entry->ino)
  2633. n = n->rb_right;
  2634. else
  2635. return entry;
  2636. }
  2637. return NULL;
  2638. }
  2639. static void free_waiting_dir_move(struct send_ctx *sctx,
  2640. struct waiting_dir_move *dm)
  2641. {
  2642. if (!dm)
  2643. return;
  2644. rb_erase(&dm->node, &sctx->waiting_dir_moves);
  2645. kfree(dm);
  2646. }
  2647. static int add_pending_dir_move(struct send_ctx *sctx,
  2648. u64 ino,
  2649. u64 ino_gen,
  2650. u64 parent_ino,
  2651. struct list_head *new_refs,
  2652. struct list_head *deleted_refs,
  2653. const bool is_orphan)
  2654. {
  2655. struct rb_node **p = &sctx->pending_dir_moves.rb_node;
  2656. struct rb_node *parent = NULL;
  2657. struct pending_dir_move *entry = NULL, *pm;
  2658. struct recorded_ref *cur;
  2659. int exists = 0;
  2660. int ret;
  2661. pm = kmalloc(sizeof(*pm), GFP_KERNEL);
  2662. if (!pm)
  2663. return -ENOMEM;
  2664. pm->parent_ino = parent_ino;
  2665. pm->ino = ino;
  2666. pm->gen = ino_gen;
  2667. INIT_LIST_HEAD(&pm->list);
  2668. INIT_LIST_HEAD(&pm->update_refs);
  2669. RB_CLEAR_NODE(&pm->node);
  2670. while (*p) {
  2671. parent = *p;
  2672. entry = rb_entry(parent, struct pending_dir_move, node);
  2673. if (parent_ino < entry->parent_ino) {
  2674. p = &(*p)->rb_left;
  2675. } else if (parent_ino > entry->parent_ino) {
  2676. p = &(*p)->rb_right;
  2677. } else {
  2678. exists = 1;
  2679. break;
  2680. }
  2681. }
  2682. list_for_each_entry(cur, deleted_refs, list) {
  2683. ret = dup_ref(cur, &pm->update_refs);
  2684. if (ret < 0)
  2685. goto out;
  2686. }
  2687. list_for_each_entry(cur, new_refs, list) {
  2688. ret = dup_ref(cur, &pm->update_refs);
  2689. if (ret < 0)
  2690. goto out;
  2691. }
  2692. ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
  2693. if (ret)
  2694. goto out;
  2695. if (exists) {
  2696. list_add_tail(&pm->list, &entry->list);
  2697. } else {
  2698. rb_link_node(&pm->node, parent, p);
  2699. rb_insert_color(&pm->node, &sctx->pending_dir_moves);
  2700. }
  2701. ret = 0;
  2702. out:
  2703. if (ret) {
  2704. __free_recorded_refs(&pm->update_refs);
  2705. kfree(pm);
  2706. }
  2707. return ret;
  2708. }
  2709. static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
  2710. u64 parent_ino)
  2711. {
  2712. struct rb_node *n = sctx->pending_dir_moves.rb_node;
  2713. struct pending_dir_move *entry;
  2714. while (n) {
  2715. entry = rb_entry(n, struct pending_dir_move, node);
  2716. if (parent_ino < entry->parent_ino)
  2717. n = n->rb_left;
  2718. else if (parent_ino > entry->parent_ino)
  2719. n = n->rb_right;
  2720. else
  2721. return entry;
  2722. }
  2723. return NULL;
  2724. }
  2725. static int path_loop(struct send_ctx *sctx, struct fs_path *name,
  2726. u64 ino, u64 gen, u64 *ancestor_ino)
  2727. {
  2728. int ret = 0;
  2729. u64 parent_inode = 0;
  2730. u64 parent_gen = 0;
  2731. u64 start_ino = ino;
  2732. *ancestor_ino = 0;
  2733. while (ino != BTRFS_FIRST_FREE_OBJECTID) {
  2734. fs_path_reset(name);
  2735. if (is_waiting_for_rm(sctx, ino))
  2736. break;
  2737. if (is_waiting_for_move(sctx, ino)) {
  2738. if (*ancestor_ino == 0)
  2739. *ancestor_ino = ino;
  2740. ret = get_first_ref(sctx->parent_root, ino,
  2741. &parent_inode, &parent_gen, name);
  2742. } else {
  2743. ret = __get_cur_name_and_parent(sctx, ino, gen,
  2744. &parent_inode,
  2745. &parent_gen, name);
  2746. if (ret > 0) {
  2747. ret = 0;
  2748. break;
  2749. }
  2750. }
  2751. if (ret < 0)
  2752. break;
  2753. if (parent_inode == start_ino) {
  2754. ret = 1;
  2755. if (*ancestor_ino == 0)
  2756. *ancestor_ino = ino;
  2757. break;
  2758. }
  2759. ino = parent_inode;
  2760. gen = parent_gen;
  2761. }
  2762. return ret;
  2763. }
  2764. static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
  2765. {
  2766. struct fs_path *from_path = NULL;
  2767. struct fs_path *to_path = NULL;
  2768. struct fs_path *name = NULL;
  2769. u64 orig_progress = sctx->send_progress;
  2770. struct recorded_ref *cur;
  2771. u64 parent_ino, parent_gen;
  2772. struct waiting_dir_move *dm = NULL;
  2773. u64 rmdir_ino = 0;
  2774. u64 ancestor;
  2775. bool is_orphan;
  2776. int ret;
  2777. name = fs_path_alloc();
  2778. from_path = fs_path_alloc();
  2779. if (!name || !from_path) {
  2780. ret = -ENOMEM;
  2781. goto out;
  2782. }
  2783. dm = get_waiting_dir_move(sctx, pm->ino);
  2784. ASSERT(dm);
  2785. rmdir_ino = dm->rmdir_ino;
  2786. is_orphan = dm->orphanized;
  2787. free_waiting_dir_move(sctx, dm);
  2788. if (is_orphan) {
  2789. ret = gen_unique_name(sctx, pm->ino,
  2790. pm->gen, from_path);
  2791. } else {
  2792. ret = get_first_ref(sctx->parent_root, pm->ino,
  2793. &parent_ino, &parent_gen, name);
  2794. if (ret < 0)
  2795. goto out;
  2796. ret = get_cur_path(sctx, parent_ino, parent_gen,
  2797. from_path);
  2798. if (ret < 0)
  2799. goto out;
  2800. ret = fs_path_add_path(from_path, name);
  2801. }
  2802. if (ret < 0)
  2803. goto out;
  2804. sctx->send_progress = sctx->cur_ino + 1;
  2805. ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
  2806. if (ret < 0)
  2807. goto out;
  2808. if (ret) {
  2809. LIST_HEAD(deleted_refs);
  2810. ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
  2811. ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
  2812. &pm->update_refs, &deleted_refs,
  2813. is_orphan);
  2814. if (ret < 0)
  2815. goto out;
  2816. if (rmdir_ino) {
  2817. dm = get_waiting_dir_move(sctx, pm->ino);
  2818. ASSERT(dm);
  2819. dm->rmdir_ino = rmdir_ino;
  2820. }
  2821. goto out;
  2822. }
  2823. fs_path_reset(name);
  2824. to_path = name;
  2825. name = NULL;
  2826. ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
  2827. if (ret < 0)
  2828. goto out;
  2829. ret = send_rename(sctx, from_path, to_path);
  2830. if (ret < 0)
  2831. goto out;
  2832. if (rmdir_ino) {
  2833. struct orphan_dir_info *odi;
  2834. odi = get_orphan_dir_info(sctx, rmdir_ino);
  2835. if (!odi) {
  2836. /* already deleted */
  2837. goto finish;
  2838. }
  2839. ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
  2840. if (ret < 0)
  2841. goto out;
  2842. if (!ret)
  2843. goto finish;
  2844. name = fs_path_alloc();
  2845. if (!name) {
  2846. ret = -ENOMEM;
  2847. goto out;
  2848. }
  2849. ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
  2850. if (ret < 0)
  2851. goto out;
  2852. ret = send_rmdir(sctx, name);
  2853. if (ret < 0)
  2854. goto out;
  2855. free_orphan_dir_info(sctx, odi);
  2856. }
  2857. finish:
  2858. ret = send_utimes(sctx, pm->ino, pm->gen);
  2859. if (ret < 0)
  2860. goto out;
  2861. /*
  2862. * After rename/move, need to update the utimes of both new parent(s)
  2863. * and old parent(s).
  2864. */
  2865. list_for_each_entry(cur, &pm->update_refs, list) {
  2866. /*
  2867. * The parent inode might have been deleted in the send snapshot
  2868. */
  2869. ret = get_inode_info(sctx->send_root, cur->dir, NULL,
  2870. NULL, NULL, NULL, NULL, NULL);
  2871. if (ret == -ENOENT) {
  2872. ret = 0;
  2873. continue;
  2874. }
  2875. if (ret < 0)
  2876. goto out;
  2877. ret = send_utimes(sctx, cur->dir, cur->dir_gen);
  2878. if (ret < 0)
  2879. goto out;
  2880. }
  2881. out:
  2882. fs_path_free(name);
  2883. fs_path_free(from_path);
  2884. fs_path_free(to_path);
  2885. sctx->send_progress = orig_progress;
  2886. return ret;
  2887. }
  2888. static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
  2889. {
  2890. if (!list_empty(&m->list))
  2891. list_del(&m->list);
  2892. if (!RB_EMPTY_NODE(&m->node))
  2893. rb_erase(&m->node, &sctx->pending_dir_moves);
  2894. __free_recorded_refs(&m->update_refs);
  2895. kfree(m);
  2896. }
  2897. static void tail_append_pending_moves(struct pending_dir_move *moves,
  2898. struct list_head *stack)
  2899. {
  2900. if (list_empty(&moves->list)) {
  2901. list_add_tail(&moves->list, stack);
  2902. } else {
  2903. LIST_HEAD(list);
  2904. list_splice_init(&moves->list, &list);
  2905. list_add_tail(&moves->list, stack);
  2906. list_splice_tail(&list, stack);
  2907. }
  2908. }
  2909. static int apply_children_dir_moves(struct send_ctx *sctx)
  2910. {
  2911. struct pending_dir_move *pm;
  2912. struct list_head stack;
  2913. u64 parent_ino = sctx->cur_ino;
  2914. int ret = 0;
  2915. pm = get_pending_dir_moves(sctx, parent_ino);
  2916. if (!pm)
  2917. return 0;
  2918. INIT_LIST_HEAD(&stack);
  2919. tail_append_pending_moves(pm, &stack);
  2920. while (!list_empty(&stack)) {
  2921. pm = list_first_entry(&stack, struct pending_dir_move, list);
  2922. parent_ino = pm->ino;
  2923. ret = apply_dir_move(sctx, pm);
  2924. free_pending_move(sctx, pm);
  2925. if (ret)
  2926. goto out;
  2927. pm = get_pending_dir_moves(sctx, parent_ino);
  2928. if (pm)
  2929. tail_append_pending_moves(pm, &stack);
  2930. }
  2931. return 0;
  2932. out:
  2933. while (!list_empty(&stack)) {
  2934. pm = list_first_entry(&stack, struct pending_dir_move, list);
  2935. free_pending_move(sctx, pm);
  2936. }
  2937. return ret;
  2938. }
  2939. /*
  2940. * We might need to delay a directory rename even when no ancestor directory
  2941. * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
  2942. * renamed. This happens when we rename a directory to the old name (the name
  2943. * in the parent root) of some other unrelated directory that got its rename
  2944. * delayed due to some ancestor with higher number that got renamed.
  2945. *
  2946. * Example:
  2947. *
  2948. * Parent snapshot:
  2949. * . (ino 256)
  2950. * |---- a/ (ino 257)
  2951. * | |---- file (ino 260)
  2952. * |
  2953. * |---- b/ (ino 258)
  2954. * |---- c/ (ino 259)
  2955. *
  2956. * Send snapshot:
  2957. * . (ino 256)
  2958. * |---- a/ (ino 258)
  2959. * |---- x/ (ino 259)
  2960. * |---- y/ (ino 257)
  2961. * |----- file (ino 260)
  2962. *
  2963. * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
  2964. * from 'a' to 'x/y' happening first, which in turn depends on the rename of
  2965. * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
  2966. * must issue is:
  2967. *
  2968. * 1 - rename 259 from 'c' to 'x'
  2969. * 2 - rename 257 from 'a' to 'x/y'
  2970. * 3 - rename 258 from 'b' to 'a'
  2971. *
  2972. * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
  2973. * be done right away and < 0 on error.
  2974. */
  2975. static int wait_for_dest_dir_move(struct send_ctx *sctx,
  2976. struct recorded_ref *parent_ref,
  2977. const bool is_orphan)
  2978. {
  2979. struct btrfs_path *path;
  2980. struct btrfs_key key;
  2981. struct btrfs_key di_key;
  2982. struct btrfs_dir_item *di;
  2983. u64 left_gen;
  2984. u64 right_gen;
  2985. int ret = 0;
  2986. struct waiting_dir_move *wdm;
  2987. if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
  2988. return 0;
  2989. path = alloc_path_for_send();
  2990. if (!path)
  2991. return -ENOMEM;
  2992. key.objectid = parent_ref->dir;
  2993. key.type = BTRFS_DIR_ITEM_KEY;
  2994. key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
  2995. ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
  2996. if (ret < 0) {
  2997. goto out;
  2998. } else if (ret > 0) {
  2999. ret = 0;
  3000. goto out;
  3001. }
  3002. di = btrfs_match_dir_item_name(sctx->parent_root, path,
  3003. parent_ref->name, parent_ref->name_len);
  3004. if (!di) {
  3005. ret = 0;
  3006. goto out;
  3007. }
  3008. /*
  3009. * di_key.objectid has the number of the inode that has a dentry in the
  3010. * parent directory with the same name that sctx->cur_ino is being
  3011. * renamed to. We need to check if that inode is in the send root as
  3012. * well and if it is currently marked as an inode with a pending rename,
  3013. * if it is, we need to delay the rename of sctx->cur_ino as well, so
  3014. * that it happens after that other inode is renamed.
  3015. */
  3016. btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
  3017. if (di_key.type != BTRFS_INODE_ITEM_KEY) {
  3018. ret = 0;
  3019. goto out;
  3020. }
  3021. ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
  3022. &left_gen, NULL, NULL, NULL, NULL);
  3023. if (ret < 0)
  3024. goto out;
  3025. ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
  3026. &right_gen, NULL, NULL, NULL, NULL);
  3027. if (ret < 0) {
  3028. if (ret == -ENOENT)
  3029. ret = 0;
  3030. goto out;
  3031. }
  3032. /* Different inode, no need to delay the rename of sctx->cur_ino */
  3033. if (right_gen != left_gen) {
  3034. ret = 0;
  3035. goto out;
  3036. }
  3037. wdm = get_waiting_dir_move(sctx, di_key.objectid);
  3038. if (wdm && !wdm->orphanized) {
  3039. ret = add_pending_dir_move(sctx,
  3040. sctx->cur_ino,
  3041. sctx->cur_inode_gen,
  3042. di_key.objectid,
  3043. &sctx->new_refs,
  3044. &sctx->deleted_refs,
  3045. is_orphan);
  3046. if (!ret)
  3047. ret = 1;
  3048. }
  3049. out:
  3050. btrfs_free_path(path);
  3051. return ret;
  3052. }
  3053. /*
  3054. * Check if ino ino1 is an ancestor of inode ino2 in the given root.
  3055. * Return 1 if true, 0 if false and < 0 on error.
  3056. */
  3057. static int is_ancestor(struct btrfs_root *root,
  3058. const u64 ino1,
  3059. const u64 ino1_gen,
  3060. const u64 ino2,
  3061. struct fs_path *fs_path)
  3062. {
  3063. u64 ino = ino2;
  3064. while (ino > BTRFS_FIRST_FREE_OBJECTID) {
  3065. int ret;
  3066. u64 parent;
  3067. u64 parent_gen;
  3068. fs_path_reset(fs_path);
  3069. ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
  3070. if (ret < 0) {
  3071. if (ret == -ENOENT && ino == ino2)
  3072. ret = 0;
  3073. return ret;
  3074. }
  3075. if (parent == ino1)
  3076. return parent_gen == ino1_gen ? 1 : 0;
  3077. ino = parent;
  3078. }
  3079. return 0;
  3080. }
  3081. static int wait_for_parent_move(struct send_ctx *sctx,
  3082. struct recorded_ref *parent_ref,
  3083. const bool is_orphan)
  3084. {
  3085. int ret = 0;
  3086. u64 ino = parent_ref->dir;
  3087. u64 parent_ino_before, parent_ino_after;
  3088. struct fs_path *path_before = NULL;
  3089. struct fs_path *path_after = NULL;
  3090. int len1, len2;
  3091. path_after = fs_path_alloc();
  3092. path_before = fs_path_alloc();
  3093. if (!path_after || !path_before) {
  3094. ret = -ENOMEM;
  3095. goto out;
  3096. }
  3097. /*
  3098. * Our current directory inode may not yet be renamed/moved because some
  3099. * ancestor (immediate or not) has to be renamed/moved first. So find if
  3100. * such ancestor exists and make sure our own rename/move happens after
  3101. * that ancestor is processed to avoid path build infinite loops (done
  3102. * at get_cur_path()).
  3103. */
  3104. while (ino > BTRFS_FIRST_FREE_OBJECTID) {
  3105. if (is_waiting_for_move(sctx, ino)) {
  3106. /*
  3107. * If the current inode is an ancestor of ino in the
  3108. * parent root, we need to delay the rename of the
  3109. * current inode, otherwise don't delayed the rename
  3110. * because we can end up with a circular dependency
  3111. * of renames, resulting in some directories never
  3112. * getting the respective rename operations issued in
  3113. * the send stream or getting into infinite path build
  3114. * loops.
  3115. */
  3116. ret = is_ancestor(sctx->parent_root,
  3117. sctx->cur_ino, sctx->cur_inode_gen,
  3118. ino, path_before);
  3119. if (ret)
  3120. break;
  3121. }
  3122. fs_path_reset(path_before);
  3123. fs_path_reset(path_after);
  3124. ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
  3125. NULL, path_after);
  3126. if (ret < 0)
  3127. goto out;
  3128. ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
  3129. NULL, path_before);
  3130. if (ret < 0 && ret != -ENOENT) {
  3131. goto out;
  3132. } else if (ret == -ENOENT) {
  3133. ret = 0;
  3134. break;
  3135. }
  3136. len1 = fs_path_len(path_before);
  3137. len2 = fs_path_len(path_after);
  3138. if (ino > sctx->cur_ino &&
  3139. (parent_ino_before != parent_ino_after || len1 != len2 ||
  3140. memcmp(path_before->start, path_after->start, len1))) {
  3141. ret = 1;
  3142. break;
  3143. }
  3144. ino = parent_ino_after;
  3145. }
  3146. out:
  3147. fs_path_free(path_before);
  3148. fs_path_free(path_after);
  3149. if (ret == 1) {
  3150. ret = add_pending_dir_move(sctx,
  3151. sctx->cur_ino,
  3152. sctx->cur_inode_gen,
  3153. ino,
  3154. &sctx->new_refs,
  3155. &sctx->deleted_refs,
  3156. is_orphan);
  3157. if (!ret)
  3158. ret = 1;
  3159. }
  3160. return ret;
  3161. }
  3162. /*
  3163. * This does all the move/link/unlink/rmdir magic.
  3164. */
  3165. static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
  3166. {
  3167. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  3168. int ret = 0;
  3169. struct recorded_ref *cur;
  3170. struct recorded_ref *cur2;
  3171. struct list_head check_dirs;
  3172. struct fs_path *valid_path = NULL;
  3173. u64 ow_inode = 0;
  3174. u64 ow_gen;
  3175. int did_overwrite = 0;
  3176. int is_orphan = 0;
  3177. u64 last_dir_ino_rm = 0;
  3178. bool can_rename = true;
  3179. btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
  3180. /*
  3181. * This should never happen as the root dir always has the same ref
  3182. * which is always '..'
  3183. */
  3184. BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
  3185. INIT_LIST_HEAD(&check_dirs);
  3186. valid_path = fs_path_alloc();
  3187. if (!valid_path) {
  3188. ret = -ENOMEM;
  3189. goto out;
  3190. }
  3191. /*
  3192. * First, check if the first ref of the current inode was overwritten
  3193. * before. If yes, we know that the current inode was already orphanized
  3194. * and thus use the orphan name. If not, we can use get_cur_path to
  3195. * get the path of the first ref as it would like while receiving at
  3196. * this point in time.
  3197. * New inodes are always orphan at the beginning, so force to use the
  3198. * orphan name in this case.
  3199. * The first ref is stored in valid_path and will be updated if it
  3200. * gets moved around.
  3201. */
  3202. if (!sctx->cur_inode_new) {
  3203. ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
  3204. sctx->cur_inode_gen);
  3205. if (ret < 0)
  3206. goto out;
  3207. if (ret)
  3208. did_overwrite = 1;
  3209. }
  3210. if (sctx->cur_inode_new || did_overwrite) {
  3211. ret = gen_unique_name(sctx, sctx->cur_ino,
  3212. sctx->cur_inode_gen, valid_path);
  3213. if (ret < 0)
  3214. goto out;
  3215. is_orphan = 1;
  3216. } else {
  3217. ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
  3218. valid_path);
  3219. if (ret < 0)
  3220. goto out;
  3221. }
  3222. list_for_each_entry(cur, &sctx->new_refs, list) {
  3223. /*
  3224. * We may have refs where the parent directory does not exist
  3225. * yet. This happens if the parent directories inum is higher
  3226. * the the current inum. To handle this case, we create the
  3227. * parent directory out of order. But we need to check if this
  3228. * did already happen before due to other refs in the same dir.
  3229. */
  3230. ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
  3231. if (ret < 0)
  3232. goto out;
  3233. if (ret == inode_state_will_create) {
  3234. ret = 0;
  3235. /*
  3236. * First check if any of the current inodes refs did
  3237. * already create the dir.
  3238. */
  3239. list_for_each_entry(cur2, &sctx->new_refs, list) {
  3240. if (cur == cur2)
  3241. break;
  3242. if (cur2->dir == cur->dir) {
  3243. ret = 1;
  3244. break;
  3245. }
  3246. }
  3247. /*
  3248. * If that did not happen, check if a previous inode
  3249. * did already create the dir.
  3250. */
  3251. if (!ret)
  3252. ret = did_create_dir(sctx, cur->dir);
  3253. if (ret < 0)
  3254. goto out;
  3255. if (!ret) {
  3256. ret = send_create_inode(sctx, cur->dir);
  3257. if (ret < 0)
  3258. goto out;
  3259. }
  3260. }
  3261. /*
  3262. * Check if this new ref would overwrite the first ref of
  3263. * another unprocessed inode. If yes, orphanize the
  3264. * overwritten inode. If we find an overwritten ref that is
  3265. * not the first ref, simply unlink it.
  3266. */
  3267. ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
  3268. cur->name, cur->name_len,
  3269. &ow_inode, &ow_gen);
  3270. if (ret < 0)
  3271. goto out;
  3272. if (ret) {
  3273. ret = is_first_ref(sctx->parent_root,
  3274. ow_inode, cur->dir, cur->name,
  3275. cur->name_len);
  3276. if (ret < 0)
  3277. goto out;
  3278. if (ret) {
  3279. struct name_cache_entry *nce;
  3280. struct waiting_dir_move *wdm;
  3281. ret = orphanize_inode(sctx, ow_inode, ow_gen,
  3282. cur->full_path);
  3283. if (ret < 0)
  3284. goto out;
  3285. /*
  3286. * If ow_inode has its rename operation delayed
  3287. * make sure that its orphanized name is used in
  3288. * the source path when performing its rename
  3289. * operation.
  3290. */
  3291. if (is_waiting_for_move(sctx, ow_inode)) {
  3292. wdm = get_waiting_dir_move(sctx,
  3293. ow_inode);
  3294. ASSERT(wdm);
  3295. wdm->orphanized = true;
  3296. }
  3297. /*
  3298. * Make sure we clear our orphanized inode's
  3299. * name from the name cache. This is because the
  3300. * inode ow_inode might be an ancestor of some
  3301. * other inode that will be orphanized as well
  3302. * later and has an inode number greater than
  3303. * sctx->send_progress. We need to prevent
  3304. * future name lookups from using the old name
  3305. * and get instead the orphan name.
  3306. */
  3307. nce = name_cache_search(sctx, ow_inode, ow_gen);
  3308. if (nce) {
  3309. name_cache_delete(sctx, nce);
  3310. kfree(nce);
  3311. }
  3312. /*
  3313. * ow_inode might currently be an ancestor of
  3314. * cur_ino, therefore compute valid_path (the
  3315. * current path of cur_ino) again because it
  3316. * might contain the pre-orphanization name of
  3317. * ow_inode, which is no longer valid.
  3318. */
  3319. fs_path_reset(valid_path);
  3320. ret = get_cur_path(sctx, sctx->cur_ino,
  3321. sctx->cur_inode_gen, valid_path);
  3322. if (ret < 0)
  3323. goto out;
  3324. } else {
  3325. ret = send_unlink(sctx, cur->full_path);
  3326. if (ret < 0)
  3327. goto out;
  3328. }
  3329. }
  3330. if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
  3331. ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
  3332. if (ret < 0)
  3333. goto out;
  3334. if (ret == 1) {
  3335. can_rename = false;
  3336. *pending_move = 1;
  3337. }
  3338. }
  3339. if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
  3340. can_rename) {
  3341. ret = wait_for_parent_move(sctx, cur, is_orphan);
  3342. if (ret < 0)
  3343. goto out;
  3344. if (ret == 1) {
  3345. can_rename = false;
  3346. *pending_move = 1;
  3347. }
  3348. }
  3349. /*
  3350. * link/move the ref to the new place. If we have an orphan
  3351. * inode, move it and update valid_path. If not, link or move
  3352. * it depending on the inode mode.
  3353. */
  3354. if (is_orphan && can_rename) {
  3355. ret = send_rename(sctx, valid_path, cur->full_path);
  3356. if (ret < 0)
  3357. goto out;
  3358. is_orphan = 0;
  3359. ret = fs_path_copy(valid_path, cur->full_path);
  3360. if (ret < 0)
  3361. goto out;
  3362. } else if (can_rename) {
  3363. if (S_ISDIR(sctx->cur_inode_mode)) {
  3364. /*
  3365. * Dirs can't be linked, so move it. For moved
  3366. * dirs, we always have one new and one deleted
  3367. * ref. The deleted ref is ignored later.
  3368. */
  3369. ret = send_rename(sctx, valid_path,
  3370. cur->full_path);
  3371. if (!ret)
  3372. ret = fs_path_copy(valid_path,
  3373. cur->full_path);
  3374. if (ret < 0)
  3375. goto out;
  3376. } else {
  3377. ret = send_link(sctx, cur->full_path,
  3378. valid_path);
  3379. if (ret < 0)
  3380. goto out;
  3381. }
  3382. }
  3383. ret = dup_ref(cur, &check_dirs);
  3384. if (ret < 0)
  3385. goto out;
  3386. }
  3387. if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
  3388. /*
  3389. * Check if we can already rmdir the directory. If not,
  3390. * orphanize it. For every dir item inside that gets deleted
  3391. * later, we do this check again and rmdir it then if possible.
  3392. * See the use of check_dirs for more details.
  3393. */
  3394. ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
  3395. sctx->cur_ino);
  3396. if (ret < 0)
  3397. goto out;
  3398. if (ret) {
  3399. ret = send_rmdir(sctx, valid_path);
  3400. if (ret < 0)
  3401. goto out;
  3402. } else if (!is_orphan) {
  3403. ret = orphanize_inode(sctx, sctx->cur_ino,
  3404. sctx->cur_inode_gen, valid_path);
  3405. if (ret < 0)
  3406. goto out;
  3407. is_orphan = 1;
  3408. }
  3409. list_for_each_entry(cur, &sctx->deleted_refs, list) {
  3410. ret = dup_ref(cur, &check_dirs);
  3411. if (ret < 0)
  3412. goto out;
  3413. }
  3414. } else if (S_ISDIR(sctx->cur_inode_mode) &&
  3415. !list_empty(&sctx->deleted_refs)) {
  3416. /*
  3417. * We have a moved dir. Add the old parent to check_dirs
  3418. */
  3419. cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
  3420. list);
  3421. ret = dup_ref(cur, &check_dirs);
  3422. if (ret < 0)
  3423. goto out;
  3424. } else if (!S_ISDIR(sctx->cur_inode_mode)) {
  3425. /*
  3426. * We have a non dir inode. Go through all deleted refs and
  3427. * unlink them if they were not already overwritten by other
  3428. * inodes.
  3429. */
  3430. list_for_each_entry(cur, &sctx->deleted_refs, list) {
  3431. ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
  3432. sctx->cur_ino, sctx->cur_inode_gen,
  3433. cur->name, cur->name_len);
  3434. if (ret < 0)
  3435. goto out;
  3436. if (!ret) {
  3437. ret = send_unlink(sctx, cur->full_path);
  3438. if (ret < 0)
  3439. goto out;
  3440. }
  3441. ret = dup_ref(cur, &check_dirs);
  3442. if (ret < 0)
  3443. goto out;
  3444. }
  3445. /*
  3446. * If the inode is still orphan, unlink the orphan. This may
  3447. * happen when a previous inode did overwrite the first ref
  3448. * of this inode and no new refs were added for the current
  3449. * inode. Unlinking does not mean that the inode is deleted in
  3450. * all cases. There may still be links to this inode in other
  3451. * places.
  3452. */
  3453. if (is_orphan) {
  3454. ret = send_unlink(sctx, valid_path);
  3455. if (ret < 0)
  3456. goto out;
  3457. }
  3458. }
  3459. /*
  3460. * We did collect all parent dirs where cur_inode was once located. We
  3461. * now go through all these dirs and check if they are pending for
  3462. * deletion and if it's finally possible to perform the rmdir now.
  3463. * We also update the inode stats of the parent dirs here.
  3464. */
  3465. list_for_each_entry(cur, &check_dirs, list) {
  3466. /*
  3467. * In case we had refs into dirs that were not processed yet,
  3468. * we don't need to do the utime and rmdir logic for these dirs.
  3469. * The dir will be processed later.
  3470. */
  3471. if (cur->dir > sctx->cur_ino)
  3472. continue;
  3473. ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
  3474. if (ret < 0)
  3475. goto out;
  3476. if (ret == inode_state_did_create ||
  3477. ret == inode_state_no_change) {
  3478. /* TODO delayed utimes */
  3479. ret = send_utimes(sctx, cur->dir, cur->dir_gen);
  3480. if (ret < 0)
  3481. goto out;
  3482. } else if (ret == inode_state_did_delete &&
  3483. cur->dir != last_dir_ino_rm) {
  3484. ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
  3485. sctx->cur_ino);
  3486. if (ret < 0)
  3487. goto out;
  3488. if (ret) {
  3489. ret = get_cur_path(sctx, cur->dir,
  3490. cur->dir_gen, valid_path);
  3491. if (ret < 0)
  3492. goto out;
  3493. ret = send_rmdir(sctx, valid_path);
  3494. if (ret < 0)
  3495. goto out;
  3496. last_dir_ino_rm = cur->dir;
  3497. }
  3498. }
  3499. }
  3500. ret = 0;
  3501. out:
  3502. __free_recorded_refs(&check_dirs);
  3503. free_recorded_refs(sctx);
  3504. fs_path_free(valid_path);
  3505. return ret;
  3506. }
  3507. static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
  3508. struct fs_path *name, void *ctx, struct list_head *refs)
  3509. {
  3510. int ret = 0;
  3511. struct send_ctx *sctx = ctx;
  3512. struct fs_path *p;
  3513. u64 gen;
  3514. p = fs_path_alloc();
  3515. if (!p)
  3516. return -ENOMEM;
  3517. ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
  3518. NULL, NULL);
  3519. if (ret < 0)
  3520. goto out;
  3521. ret = get_cur_path(sctx, dir, gen, p);
  3522. if (ret < 0)
  3523. goto out;
  3524. ret = fs_path_add_path(p, name);
  3525. if (ret < 0)
  3526. goto out;
  3527. ret = __record_ref(refs, dir, gen, p);
  3528. out:
  3529. if (ret)
  3530. fs_path_free(p);
  3531. return ret;
  3532. }
  3533. static int __record_new_ref(int num, u64 dir, int index,
  3534. struct fs_path *name,
  3535. void *ctx)
  3536. {
  3537. struct send_ctx *sctx = ctx;
  3538. return record_ref(sctx->send_root, num, dir, index, name,
  3539. ctx, &sctx->new_refs);
  3540. }
  3541. static int __record_deleted_ref(int num, u64 dir, int index,
  3542. struct fs_path *name,
  3543. void *ctx)
  3544. {
  3545. struct send_ctx *sctx = ctx;
  3546. return record_ref(sctx->parent_root, num, dir, index, name,
  3547. ctx, &sctx->deleted_refs);
  3548. }
  3549. static int record_new_ref(struct send_ctx *sctx)
  3550. {
  3551. int ret;
  3552. ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
  3553. sctx->cmp_key, 0, __record_new_ref, sctx);
  3554. if (ret < 0)
  3555. goto out;
  3556. ret = 0;
  3557. out:
  3558. return ret;
  3559. }
  3560. static int record_deleted_ref(struct send_ctx *sctx)
  3561. {
  3562. int ret;
  3563. ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
  3564. sctx->cmp_key, 0, __record_deleted_ref, sctx);
  3565. if (ret < 0)
  3566. goto out;
  3567. ret = 0;
  3568. out:
  3569. return ret;
  3570. }
  3571. struct find_ref_ctx {
  3572. u64 dir;
  3573. u64 dir_gen;
  3574. struct btrfs_root *root;
  3575. struct fs_path *name;
  3576. int found_idx;
  3577. };
  3578. static int __find_iref(int num, u64 dir, int index,
  3579. struct fs_path *name,
  3580. void *ctx_)
  3581. {
  3582. struct find_ref_ctx *ctx = ctx_;
  3583. u64 dir_gen;
  3584. int ret;
  3585. if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
  3586. strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
  3587. /*
  3588. * To avoid doing extra lookups we'll only do this if everything
  3589. * else matches.
  3590. */
  3591. ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
  3592. NULL, NULL, NULL);
  3593. if (ret)
  3594. return ret;
  3595. if (dir_gen != ctx->dir_gen)
  3596. return 0;
  3597. ctx->found_idx = num;
  3598. return 1;
  3599. }
  3600. return 0;
  3601. }
  3602. static int find_iref(struct btrfs_root *root,
  3603. struct btrfs_path *path,
  3604. struct btrfs_key *key,
  3605. u64 dir, u64 dir_gen, struct fs_path *name)
  3606. {
  3607. int ret;
  3608. struct find_ref_ctx ctx;
  3609. ctx.dir = dir;
  3610. ctx.name = name;
  3611. ctx.dir_gen = dir_gen;
  3612. ctx.found_idx = -1;
  3613. ctx.root = root;
  3614. ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
  3615. if (ret < 0)
  3616. return ret;
  3617. if (ctx.found_idx == -1)
  3618. return -ENOENT;
  3619. return ctx.found_idx;
  3620. }
  3621. static int __record_changed_new_ref(int num, u64 dir, int index,
  3622. struct fs_path *name,
  3623. void *ctx)
  3624. {
  3625. u64 dir_gen;
  3626. int ret;
  3627. struct send_ctx *sctx = ctx;
  3628. ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
  3629. NULL, NULL, NULL);
  3630. if (ret)
  3631. return ret;
  3632. ret = find_iref(sctx->parent_root, sctx->right_path,
  3633. sctx->cmp_key, dir, dir_gen, name);
  3634. if (ret == -ENOENT)
  3635. ret = __record_new_ref(num, dir, index, name, sctx);
  3636. else if (ret > 0)
  3637. ret = 0;
  3638. return ret;
  3639. }
  3640. static int __record_changed_deleted_ref(int num, u64 dir, int index,
  3641. struct fs_path *name,
  3642. void *ctx)
  3643. {
  3644. u64 dir_gen;
  3645. int ret;
  3646. struct send_ctx *sctx = ctx;
  3647. ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
  3648. NULL, NULL, NULL);
  3649. if (ret)
  3650. return ret;
  3651. ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
  3652. dir, dir_gen, name);
  3653. if (ret == -ENOENT)
  3654. ret = __record_deleted_ref(num, dir, index, name, sctx);
  3655. else if (ret > 0)
  3656. ret = 0;
  3657. return ret;
  3658. }
  3659. static int record_changed_ref(struct send_ctx *sctx)
  3660. {
  3661. int ret = 0;
  3662. ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
  3663. sctx->cmp_key, 0, __record_changed_new_ref, sctx);
  3664. if (ret < 0)
  3665. goto out;
  3666. ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
  3667. sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
  3668. if (ret < 0)
  3669. goto out;
  3670. ret = 0;
  3671. out:
  3672. return ret;
  3673. }
  3674. /*
  3675. * Record and process all refs at once. Needed when an inode changes the
  3676. * generation number, which means that it was deleted and recreated.
  3677. */
  3678. static int process_all_refs(struct send_ctx *sctx,
  3679. enum btrfs_compare_tree_result cmd)
  3680. {
  3681. int ret;
  3682. struct btrfs_root *root;
  3683. struct btrfs_path *path;
  3684. struct btrfs_key key;
  3685. struct btrfs_key found_key;
  3686. struct extent_buffer *eb;
  3687. int slot;
  3688. iterate_inode_ref_t cb;
  3689. int pending_move = 0;
  3690. path = alloc_path_for_send();
  3691. if (!path)
  3692. return -ENOMEM;
  3693. if (cmd == BTRFS_COMPARE_TREE_NEW) {
  3694. root = sctx->send_root;
  3695. cb = __record_new_ref;
  3696. } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
  3697. root = sctx->parent_root;
  3698. cb = __record_deleted_ref;
  3699. } else {
  3700. btrfs_err(sctx->send_root->fs_info,
  3701. "Wrong command %d in process_all_refs", cmd);
  3702. ret = -EINVAL;
  3703. goto out;
  3704. }
  3705. key.objectid = sctx->cmp_key->objectid;
  3706. key.type = BTRFS_INODE_REF_KEY;
  3707. key.offset = 0;
  3708. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3709. if (ret < 0)
  3710. goto out;
  3711. while (1) {
  3712. eb = path->nodes[0];
  3713. slot = path->slots[0];
  3714. if (slot >= btrfs_header_nritems(eb)) {
  3715. ret = btrfs_next_leaf(root, path);
  3716. if (ret < 0)
  3717. goto out;
  3718. else if (ret > 0)
  3719. break;
  3720. continue;
  3721. }
  3722. btrfs_item_key_to_cpu(eb, &found_key, slot);
  3723. if (found_key.objectid != key.objectid ||
  3724. (found_key.type != BTRFS_INODE_REF_KEY &&
  3725. found_key.type != BTRFS_INODE_EXTREF_KEY))
  3726. break;
  3727. ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
  3728. if (ret < 0)
  3729. goto out;
  3730. path->slots[0]++;
  3731. }
  3732. btrfs_release_path(path);
  3733. /*
  3734. * We don't actually care about pending_move as we are simply
  3735. * re-creating this inode and will be rename'ing it into place once we
  3736. * rename the parent directory.
  3737. */
  3738. ret = process_recorded_refs(sctx, &pending_move);
  3739. out:
  3740. btrfs_free_path(path);
  3741. return ret;
  3742. }
  3743. static int send_set_xattr(struct send_ctx *sctx,
  3744. struct fs_path *path,
  3745. const char *name, int name_len,
  3746. const char *data, int data_len)
  3747. {
  3748. int ret = 0;
  3749. ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
  3750. if (ret < 0)
  3751. goto out;
  3752. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
  3753. TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
  3754. TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
  3755. ret = send_cmd(sctx);
  3756. tlv_put_failure:
  3757. out:
  3758. return ret;
  3759. }
  3760. static int send_remove_xattr(struct send_ctx *sctx,
  3761. struct fs_path *path,
  3762. const char *name, int name_len)
  3763. {
  3764. int ret = 0;
  3765. ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
  3766. if (ret < 0)
  3767. goto out;
  3768. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
  3769. TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
  3770. ret = send_cmd(sctx);
  3771. tlv_put_failure:
  3772. out:
  3773. return ret;
  3774. }
  3775. static int __process_new_xattr(int num, struct btrfs_key *di_key,
  3776. const char *name, int name_len,
  3777. const char *data, int data_len,
  3778. u8 type, void *ctx)
  3779. {
  3780. int ret;
  3781. struct send_ctx *sctx = ctx;
  3782. struct fs_path *p;
  3783. struct posix_acl_xattr_header dummy_acl;
  3784. p = fs_path_alloc();
  3785. if (!p)
  3786. return -ENOMEM;
  3787. /*
  3788. * This hack is needed because empty acls are stored as zero byte
  3789. * data in xattrs. Problem with that is, that receiving these zero byte
  3790. * acls will fail later. To fix this, we send a dummy acl list that
  3791. * only contains the version number and no entries.
  3792. */
  3793. if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
  3794. !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
  3795. if (data_len == 0) {
  3796. dummy_acl.a_version =
  3797. cpu_to_le32(POSIX_ACL_XATTR_VERSION);
  3798. data = (char *)&dummy_acl;
  3799. data_len = sizeof(dummy_acl);
  3800. }
  3801. }
  3802. ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
  3803. if (ret < 0)
  3804. goto out;
  3805. ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
  3806. out:
  3807. fs_path_free(p);
  3808. return ret;
  3809. }
  3810. static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
  3811. const char *name, int name_len,
  3812. const char *data, int data_len,
  3813. u8 type, void *ctx)
  3814. {
  3815. int ret;
  3816. struct send_ctx *sctx = ctx;
  3817. struct fs_path *p;
  3818. p = fs_path_alloc();
  3819. if (!p)
  3820. return -ENOMEM;
  3821. ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
  3822. if (ret < 0)
  3823. goto out;
  3824. ret = send_remove_xattr(sctx, p, name, name_len);
  3825. out:
  3826. fs_path_free(p);
  3827. return ret;
  3828. }
  3829. static int process_new_xattr(struct send_ctx *sctx)
  3830. {
  3831. int ret = 0;
  3832. ret = iterate_dir_item(sctx->send_root, sctx->left_path,
  3833. sctx->cmp_key, __process_new_xattr, sctx);
  3834. return ret;
  3835. }
  3836. static int process_deleted_xattr(struct send_ctx *sctx)
  3837. {
  3838. return iterate_dir_item(sctx->parent_root, sctx->right_path,
  3839. sctx->cmp_key, __process_deleted_xattr, sctx);
  3840. }
  3841. struct find_xattr_ctx {
  3842. const char *name;
  3843. int name_len;
  3844. int found_idx;
  3845. char *found_data;
  3846. int found_data_len;
  3847. };
  3848. static int __find_xattr(int num, struct btrfs_key *di_key,
  3849. const char *name, int name_len,
  3850. const char *data, int data_len,
  3851. u8 type, void *vctx)
  3852. {
  3853. struct find_xattr_ctx *ctx = vctx;
  3854. if (name_len == ctx->name_len &&
  3855. strncmp(name, ctx->name, name_len) == 0) {
  3856. ctx->found_idx = num;
  3857. ctx->found_data_len = data_len;
  3858. ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
  3859. if (!ctx->found_data)
  3860. return -ENOMEM;
  3861. return 1;
  3862. }
  3863. return 0;
  3864. }
  3865. static int find_xattr(struct btrfs_root *root,
  3866. struct btrfs_path *path,
  3867. struct btrfs_key *key,
  3868. const char *name, int name_len,
  3869. char **data, int *data_len)
  3870. {
  3871. int ret;
  3872. struct find_xattr_ctx ctx;
  3873. ctx.name = name;
  3874. ctx.name_len = name_len;
  3875. ctx.found_idx = -1;
  3876. ctx.found_data = NULL;
  3877. ctx.found_data_len = 0;
  3878. ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
  3879. if (ret < 0)
  3880. return ret;
  3881. if (ctx.found_idx == -1)
  3882. return -ENOENT;
  3883. if (data) {
  3884. *data = ctx.found_data;
  3885. *data_len = ctx.found_data_len;
  3886. } else {
  3887. kfree(ctx.found_data);
  3888. }
  3889. return ctx.found_idx;
  3890. }
  3891. static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
  3892. const char *name, int name_len,
  3893. const char *data, int data_len,
  3894. u8 type, void *ctx)
  3895. {
  3896. int ret;
  3897. struct send_ctx *sctx = ctx;
  3898. char *found_data = NULL;
  3899. int found_data_len = 0;
  3900. ret = find_xattr(sctx->parent_root, sctx->right_path,
  3901. sctx->cmp_key, name, name_len, &found_data,
  3902. &found_data_len);
  3903. if (ret == -ENOENT) {
  3904. ret = __process_new_xattr(num, di_key, name, name_len, data,
  3905. data_len, type, ctx);
  3906. } else if (ret >= 0) {
  3907. if (data_len != found_data_len ||
  3908. memcmp(data, found_data, data_len)) {
  3909. ret = __process_new_xattr(num, di_key, name, name_len,
  3910. data, data_len, type, ctx);
  3911. } else {
  3912. ret = 0;
  3913. }
  3914. }
  3915. kfree(found_data);
  3916. return ret;
  3917. }
  3918. static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
  3919. const char *name, int name_len,
  3920. const char *data, int data_len,
  3921. u8 type, void *ctx)
  3922. {
  3923. int ret;
  3924. struct send_ctx *sctx = ctx;
  3925. ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
  3926. name, name_len, NULL, NULL);
  3927. if (ret == -ENOENT)
  3928. ret = __process_deleted_xattr(num, di_key, name, name_len, data,
  3929. data_len, type, ctx);
  3930. else if (ret >= 0)
  3931. ret = 0;
  3932. return ret;
  3933. }
  3934. static int process_changed_xattr(struct send_ctx *sctx)
  3935. {
  3936. int ret = 0;
  3937. ret = iterate_dir_item(sctx->send_root, sctx->left_path,
  3938. sctx->cmp_key, __process_changed_new_xattr, sctx);
  3939. if (ret < 0)
  3940. goto out;
  3941. ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
  3942. sctx->cmp_key, __process_changed_deleted_xattr, sctx);
  3943. out:
  3944. return ret;
  3945. }
  3946. static int process_all_new_xattrs(struct send_ctx *sctx)
  3947. {
  3948. int ret;
  3949. struct btrfs_root *root;
  3950. struct btrfs_path *path;
  3951. struct btrfs_key key;
  3952. struct btrfs_key found_key;
  3953. struct extent_buffer *eb;
  3954. int slot;
  3955. path = alloc_path_for_send();
  3956. if (!path)
  3957. return -ENOMEM;
  3958. root = sctx->send_root;
  3959. key.objectid = sctx->cmp_key->objectid;
  3960. key.type = BTRFS_XATTR_ITEM_KEY;
  3961. key.offset = 0;
  3962. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3963. if (ret < 0)
  3964. goto out;
  3965. while (1) {
  3966. eb = path->nodes[0];
  3967. slot = path->slots[0];
  3968. if (slot >= btrfs_header_nritems(eb)) {
  3969. ret = btrfs_next_leaf(root, path);
  3970. if (ret < 0) {
  3971. goto out;
  3972. } else if (ret > 0) {
  3973. ret = 0;
  3974. break;
  3975. }
  3976. continue;
  3977. }
  3978. btrfs_item_key_to_cpu(eb, &found_key, slot);
  3979. if (found_key.objectid != key.objectid ||
  3980. found_key.type != key.type) {
  3981. ret = 0;
  3982. goto out;
  3983. }
  3984. ret = iterate_dir_item(root, path, &found_key,
  3985. __process_new_xattr, sctx);
  3986. if (ret < 0)
  3987. goto out;
  3988. path->slots[0]++;
  3989. }
  3990. out:
  3991. btrfs_free_path(path);
  3992. return ret;
  3993. }
  3994. static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
  3995. {
  3996. struct btrfs_root *root = sctx->send_root;
  3997. struct btrfs_fs_info *fs_info = root->fs_info;
  3998. struct inode *inode;
  3999. struct page *page;
  4000. char *addr;
  4001. struct btrfs_key key;
  4002. pgoff_t index = offset >> PAGE_SHIFT;
  4003. pgoff_t last_index;
  4004. unsigned pg_offset = offset & ~PAGE_MASK;
  4005. ssize_t ret = 0;
  4006. key.objectid = sctx->cur_ino;
  4007. key.type = BTRFS_INODE_ITEM_KEY;
  4008. key.offset = 0;
  4009. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  4010. if (IS_ERR(inode))
  4011. return PTR_ERR(inode);
  4012. if (offset + len > i_size_read(inode)) {
  4013. if (offset > i_size_read(inode))
  4014. len = 0;
  4015. else
  4016. len = offset - i_size_read(inode);
  4017. }
  4018. if (len == 0)
  4019. goto out;
  4020. last_index = (offset + len - 1) >> PAGE_SHIFT;
  4021. /* initial readahead */
  4022. memset(&sctx->ra, 0, sizeof(struct file_ra_state));
  4023. file_ra_state_init(&sctx->ra, inode->i_mapping);
  4024. btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
  4025. last_index - index + 1);
  4026. while (index <= last_index) {
  4027. unsigned cur_len = min_t(unsigned, len,
  4028. PAGE_SIZE - pg_offset);
  4029. page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
  4030. if (!page) {
  4031. ret = -ENOMEM;
  4032. break;
  4033. }
  4034. if (!PageUptodate(page)) {
  4035. btrfs_readpage(NULL, page);
  4036. lock_page(page);
  4037. if (!PageUptodate(page)) {
  4038. unlock_page(page);
  4039. put_page(page);
  4040. ret = -EIO;
  4041. break;
  4042. }
  4043. }
  4044. addr = kmap(page);
  4045. memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
  4046. kunmap(page);
  4047. unlock_page(page);
  4048. put_page(page);
  4049. index++;
  4050. pg_offset = 0;
  4051. len -= cur_len;
  4052. ret += cur_len;
  4053. }
  4054. out:
  4055. iput(inode);
  4056. return ret;
  4057. }
  4058. /*
  4059. * Read some bytes from the current inode/file and send a write command to
  4060. * user space.
  4061. */
  4062. static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
  4063. {
  4064. struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
  4065. int ret = 0;
  4066. struct fs_path *p;
  4067. ssize_t num_read = 0;
  4068. p = fs_path_alloc();
  4069. if (!p)
  4070. return -ENOMEM;
  4071. btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
  4072. num_read = fill_read_buf(sctx, offset, len);
  4073. if (num_read <= 0) {
  4074. if (num_read < 0)
  4075. ret = num_read;
  4076. goto out;
  4077. }
  4078. ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
  4079. if (ret < 0)
  4080. goto out;
  4081. ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
  4082. if (ret < 0)
  4083. goto out;
  4084. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
  4085. TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
  4086. TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
  4087. ret = send_cmd(sctx);
  4088. tlv_put_failure:
  4089. out:
  4090. fs_path_free(p);
  4091. if (ret < 0)
  4092. return ret;
  4093. return num_read;
  4094. }
  4095. /*
  4096. * Send a clone command to user space.
  4097. */
  4098. static int send_clone(struct send_ctx *sctx,
  4099. u64 offset, u32 len,
  4100. struct clone_root *clone_root)
  4101. {
  4102. int ret = 0;
  4103. struct fs_path *p;
  4104. u64 gen;
  4105. btrfs_debug(sctx->send_root->fs_info,
  4106. "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
  4107. offset, len, clone_root->root->objectid, clone_root->ino,
  4108. clone_root->offset);
  4109. p = fs_path_alloc();
  4110. if (!p)
  4111. return -ENOMEM;
  4112. ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
  4113. if (ret < 0)
  4114. goto out;
  4115. ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
  4116. if (ret < 0)
  4117. goto out;
  4118. TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
  4119. TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
  4120. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
  4121. if (clone_root->root == sctx->send_root) {
  4122. ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
  4123. &gen, NULL, NULL, NULL, NULL);
  4124. if (ret < 0)
  4125. goto out;
  4126. ret = get_cur_path(sctx, clone_root->ino, gen, p);
  4127. } else {
  4128. ret = get_inode_path(clone_root->root, clone_root->ino, p);
  4129. }
  4130. if (ret < 0)
  4131. goto out;
  4132. /*
  4133. * If the parent we're using has a received_uuid set then use that as
  4134. * our clone source as that is what we will look for when doing a
  4135. * receive.
  4136. *
  4137. * This covers the case that we create a snapshot off of a received
  4138. * subvolume and then use that as the parent and try to receive on a
  4139. * different host.
  4140. */
  4141. if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
  4142. TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
  4143. clone_root->root->root_item.received_uuid);
  4144. else
  4145. TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
  4146. clone_root->root->root_item.uuid);
  4147. TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
  4148. le64_to_cpu(clone_root->root->root_item.ctransid));
  4149. TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
  4150. TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
  4151. clone_root->offset);
  4152. ret = send_cmd(sctx);
  4153. tlv_put_failure:
  4154. out:
  4155. fs_path_free(p);
  4156. return ret;
  4157. }
  4158. /*
  4159. * Send an update extent command to user space.
  4160. */
  4161. static int send_update_extent(struct send_ctx *sctx,
  4162. u64 offset, u32 len)
  4163. {
  4164. int ret = 0;
  4165. struct fs_path *p;
  4166. p = fs_path_alloc();
  4167. if (!p)
  4168. return -ENOMEM;
  4169. ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
  4170. if (ret < 0)
  4171. goto out;
  4172. ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
  4173. if (ret < 0)
  4174. goto out;
  4175. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
  4176. TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
  4177. TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
  4178. ret = send_cmd(sctx);
  4179. tlv_put_failure:
  4180. out:
  4181. fs_path_free(p);
  4182. return ret;
  4183. }
  4184. static int send_hole(struct send_ctx *sctx, u64 end)
  4185. {
  4186. struct fs_path *p = NULL;
  4187. u64 offset = sctx->cur_inode_last_extent;
  4188. u64 len;
  4189. int ret = 0;
  4190. if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
  4191. return send_update_extent(sctx, offset, end - offset);
  4192. p = fs_path_alloc();
  4193. if (!p)
  4194. return -ENOMEM;
  4195. ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
  4196. if (ret < 0)
  4197. goto tlv_put_failure;
  4198. memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
  4199. while (offset < end) {
  4200. len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
  4201. ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
  4202. if (ret < 0)
  4203. break;
  4204. TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
  4205. TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
  4206. TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
  4207. ret = send_cmd(sctx);
  4208. if (ret < 0)
  4209. break;
  4210. offset += len;
  4211. }
  4212. tlv_put_failure:
  4213. fs_path_free(p);
  4214. return ret;
  4215. }
  4216. static int send_extent_data(struct send_ctx *sctx,
  4217. const u64 offset,
  4218. const u64 len)
  4219. {
  4220. u64 sent = 0;
  4221. if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
  4222. return send_update_extent(sctx, offset, len);
  4223. while (sent < len) {
  4224. u64 size = len - sent;
  4225. int ret;
  4226. if (size > BTRFS_SEND_READ_SIZE)
  4227. size = BTRFS_SEND_READ_SIZE;
  4228. ret = send_write(sctx, offset + sent, size);
  4229. if (ret < 0)
  4230. return ret;
  4231. if (!ret)
  4232. break;
  4233. sent += ret;
  4234. }
  4235. return 0;
  4236. }
  4237. static int clone_range(struct send_ctx *sctx,
  4238. struct clone_root *clone_root,
  4239. const u64 disk_byte,
  4240. u64 data_offset,
  4241. u64 offset,
  4242. u64 len)
  4243. {
  4244. struct btrfs_path *path;
  4245. struct btrfs_key key;
  4246. int ret;
  4247. path = alloc_path_for_send();
  4248. if (!path)
  4249. return -ENOMEM;
  4250. /*
  4251. * We can't send a clone operation for the entire range if we find
  4252. * extent items in the respective range in the source file that
  4253. * refer to different extents or if we find holes.
  4254. * So check for that and do a mix of clone and regular write/copy
  4255. * operations if needed.
  4256. *
  4257. * Example:
  4258. *
  4259. * mkfs.btrfs -f /dev/sda
  4260. * mount /dev/sda /mnt
  4261. * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
  4262. * cp --reflink=always /mnt/foo /mnt/bar
  4263. * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
  4264. * btrfs subvolume snapshot -r /mnt /mnt/snap
  4265. *
  4266. * If when we send the snapshot and we are processing file bar (which
  4267. * has a higher inode number than foo) we blindly send a clone operation
  4268. * for the [0, 100K[ range from foo to bar, the receiver ends up getting
  4269. * a file bar that matches the content of file foo - iow, doesn't match
  4270. * the content from bar in the original filesystem.
  4271. */
  4272. key.objectid = clone_root->ino;
  4273. key.type = BTRFS_EXTENT_DATA_KEY;
  4274. key.offset = clone_root->offset;
  4275. ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
  4276. if (ret < 0)
  4277. goto out;
  4278. if (ret > 0 && path->slots[0] > 0) {
  4279. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
  4280. if (key.objectid == clone_root->ino &&
  4281. key.type == BTRFS_EXTENT_DATA_KEY)
  4282. path->slots[0]--;
  4283. }
  4284. while (true) {
  4285. struct extent_buffer *leaf = path->nodes[0];
  4286. int slot = path->slots[0];
  4287. struct btrfs_file_extent_item *ei;
  4288. u8 type;
  4289. u64 ext_len;
  4290. u64 clone_len;
  4291. if (slot >= btrfs_header_nritems(leaf)) {
  4292. ret = btrfs_next_leaf(clone_root->root, path);
  4293. if (ret < 0)
  4294. goto out;
  4295. else if (ret > 0)
  4296. break;
  4297. continue;
  4298. }
  4299. btrfs_item_key_to_cpu(leaf, &key, slot);
  4300. /*
  4301. * We might have an implicit trailing hole (NO_HOLES feature
  4302. * enabled). We deal with it after leaving this loop.
  4303. */
  4304. if (key.objectid != clone_root->ino ||
  4305. key.type != BTRFS_EXTENT_DATA_KEY)
  4306. break;
  4307. ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  4308. type = btrfs_file_extent_type(leaf, ei);
  4309. if (type == BTRFS_FILE_EXTENT_INLINE) {
  4310. ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
  4311. ext_len = PAGE_ALIGN(ext_len);
  4312. } else {
  4313. ext_len = btrfs_file_extent_num_bytes(leaf, ei);
  4314. }
  4315. if (key.offset + ext_len <= clone_root->offset)
  4316. goto next;
  4317. if (key.offset > clone_root->offset) {
  4318. /* Implicit hole, NO_HOLES feature enabled. */
  4319. u64 hole_len = key.offset - clone_root->offset;
  4320. if (hole_len > len)
  4321. hole_len = len;
  4322. ret = send_extent_data(sctx, offset, hole_len);
  4323. if (ret < 0)
  4324. goto out;
  4325. len -= hole_len;
  4326. if (len == 0)
  4327. break;
  4328. offset += hole_len;
  4329. clone_root->offset += hole_len;
  4330. data_offset += hole_len;
  4331. }
  4332. if (key.offset >= clone_root->offset + len)
  4333. break;
  4334. clone_len = min_t(u64, ext_len, len);
  4335. if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
  4336. btrfs_file_extent_offset(leaf, ei) == data_offset)
  4337. ret = send_clone(sctx, offset, clone_len, clone_root);
  4338. else
  4339. ret = send_extent_data(sctx, offset, clone_len);
  4340. if (ret < 0)
  4341. goto out;
  4342. len -= clone_len;
  4343. if (len == 0)
  4344. break;
  4345. offset += clone_len;
  4346. clone_root->offset += clone_len;
  4347. data_offset += clone_len;
  4348. next:
  4349. path->slots[0]++;
  4350. }
  4351. if (len > 0)
  4352. ret = send_extent_data(sctx, offset, len);
  4353. else
  4354. ret = 0;
  4355. out:
  4356. btrfs_free_path(path);
  4357. return ret;
  4358. }
  4359. static int send_write_or_clone(struct send_ctx *sctx,
  4360. struct btrfs_path *path,
  4361. struct btrfs_key *key,
  4362. struct clone_root *clone_root)
  4363. {
  4364. int ret = 0;
  4365. struct btrfs_file_extent_item *ei;
  4366. u64 offset = key->offset;
  4367. u64 len;
  4368. u8 type;
  4369. u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
  4370. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  4371. struct btrfs_file_extent_item);
  4372. type = btrfs_file_extent_type(path->nodes[0], ei);
  4373. if (type == BTRFS_FILE_EXTENT_INLINE) {
  4374. len = btrfs_file_extent_inline_len(path->nodes[0],
  4375. path->slots[0], ei);
  4376. /*
  4377. * it is possible the inline item won't cover the whole page,
  4378. * but there may be items after this page. Make
  4379. * sure to send the whole thing
  4380. */
  4381. len = PAGE_ALIGN(len);
  4382. } else {
  4383. len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
  4384. }
  4385. if (offset + len > sctx->cur_inode_size)
  4386. len = sctx->cur_inode_size - offset;
  4387. if (len == 0) {
  4388. ret = 0;
  4389. goto out;
  4390. }
  4391. if (clone_root && IS_ALIGNED(offset + len, bs)) {
  4392. u64 disk_byte;
  4393. u64 data_offset;
  4394. disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
  4395. data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
  4396. ret = clone_range(sctx, clone_root, disk_byte, data_offset,
  4397. offset, len);
  4398. } else {
  4399. ret = send_extent_data(sctx, offset, len);
  4400. }
  4401. out:
  4402. return ret;
  4403. }
  4404. static int is_extent_unchanged(struct send_ctx *sctx,
  4405. struct btrfs_path *left_path,
  4406. struct btrfs_key *ekey)
  4407. {
  4408. int ret = 0;
  4409. struct btrfs_key key;
  4410. struct btrfs_path *path = NULL;
  4411. struct extent_buffer *eb;
  4412. int slot;
  4413. struct btrfs_key found_key;
  4414. struct btrfs_file_extent_item *ei;
  4415. u64 left_disknr;
  4416. u64 right_disknr;
  4417. u64 left_offset;
  4418. u64 right_offset;
  4419. u64 left_offset_fixed;
  4420. u64 left_len;
  4421. u64 right_len;
  4422. u64 left_gen;
  4423. u64 right_gen;
  4424. u8 left_type;
  4425. u8 right_type;
  4426. path = alloc_path_for_send();
  4427. if (!path)
  4428. return -ENOMEM;
  4429. eb = left_path->nodes[0];
  4430. slot = left_path->slots[0];
  4431. ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  4432. left_type = btrfs_file_extent_type(eb, ei);
  4433. if (left_type != BTRFS_FILE_EXTENT_REG) {
  4434. ret = 0;
  4435. goto out;
  4436. }
  4437. left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
  4438. left_len = btrfs_file_extent_num_bytes(eb, ei);
  4439. left_offset = btrfs_file_extent_offset(eb, ei);
  4440. left_gen = btrfs_file_extent_generation(eb, ei);
  4441. /*
  4442. * Following comments will refer to these graphics. L is the left
  4443. * extents which we are checking at the moment. 1-8 are the right
  4444. * extents that we iterate.
  4445. *
  4446. * |-----L-----|
  4447. * |-1-|-2a-|-3-|-4-|-5-|-6-|
  4448. *
  4449. * |-----L-----|
  4450. * |--1--|-2b-|...(same as above)
  4451. *
  4452. * Alternative situation. Happens on files where extents got split.
  4453. * |-----L-----|
  4454. * |-----------7-----------|-6-|
  4455. *
  4456. * Alternative situation. Happens on files which got larger.
  4457. * |-----L-----|
  4458. * |-8-|
  4459. * Nothing follows after 8.
  4460. */
  4461. key.objectid = ekey->objectid;
  4462. key.type = BTRFS_EXTENT_DATA_KEY;
  4463. key.offset = ekey->offset;
  4464. ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
  4465. if (ret < 0)
  4466. goto out;
  4467. if (ret) {
  4468. ret = 0;
  4469. goto out;
  4470. }
  4471. /*
  4472. * Handle special case where the right side has no extents at all.
  4473. */
  4474. eb = path->nodes[0];
  4475. slot = path->slots[0];
  4476. btrfs_item_key_to_cpu(eb, &found_key, slot);
  4477. if (found_key.objectid != key.objectid ||
  4478. found_key.type != key.type) {
  4479. /* If we're a hole then just pretend nothing changed */
  4480. ret = (left_disknr) ? 0 : 1;
  4481. goto out;
  4482. }
  4483. /*
  4484. * We're now on 2a, 2b or 7.
  4485. */
  4486. key = found_key;
  4487. while (key.offset < ekey->offset + left_len) {
  4488. ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  4489. right_type = btrfs_file_extent_type(eb, ei);
  4490. if (right_type != BTRFS_FILE_EXTENT_REG &&
  4491. right_type != BTRFS_FILE_EXTENT_INLINE) {
  4492. ret = 0;
  4493. goto out;
  4494. }
  4495. right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
  4496. if (right_type == BTRFS_FILE_EXTENT_INLINE) {
  4497. right_len = btrfs_file_extent_inline_len(eb, slot, ei);
  4498. right_len = PAGE_ALIGN(right_len);
  4499. } else {
  4500. right_len = btrfs_file_extent_num_bytes(eb, ei);
  4501. }
  4502. right_offset = btrfs_file_extent_offset(eb, ei);
  4503. right_gen = btrfs_file_extent_generation(eb, ei);
  4504. /*
  4505. * Are we at extent 8? If yes, we know the extent is changed.
  4506. * This may only happen on the first iteration.
  4507. */
  4508. if (found_key.offset + right_len <= ekey->offset) {
  4509. /* If we're a hole just pretend nothing changed */
  4510. ret = (left_disknr) ? 0 : 1;
  4511. goto out;
  4512. }
  4513. /*
  4514. * We just wanted to see if when we have an inline extent, what
  4515. * follows it is a regular extent (wanted to check the above
  4516. * condition for inline extents too). This should normally not
  4517. * happen but it's possible for example when we have an inline
  4518. * compressed extent representing data with a size matching
  4519. * the page size (currently the same as sector size).
  4520. */
  4521. if (right_type == BTRFS_FILE_EXTENT_INLINE) {
  4522. ret = 0;
  4523. goto out;
  4524. }
  4525. left_offset_fixed = left_offset;
  4526. if (key.offset < ekey->offset) {
  4527. /* Fix the right offset for 2a and 7. */
  4528. right_offset += ekey->offset - key.offset;
  4529. } else {
  4530. /* Fix the left offset for all behind 2a and 2b */
  4531. left_offset_fixed += key.offset - ekey->offset;
  4532. }
  4533. /*
  4534. * Check if we have the same extent.
  4535. */
  4536. if (left_disknr != right_disknr ||
  4537. left_offset_fixed != right_offset ||
  4538. left_gen != right_gen) {
  4539. ret = 0;
  4540. goto out;
  4541. }
  4542. /*
  4543. * Go to the next extent.
  4544. */
  4545. ret = btrfs_next_item(sctx->parent_root, path);
  4546. if (ret < 0)
  4547. goto out;
  4548. if (!ret) {
  4549. eb = path->nodes[0];
  4550. slot = path->slots[0];
  4551. btrfs_item_key_to_cpu(eb, &found_key, slot);
  4552. }
  4553. if (ret || found_key.objectid != key.objectid ||
  4554. found_key.type != key.type) {
  4555. key.offset += right_len;
  4556. break;
  4557. }
  4558. if (found_key.offset != key.offset + right_len) {
  4559. ret = 0;
  4560. goto out;
  4561. }
  4562. key = found_key;
  4563. }
  4564. /*
  4565. * We're now behind the left extent (treat as unchanged) or at the end
  4566. * of the right side (treat as changed).
  4567. */
  4568. if (key.offset >= ekey->offset + left_len)
  4569. ret = 1;
  4570. else
  4571. ret = 0;
  4572. out:
  4573. btrfs_free_path(path);
  4574. return ret;
  4575. }
  4576. static int get_last_extent(struct send_ctx *sctx, u64 offset)
  4577. {
  4578. struct btrfs_path *path;
  4579. struct btrfs_root *root = sctx->send_root;
  4580. struct btrfs_file_extent_item *fi;
  4581. struct btrfs_key key;
  4582. u64 extent_end;
  4583. u8 type;
  4584. int ret;
  4585. path = alloc_path_for_send();
  4586. if (!path)
  4587. return -ENOMEM;
  4588. sctx->cur_inode_last_extent = 0;
  4589. key.objectid = sctx->cur_ino;
  4590. key.type = BTRFS_EXTENT_DATA_KEY;
  4591. key.offset = offset;
  4592. ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
  4593. if (ret < 0)
  4594. goto out;
  4595. ret = 0;
  4596. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  4597. if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
  4598. goto out;
  4599. fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
  4600. struct btrfs_file_extent_item);
  4601. type = btrfs_file_extent_type(path->nodes[0], fi);
  4602. if (type == BTRFS_FILE_EXTENT_INLINE) {
  4603. u64 size = btrfs_file_extent_inline_len(path->nodes[0],
  4604. path->slots[0], fi);
  4605. extent_end = ALIGN(key.offset + size,
  4606. sctx->send_root->sectorsize);
  4607. } else {
  4608. extent_end = key.offset +
  4609. btrfs_file_extent_num_bytes(path->nodes[0], fi);
  4610. }
  4611. sctx->cur_inode_last_extent = extent_end;
  4612. out:
  4613. btrfs_free_path(path);
  4614. return ret;
  4615. }
  4616. static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
  4617. struct btrfs_key *key)
  4618. {
  4619. struct btrfs_file_extent_item *fi;
  4620. u64 extent_end;
  4621. u8 type;
  4622. int ret = 0;
  4623. if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
  4624. return 0;
  4625. if (sctx->cur_inode_last_extent == (u64)-1) {
  4626. ret = get_last_extent(sctx, key->offset - 1);
  4627. if (ret)
  4628. return ret;
  4629. }
  4630. fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
  4631. struct btrfs_file_extent_item);
  4632. type = btrfs_file_extent_type(path->nodes[0], fi);
  4633. if (type == BTRFS_FILE_EXTENT_INLINE) {
  4634. u64 size = btrfs_file_extent_inline_len(path->nodes[0],
  4635. path->slots[0], fi);
  4636. extent_end = ALIGN(key->offset + size,
  4637. sctx->send_root->sectorsize);
  4638. } else {
  4639. extent_end = key->offset +
  4640. btrfs_file_extent_num_bytes(path->nodes[0], fi);
  4641. }
  4642. if (path->slots[0] == 0 &&
  4643. sctx->cur_inode_last_extent < key->offset) {
  4644. /*
  4645. * We might have skipped entire leafs that contained only
  4646. * file extent items for our current inode. These leafs have
  4647. * a generation number smaller (older) than the one in the
  4648. * current leaf and the leaf our last extent came from, and
  4649. * are located between these 2 leafs.
  4650. */
  4651. ret = get_last_extent(sctx, key->offset - 1);
  4652. if (ret)
  4653. return ret;
  4654. }
  4655. if (sctx->cur_inode_last_extent < key->offset)
  4656. ret = send_hole(sctx, key->offset);
  4657. sctx->cur_inode_last_extent = extent_end;
  4658. return ret;
  4659. }
  4660. static int process_extent(struct send_ctx *sctx,
  4661. struct btrfs_path *path,
  4662. struct btrfs_key *key)
  4663. {
  4664. struct clone_root *found_clone = NULL;
  4665. int ret = 0;
  4666. if (S_ISLNK(sctx->cur_inode_mode))
  4667. return 0;
  4668. if (sctx->parent_root && !sctx->cur_inode_new) {
  4669. ret = is_extent_unchanged(sctx, path, key);
  4670. if (ret < 0)
  4671. goto out;
  4672. if (ret) {
  4673. ret = 0;
  4674. goto out_hole;
  4675. }
  4676. } else {
  4677. struct btrfs_file_extent_item *ei;
  4678. u8 type;
  4679. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  4680. struct btrfs_file_extent_item);
  4681. type = btrfs_file_extent_type(path->nodes[0], ei);
  4682. if (type == BTRFS_FILE_EXTENT_PREALLOC ||
  4683. type == BTRFS_FILE_EXTENT_REG) {
  4684. /*
  4685. * The send spec does not have a prealloc command yet,
  4686. * so just leave a hole for prealloc'ed extents until
  4687. * we have enough commands queued up to justify rev'ing
  4688. * the send spec.
  4689. */
  4690. if (type == BTRFS_FILE_EXTENT_PREALLOC) {
  4691. ret = 0;
  4692. goto out;
  4693. }
  4694. /* Have a hole, just skip it. */
  4695. if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
  4696. ret = 0;
  4697. goto out;
  4698. }
  4699. }
  4700. }
  4701. ret = find_extent_clone(sctx, path, key->objectid, key->offset,
  4702. sctx->cur_inode_size, &found_clone);
  4703. if (ret != -ENOENT && ret < 0)
  4704. goto out;
  4705. ret = send_write_or_clone(sctx, path, key, found_clone);
  4706. if (ret)
  4707. goto out;
  4708. out_hole:
  4709. ret = maybe_send_hole(sctx, path, key);
  4710. out:
  4711. return ret;
  4712. }
  4713. static int process_all_extents(struct send_ctx *sctx)
  4714. {
  4715. int ret;
  4716. struct btrfs_root *root;
  4717. struct btrfs_path *path;
  4718. struct btrfs_key key;
  4719. struct btrfs_key found_key;
  4720. struct extent_buffer *eb;
  4721. int slot;
  4722. root = sctx->send_root;
  4723. path = alloc_path_for_send();
  4724. if (!path)
  4725. return -ENOMEM;
  4726. key.objectid = sctx->cmp_key->objectid;
  4727. key.type = BTRFS_EXTENT_DATA_KEY;
  4728. key.offset = 0;
  4729. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  4730. if (ret < 0)
  4731. goto out;
  4732. while (1) {
  4733. eb = path->nodes[0];
  4734. slot = path->slots[0];
  4735. if (slot >= btrfs_header_nritems(eb)) {
  4736. ret = btrfs_next_leaf(root, path);
  4737. if (ret < 0) {
  4738. goto out;
  4739. } else if (ret > 0) {
  4740. ret = 0;
  4741. break;
  4742. }
  4743. continue;
  4744. }
  4745. btrfs_item_key_to_cpu(eb, &found_key, slot);
  4746. if (found_key.objectid != key.objectid ||
  4747. found_key.type != key.type) {
  4748. ret = 0;
  4749. goto out;
  4750. }
  4751. ret = process_extent(sctx, path, &found_key);
  4752. if (ret < 0)
  4753. goto out;
  4754. path->slots[0]++;
  4755. }
  4756. out:
  4757. btrfs_free_path(path);
  4758. return ret;
  4759. }
  4760. static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
  4761. int *pending_move,
  4762. int *refs_processed)
  4763. {
  4764. int ret = 0;
  4765. if (sctx->cur_ino == 0)
  4766. goto out;
  4767. if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
  4768. sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
  4769. goto out;
  4770. if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
  4771. goto out;
  4772. ret = process_recorded_refs(sctx, pending_move);
  4773. if (ret < 0)
  4774. goto out;
  4775. *refs_processed = 1;
  4776. out:
  4777. return ret;
  4778. }
  4779. static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
  4780. {
  4781. int ret = 0;
  4782. u64 left_mode;
  4783. u64 left_uid;
  4784. u64 left_gid;
  4785. u64 right_mode;
  4786. u64 right_uid;
  4787. u64 right_gid;
  4788. int need_chmod = 0;
  4789. int need_chown = 0;
  4790. int pending_move = 0;
  4791. int refs_processed = 0;
  4792. ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
  4793. &refs_processed);
  4794. if (ret < 0)
  4795. goto out;
  4796. /*
  4797. * We have processed the refs and thus need to advance send_progress.
  4798. * Now, calls to get_cur_xxx will take the updated refs of the current
  4799. * inode into account.
  4800. *
  4801. * On the other hand, if our current inode is a directory and couldn't
  4802. * be moved/renamed because its parent was renamed/moved too and it has
  4803. * a higher inode number, we can only move/rename our current inode
  4804. * after we moved/renamed its parent. Therefore in this case operate on
  4805. * the old path (pre move/rename) of our current inode, and the
  4806. * move/rename will be performed later.
  4807. */
  4808. if (refs_processed && !pending_move)
  4809. sctx->send_progress = sctx->cur_ino + 1;
  4810. if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
  4811. goto out;
  4812. if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
  4813. goto out;
  4814. ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
  4815. &left_mode, &left_uid, &left_gid, NULL);
  4816. if (ret < 0)
  4817. goto out;
  4818. if (!sctx->parent_root || sctx->cur_inode_new) {
  4819. need_chown = 1;
  4820. if (!S_ISLNK(sctx->cur_inode_mode))
  4821. need_chmod = 1;
  4822. } else {
  4823. ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
  4824. NULL, NULL, &right_mode, &right_uid,
  4825. &right_gid, NULL);
  4826. if (ret < 0)
  4827. goto out;
  4828. if (left_uid != right_uid || left_gid != right_gid)
  4829. need_chown = 1;
  4830. if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
  4831. need_chmod = 1;
  4832. }
  4833. if (S_ISREG(sctx->cur_inode_mode)) {
  4834. if (need_send_hole(sctx)) {
  4835. if (sctx->cur_inode_last_extent == (u64)-1 ||
  4836. sctx->cur_inode_last_extent <
  4837. sctx->cur_inode_size) {
  4838. ret = get_last_extent(sctx, (u64)-1);
  4839. if (ret)
  4840. goto out;
  4841. }
  4842. if (sctx->cur_inode_last_extent <
  4843. sctx->cur_inode_size) {
  4844. ret = send_hole(sctx, sctx->cur_inode_size);
  4845. if (ret)
  4846. goto out;
  4847. }
  4848. }
  4849. ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
  4850. sctx->cur_inode_size);
  4851. if (ret < 0)
  4852. goto out;
  4853. }
  4854. if (need_chown) {
  4855. ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
  4856. left_uid, left_gid);
  4857. if (ret < 0)
  4858. goto out;
  4859. }
  4860. if (need_chmod) {
  4861. ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
  4862. left_mode);
  4863. if (ret < 0)
  4864. goto out;
  4865. }
  4866. /*
  4867. * If other directory inodes depended on our current directory
  4868. * inode's move/rename, now do their move/rename operations.
  4869. */
  4870. if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
  4871. ret = apply_children_dir_moves(sctx);
  4872. if (ret)
  4873. goto out;
  4874. /*
  4875. * Need to send that every time, no matter if it actually
  4876. * changed between the two trees as we have done changes to
  4877. * the inode before. If our inode is a directory and it's
  4878. * waiting to be moved/renamed, we will send its utimes when
  4879. * it's moved/renamed, therefore we don't need to do it here.
  4880. */
  4881. sctx->send_progress = sctx->cur_ino + 1;
  4882. ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
  4883. if (ret < 0)
  4884. goto out;
  4885. }
  4886. out:
  4887. return ret;
  4888. }
  4889. static int changed_inode(struct send_ctx *sctx,
  4890. enum btrfs_compare_tree_result result)
  4891. {
  4892. int ret = 0;
  4893. struct btrfs_key *key = sctx->cmp_key;
  4894. struct btrfs_inode_item *left_ii = NULL;
  4895. struct btrfs_inode_item *right_ii = NULL;
  4896. u64 left_gen = 0;
  4897. u64 right_gen = 0;
  4898. sctx->cur_ino = key->objectid;
  4899. sctx->cur_inode_new_gen = 0;
  4900. sctx->cur_inode_last_extent = (u64)-1;
  4901. /*
  4902. * Set send_progress to current inode. This will tell all get_cur_xxx
  4903. * functions that the current inode's refs are not updated yet. Later,
  4904. * when process_recorded_refs is finished, it is set to cur_ino + 1.
  4905. */
  4906. sctx->send_progress = sctx->cur_ino;
  4907. if (result == BTRFS_COMPARE_TREE_NEW ||
  4908. result == BTRFS_COMPARE_TREE_CHANGED) {
  4909. left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
  4910. sctx->left_path->slots[0],
  4911. struct btrfs_inode_item);
  4912. left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
  4913. left_ii);
  4914. } else {
  4915. right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
  4916. sctx->right_path->slots[0],
  4917. struct btrfs_inode_item);
  4918. right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
  4919. right_ii);
  4920. }
  4921. if (result == BTRFS_COMPARE_TREE_CHANGED) {
  4922. right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
  4923. sctx->right_path->slots[0],
  4924. struct btrfs_inode_item);
  4925. right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
  4926. right_ii);
  4927. /*
  4928. * The cur_ino = root dir case is special here. We can't treat
  4929. * the inode as deleted+reused because it would generate a
  4930. * stream that tries to delete/mkdir the root dir.
  4931. */
  4932. if (left_gen != right_gen &&
  4933. sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
  4934. sctx->cur_inode_new_gen = 1;
  4935. }
  4936. if (result == BTRFS_COMPARE_TREE_NEW) {
  4937. sctx->cur_inode_gen = left_gen;
  4938. sctx->cur_inode_new = 1;
  4939. sctx->cur_inode_deleted = 0;
  4940. sctx->cur_inode_size = btrfs_inode_size(
  4941. sctx->left_path->nodes[0], left_ii);
  4942. sctx->cur_inode_mode = btrfs_inode_mode(
  4943. sctx->left_path->nodes[0], left_ii);
  4944. sctx->cur_inode_rdev = btrfs_inode_rdev(
  4945. sctx->left_path->nodes[0], left_ii);
  4946. if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
  4947. ret = send_create_inode_if_needed(sctx);
  4948. } else if (result == BTRFS_COMPARE_TREE_DELETED) {
  4949. sctx->cur_inode_gen = right_gen;
  4950. sctx->cur_inode_new = 0;
  4951. sctx->cur_inode_deleted = 1;
  4952. sctx->cur_inode_size = btrfs_inode_size(
  4953. sctx->right_path->nodes[0], right_ii);
  4954. sctx->cur_inode_mode = btrfs_inode_mode(
  4955. sctx->right_path->nodes[0], right_ii);
  4956. } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
  4957. /*
  4958. * We need to do some special handling in case the inode was
  4959. * reported as changed with a changed generation number. This
  4960. * means that the original inode was deleted and new inode
  4961. * reused the same inum. So we have to treat the old inode as
  4962. * deleted and the new one as new.
  4963. */
  4964. if (sctx->cur_inode_new_gen) {
  4965. /*
  4966. * First, process the inode as if it was deleted.
  4967. */
  4968. sctx->cur_inode_gen = right_gen;
  4969. sctx->cur_inode_new = 0;
  4970. sctx->cur_inode_deleted = 1;
  4971. sctx->cur_inode_size = btrfs_inode_size(
  4972. sctx->right_path->nodes[0], right_ii);
  4973. sctx->cur_inode_mode = btrfs_inode_mode(
  4974. sctx->right_path->nodes[0], right_ii);
  4975. ret = process_all_refs(sctx,
  4976. BTRFS_COMPARE_TREE_DELETED);
  4977. if (ret < 0)
  4978. goto out;
  4979. /*
  4980. * Now process the inode as if it was new.
  4981. */
  4982. sctx->cur_inode_gen = left_gen;
  4983. sctx->cur_inode_new = 1;
  4984. sctx->cur_inode_deleted = 0;
  4985. sctx->cur_inode_size = btrfs_inode_size(
  4986. sctx->left_path->nodes[0], left_ii);
  4987. sctx->cur_inode_mode = btrfs_inode_mode(
  4988. sctx->left_path->nodes[0], left_ii);
  4989. sctx->cur_inode_rdev = btrfs_inode_rdev(
  4990. sctx->left_path->nodes[0], left_ii);
  4991. ret = send_create_inode_if_needed(sctx);
  4992. if (ret < 0)
  4993. goto out;
  4994. ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
  4995. if (ret < 0)
  4996. goto out;
  4997. /*
  4998. * Advance send_progress now as we did not get into
  4999. * process_recorded_refs_if_needed in the new_gen case.
  5000. */
  5001. sctx->send_progress = sctx->cur_ino + 1;
  5002. /*
  5003. * Now process all extents and xattrs of the inode as if
  5004. * they were all new.
  5005. */
  5006. ret = process_all_extents(sctx);
  5007. if (ret < 0)
  5008. goto out;
  5009. ret = process_all_new_xattrs(sctx);
  5010. if (ret < 0)
  5011. goto out;
  5012. } else {
  5013. sctx->cur_inode_gen = left_gen;
  5014. sctx->cur_inode_new = 0;
  5015. sctx->cur_inode_new_gen = 0;
  5016. sctx->cur_inode_deleted = 0;
  5017. sctx->cur_inode_size = btrfs_inode_size(
  5018. sctx->left_path->nodes[0], left_ii);
  5019. sctx->cur_inode_mode = btrfs_inode_mode(
  5020. sctx->left_path->nodes[0], left_ii);
  5021. }
  5022. }
  5023. out:
  5024. return ret;
  5025. }
  5026. /*
  5027. * We have to process new refs before deleted refs, but compare_trees gives us
  5028. * the new and deleted refs mixed. To fix this, we record the new/deleted refs
  5029. * first and later process them in process_recorded_refs.
  5030. * For the cur_inode_new_gen case, we skip recording completely because
  5031. * changed_inode did already initiate processing of refs. The reason for this is
  5032. * that in this case, compare_tree actually compares the refs of 2 different
  5033. * inodes. To fix this, process_all_refs is used in changed_inode to handle all
  5034. * refs of the right tree as deleted and all refs of the left tree as new.
  5035. */
  5036. static int changed_ref(struct send_ctx *sctx,
  5037. enum btrfs_compare_tree_result result)
  5038. {
  5039. int ret = 0;
  5040. if (sctx->cur_ino != sctx->cmp_key->objectid) {
  5041. inconsistent_snapshot_error(sctx, result, "reference");
  5042. return -EIO;
  5043. }
  5044. if (!sctx->cur_inode_new_gen &&
  5045. sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
  5046. if (result == BTRFS_COMPARE_TREE_NEW)
  5047. ret = record_new_ref(sctx);
  5048. else if (result == BTRFS_COMPARE_TREE_DELETED)
  5049. ret = record_deleted_ref(sctx);
  5050. else if (result == BTRFS_COMPARE_TREE_CHANGED)
  5051. ret = record_changed_ref(sctx);
  5052. }
  5053. return ret;
  5054. }
  5055. /*
  5056. * Process new/deleted/changed xattrs. We skip processing in the
  5057. * cur_inode_new_gen case because changed_inode did already initiate processing
  5058. * of xattrs. The reason is the same as in changed_ref
  5059. */
  5060. static int changed_xattr(struct send_ctx *sctx,
  5061. enum btrfs_compare_tree_result result)
  5062. {
  5063. int ret = 0;
  5064. if (sctx->cur_ino != sctx->cmp_key->objectid) {
  5065. inconsistent_snapshot_error(sctx, result, "xattr");
  5066. return -EIO;
  5067. }
  5068. if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
  5069. if (result == BTRFS_COMPARE_TREE_NEW)
  5070. ret = process_new_xattr(sctx);
  5071. else if (result == BTRFS_COMPARE_TREE_DELETED)
  5072. ret = process_deleted_xattr(sctx);
  5073. else if (result == BTRFS_COMPARE_TREE_CHANGED)
  5074. ret = process_changed_xattr(sctx);
  5075. }
  5076. return ret;
  5077. }
  5078. /*
  5079. * Process new/deleted/changed extents. We skip processing in the
  5080. * cur_inode_new_gen case because changed_inode did already initiate processing
  5081. * of extents. The reason is the same as in changed_ref
  5082. */
  5083. static int changed_extent(struct send_ctx *sctx,
  5084. enum btrfs_compare_tree_result result)
  5085. {
  5086. int ret = 0;
  5087. if (sctx->cur_ino != sctx->cmp_key->objectid) {
  5088. if (result == BTRFS_COMPARE_TREE_CHANGED) {
  5089. struct extent_buffer *leaf_l;
  5090. struct extent_buffer *leaf_r;
  5091. struct btrfs_file_extent_item *ei_l;
  5092. struct btrfs_file_extent_item *ei_r;
  5093. leaf_l = sctx->left_path->nodes[0];
  5094. leaf_r = sctx->right_path->nodes[0];
  5095. ei_l = btrfs_item_ptr(leaf_l,
  5096. sctx->left_path->slots[0],
  5097. struct btrfs_file_extent_item);
  5098. ei_r = btrfs_item_ptr(leaf_r,
  5099. sctx->right_path->slots[0],
  5100. struct btrfs_file_extent_item);
  5101. /*
  5102. * We may have found an extent item that has changed
  5103. * only its disk_bytenr field and the corresponding
  5104. * inode item was not updated. This case happens due to
  5105. * very specific timings during relocation when a leaf
  5106. * that contains file extent items is COWed while
  5107. * relocation is ongoing and its in the stage where it
  5108. * updates data pointers. So when this happens we can
  5109. * safely ignore it since we know it's the same extent,
  5110. * but just at different logical and physical locations
  5111. * (when an extent is fully replaced with a new one, we
  5112. * know the generation number must have changed too,
  5113. * since snapshot creation implies committing the current
  5114. * transaction, and the inode item must have been updated
  5115. * as well).
  5116. * This replacement of the disk_bytenr happens at
  5117. * relocation.c:replace_file_extents() through
  5118. * relocation.c:btrfs_reloc_cow_block().
  5119. */
  5120. if (btrfs_file_extent_generation(leaf_l, ei_l) ==
  5121. btrfs_file_extent_generation(leaf_r, ei_r) &&
  5122. btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
  5123. btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
  5124. btrfs_file_extent_compression(leaf_l, ei_l) ==
  5125. btrfs_file_extent_compression(leaf_r, ei_r) &&
  5126. btrfs_file_extent_encryption(leaf_l, ei_l) ==
  5127. btrfs_file_extent_encryption(leaf_r, ei_r) &&
  5128. btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
  5129. btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
  5130. btrfs_file_extent_type(leaf_l, ei_l) ==
  5131. btrfs_file_extent_type(leaf_r, ei_r) &&
  5132. btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
  5133. btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
  5134. btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
  5135. btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
  5136. btrfs_file_extent_offset(leaf_l, ei_l) ==
  5137. btrfs_file_extent_offset(leaf_r, ei_r) &&
  5138. btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
  5139. btrfs_file_extent_num_bytes(leaf_r, ei_r))
  5140. return 0;
  5141. }
  5142. inconsistent_snapshot_error(sctx, result, "extent");
  5143. return -EIO;
  5144. }
  5145. if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
  5146. if (result != BTRFS_COMPARE_TREE_DELETED)
  5147. ret = process_extent(sctx, sctx->left_path,
  5148. sctx->cmp_key);
  5149. }
  5150. return ret;
  5151. }
  5152. static int dir_changed(struct send_ctx *sctx, u64 dir)
  5153. {
  5154. u64 orig_gen, new_gen;
  5155. int ret;
  5156. ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
  5157. NULL, NULL);
  5158. if (ret)
  5159. return ret;
  5160. ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
  5161. NULL, NULL, NULL);
  5162. if (ret)
  5163. return ret;
  5164. return (orig_gen != new_gen) ? 1 : 0;
  5165. }
  5166. static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
  5167. struct btrfs_key *key)
  5168. {
  5169. struct btrfs_inode_extref *extref;
  5170. struct extent_buffer *leaf;
  5171. u64 dirid = 0, last_dirid = 0;
  5172. unsigned long ptr;
  5173. u32 item_size;
  5174. u32 cur_offset = 0;
  5175. int ref_name_len;
  5176. int ret = 0;
  5177. /* Easy case, just check this one dirid */
  5178. if (key->type == BTRFS_INODE_REF_KEY) {
  5179. dirid = key->offset;
  5180. ret = dir_changed(sctx, dirid);
  5181. goto out;
  5182. }
  5183. leaf = path->nodes[0];
  5184. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  5185. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  5186. while (cur_offset < item_size) {
  5187. extref = (struct btrfs_inode_extref *)(ptr +
  5188. cur_offset);
  5189. dirid = btrfs_inode_extref_parent(leaf, extref);
  5190. ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
  5191. cur_offset += ref_name_len + sizeof(*extref);
  5192. if (dirid == last_dirid)
  5193. continue;
  5194. ret = dir_changed(sctx, dirid);
  5195. if (ret)
  5196. break;
  5197. last_dirid = dirid;
  5198. }
  5199. out:
  5200. return ret;
  5201. }
  5202. /*
  5203. * Updates compare related fields in sctx and simply forwards to the actual
  5204. * changed_xxx functions.
  5205. */
  5206. static int changed_cb(struct btrfs_root *left_root,
  5207. struct btrfs_root *right_root,
  5208. struct btrfs_path *left_path,
  5209. struct btrfs_path *right_path,
  5210. struct btrfs_key *key,
  5211. enum btrfs_compare_tree_result result,
  5212. void *ctx)
  5213. {
  5214. int ret = 0;
  5215. struct send_ctx *sctx = ctx;
  5216. if (result == BTRFS_COMPARE_TREE_SAME) {
  5217. if (key->type == BTRFS_INODE_REF_KEY ||
  5218. key->type == BTRFS_INODE_EXTREF_KEY) {
  5219. ret = compare_refs(sctx, left_path, key);
  5220. if (!ret)
  5221. return 0;
  5222. if (ret < 0)
  5223. return ret;
  5224. } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
  5225. return maybe_send_hole(sctx, left_path, key);
  5226. } else {
  5227. return 0;
  5228. }
  5229. result = BTRFS_COMPARE_TREE_CHANGED;
  5230. ret = 0;
  5231. }
  5232. sctx->left_path = left_path;
  5233. sctx->right_path = right_path;
  5234. sctx->cmp_key = key;
  5235. ret = finish_inode_if_needed(sctx, 0);
  5236. if (ret < 0)
  5237. goto out;
  5238. /* Ignore non-FS objects */
  5239. if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
  5240. key->objectid == BTRFS_FREE_SPACE_OBJECTID)
  5241. goto out;
  5242. if (key->type == BTRFS_INODE_ITEM_KEY)
  5243. ret = changed_inode(sctx, result);
  5244. else if (key->type == BTRFS_INODE_REF_KEY ||
  5245. key->type == BTRFS_INODE_EXTREF_KEY)
  5246. ret = changed_ref(sctx, result);
  5247. else if (key->type == BTRFS_XATTR_ITEM_KEY)
  5248. ret = changed_xattr(sctx, result);
  5249. else if (key->type == BTRFS_EXTENT_DATA_KEY)
  5250. ret = changed_extent(sctx, result);
  5251. out:
  5252. return ret;
  5253. }
  5254. static int full_send_tree(struct send_ctx *sctx)
  5255. {
  5256. int ret;
  5257. struct btrfs_root *send_root = sctx->send_root;
  5258. struct btrfs_key key;
  5259. struct btrfs_key found_key;
  5260. struct btrfs_path *path;
  5261. struct extent_buffer *eb;
  5262. int slot;
  5263. path = alloc_path_for_send();
  5264. if (!path)
  5265. return -ENOMEM;
  5266. key.objectid = BTRFS_FIRST_FREE_OBJECTID;
  5267. key.type = BTRFS_INODE_ITEM_KEY;
  5268. key.offset = 0;
  5269. ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
  5270. if (ret < 0)
  5271. goto out;
  5272. if (ret)
  5273. goto out_finish;
  5274. while (1) {
  5275. eb = path->nodes[0];
  5276. slot = path->slots[0];
  5277. btrfs_item_key_to_cpu(eb, &found_key, slot);
  5278. ret = changed_cb(send_root, NULL, path, NULL,
  5279. &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
  5280. if (ret < 0)
  5281. goto out;
  5282. key.objectid = found_key.objectid;
  5283. key.type = found_key.type;
  5284. key.offset = found_key.offset + 1;
  5285. ret = btrfs_next_item(send_root, path);
  5286. if (ret < 0)
  5287. goto out;
  5288. if (ret) {
  5289. ret = 0;
  5290. break;
  5291. }
  5292. }
  5293. out_finish:
  5294. ret = finish_inode_if_needed(sctx, 1);
  5295. out:
  5296. btrfs_free_path(path);
  5297. return ret;
  5298. }
  5299. static int send_subvol(struct send_ctx *sctx)
  5300. {
  5301. int ret;
  5302. if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
  5303. ret = send_header(sctx);
  5304. if (ret < 0)
  5305. goto out;
  5306. }
  5307. ret = send_subvol_begin(sctx);
  5308. if (ret < 0)
  5309. goto out;
  5310. if (sctx->parent_root) {
  5311. ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
  5312. changed_cb, sctx);
  5313. if (ret < 0)
  5314. goto out;
  5315. ret = finish_inode_if_needed(sctx, 1);
  5316. if (ret < 0)
  5317. goto out;
  5318. } else {
  5319. ret = full_send_tree(sctx);
  5320. if (ret < 0)
  5321. goto out;
  5322. }
  5323. out:
  5324. free_recorded_refs(sctx);
  5325. return ret;
  5326. }
  5327. /*
  5328. * If orphan cleanup did remove any orphans from a root, it means the tree
  5329. * was modified and therefore the commit root is not the same as the current
  5330. * root anymore. This is a problem, because send uses the commit root and
  5331. * therefore can see inode items that don't exist in the current root anymore,
  5332. * and for example make calls to btrfs_iget, which will do tree lookups based
  5333. * on the current root and not on the commit root. Those lookups will fail,
  5334. * returning a -ESTALE error, and making send fail with that error. So make
  5335. * sure a send does not see any orphans we have just removed, and that it will
  5336. * see the same inodes regardless of whether a transaction commit happened
  5337. * before it started (meaning that the commit root will be the same as the
  5338. * current root) or not.
  5339. */
  5340. static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
  5341. {
  5342. int i;
  5343. struct btrfs_trans_handle *trans = NULL;
  5344. again:
  5345. if (sctx->parent_root &&
  5346. sctx->parent_root->node != sctx->parent_root->commit_root)
  5347. goto commit_trans;
  5348. for (i = 0; i < sctx->clone_roots_cnt; i++)
  5349. if (sctx->clone_roots[i].root->node !=
  5350. sctx->clone_roots[i].root->commit_root)
  5351. goto commit_trans;
  5352. if (trans)
  5353. return btrfs_end_transaction(trans, sctx->send_root);
  5354. return 0;
  5355. commit_trans:
  5356. /* Use any root, all fs roots will get their commit roots updated. */
  5357. if (!trans) {
  5358. trans = btrfs_join_transaction(sctx->send_root);
  5359. if (IS_ERR(trans))
  5360. return PTR_ERR(trans);
  5361. goto again;
  5362. }
  5363. return btrfs_commit_transaction(trans, sctx->send_root);
  5364. }
  5365. static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
  5366. {
  5367. spin_lock(&root->root_item_lock);
  5368. root->send_in_progress--;
  5369. /*
  5370. * Not much left to do, we don't know why it's unbalanced and
  5371. * can't blindly reset it to 0.
  5372. */
  5373. if (root->send_in_progress < 0)
  5374. btrfs_err(root->fs_info,
  5375. "send_in_progres unbalanced %d root %llu",
  5376. root->send_in_progress, root->root_key.objectid);
  5377. spin_unlock(&root->root_item_lock);
  5378. }
  5379. long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
  5380. {
  5381. int ret = 0;
  5382. struct btrfs_root *send_root;
  5383. struct btrfs_root *clone_root;
  5384. struct btrfs_fs_info *fs_info;
  5385. struct btrfs_ioctl_send_args *arg = NULL;
  5386. struct btrfs_key key;
  5387. struct send_ctx *sctx = NULL;
  5388. u32 i;
  5389. u64 *clone_sources_tmp = NULL;
  5390. int clone_sources_to_rollback = 0;
  5391. unsigned alloc_size;
  5392. int sort_clone_roots = 0;
  5393. int index;
  5394. if (!capable(CAP_SYS_ADMIN))
  5395. return -EPERM;
  5396. send_root = BTRFS_I(file_inode(mnt_file))->root;
  5397. fs_info = send_root->fs_info;
  5398. /*
  5399. * The subvolume must remain read-only during send, protect against
  5400. * making it RW. This also protects against deletion.
  5401. */
  5402. spin_lock(&send_root->root_item_lock);
  5403. send_root->send_in_progress++;
  5404. spin_unlock(&send_root->root_item_lock);
  5405. /*
  5406. * This is done when we lookup the root, it should already be complete
  5407. * by the time we get here.
  5408. */
  5409. WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
  5410. /*
  5411. * Userspace tools do the checks and warn the user if it's
  5412. * not RO.
  5413. */
  5414. if (!btrfs_root_readonly(send_root)) {
  5415. ret = -EPERM;
  5416. goto out;
  5417. }
  5418. arg = memdup_user(arg_, sizeof(*arg));
  5419. if (IS_ERR(arg)) {
  5420. ret = PTR_ERR(arg);
  5421. arg = NULL;
  5422. goto out;
  5423. }
  5424. /*
  5425. * Check that we don't overflow at later allocations, we request
  5426. * clone_sources_count + 1 items, and compare to unsigned long inside
  5427. * access_ok.
  5428. */
  5429. if (arg->clone_sources_count >
  5430. ULONG_MAX / sizeof(struct clone_root) - 1) {
  5431. ret = -EINVAL;
  5432. goto out;
  5433. }
  5434. if (!access_ok(VERIFY_READ, arg->clone_sources,
  5435. sizeof(*arg->clone_sources) *
  5436. arg->clone_sources_count)) {
  5437. ret = -EFAULT;
  5438. goto out;
  5439. }
  5440. if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
  5441. ret = -EINVAL;
  5442. goto out;
  5443. }
  5444. sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
  5445. if (!sctx) {
  5446. ret = -ENOMEM;
  5447. goto out;
  5448. }
  5449. INIT_LIST_HEAD(&sctx->new_refs);
  5450. INIT_LIST_HEAD(&sctx->deleted_refs);
  5451. INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
  5452. INIT_LIST_HEAD(&sctx->name_cache_list);
  5453. sctx->flags = arg->flags;
  5454. sctx->send_filp = fget(arg->send_fd);
  5455. if (!sctx->send_filp) {
  5456. ret = -EBADF;
  5457. goto out;
  5458. }
  5459. sctx->send_root = send_root;
  5460. /*
  5461. * Unlikely but possible, if the subvolume is marked for deletion but
  5462. * is slow to remove the directory entry, send can still be started
  5463. */
  5464. if (btrfs_root_dead(sctx->send_root)) {
  5465. ret = -EPERM;
  5466. goto out;
  5467. }
  5468. sctx->clone_roots_cnt = arg->clone_sources_count;
  5469. sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
  5470. sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
  5471. if (!sctx->send_buf) {
  5472. sctx->send_buf = vmalloc(sctx->send_max_size);
  5473. if (!sctx->send_buf) {
  5474. ret = -ENOMEM;
  5475. goto out;
  5476. }
  5477. }
  5478. sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
  5479. if (!sctx->read_buf) {
  5480. sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
  5481. if (!sctx->read_buf) {
  5482. ret = -ENOMEM;
  5483. goto out;
  5484. }
  5485. }
  5486. sctx->pending_dir_moves = RB_ROOT;
  5487. sctx->waiting_dir_moves = RB_ROOT;
  5488. sctx->orphan_dirs = RB_ROOT;
  5489. alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
  5490. sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
  5491. if (!sctx->clone_roots) {
  5492. sctx->clone_roots = vzalloc(alloc_size);
  5493. if (!sctx->clone_roots) {
  5494. ret = -ENOMEM;
  5495. goto out;
  5496. }
  5497. }
  5498. alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
  5499. if (arg->clone_sources_count) {
  5500. clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
  5501. if (!clone_sources_tmp) {
  5502. clone_sources_tmp = vmalloc(alloc_size);
  5503. if (!clone_sources_tmp) {
  5504. ret = -ENOMEM;
  5505. goto out;
  5506. }
  5507. }
  5508. ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
  5509. alloc_size);
  5510. if (ret) {
  5511. ret = -EFAULT;
  5512. goto out;
  5513. }
  5514. for (i = 0; i < arg->clone_sources_count; i++) {
  5515. key.objectid = clone_sources_tmp[i];
  5516. key.type = BTRFS_ROOT_ITEM_KEY;
  5517. key.offset = (u64)-1;
  5518. index = srcu_read_lock(&fs_info->subvol_srcu);
  5519. clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
  5520. if (IS_ERR(clone_root)) {
  5521. srcu_read_unlock(&fs_info->subvol_srcu, index);
  5522. ret = PTR_ERR(clone_root);
  5523. goto out;
  5524. }
  5525. spin_lock(&clone_root->root_item_lock);
  5526. if (!btrfs_root_readonly(clone_root) ||
  5527. btrfs_root_dead(clone_root)) {
  5528. spin_unlock(&clone_root->root_item_lock);
  5529. srcu_read_unlock(&fs_info->subvol_srcu, index);
  5530. ret = -EPERM;
  5531. goto out;
  5532. }
  5533. clone_root->send_in_progress++;
  5534. spin_unlock(&clone_root->root_item_lock);
  5535. srcu_read_unlock(&fs_info->subvol_srcu, index);
  5536. sctx->clone_roots[i].root = clone_root;
  5537. clone_sources_to_rollback = i + 1;
  5538. }
  5539. kvfree(clone_sources_tmp);
  5540. clone_sources_tmp = NULL;
  5541. }
  5542. if (arg->parent_root) {
  5543. key.objectid = arg->parent_root;
  5544. key.type = BTRFS_ROOT_ITEM_KEY;
  5545. key.offset = (u64)-1;
  5546. index = srcu_read_lock(&fs_info->subvol_srcu);
  5547. sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
  5548. if (IS_ERR(sctx->parent_root)) {
  5549. srcu_read_unlock(&fs_info->subvol_srcu, index);
  5550. ret = PTR_ERR(sctx->parent_root);
  5551. goto out;
  5552. }
  5553. spin_lock(&sctx->parent_root->root_item_lock);
  5554. sctx->parent_root->send_in_progress++;
  5555. if (!btrfs_root_readonly(sctx->parent_root) ||
  5556. btrfs_root_dead(sctx->parent_root)) {
  5557. spin_unlock(&sctx->parent_root->root_item_lock);
  5558. srcu_read_unlock(&fs_info->subvol_srcu, index);
  5559. ret = -EPERM;
  5560. goto out;
  5561. }
  5562. spin_unlock(&sctx->parent_root->root_item_lock);
  5563. srcu_read_unlock(&fs_info->subvol_srcu, index);
  5564. }
  5565. /*
  5566. * Clones from send_root are allowed, but only if the clone source
  5567. * is behind the current send position. This is checked while searching
  5568. * for possible clone sources.
  5569. */
  5570. sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
  5571. /* We do a bsearch later */
  5572. sort(sctx->clone_roots, sctx->clone_roots_cnt,
  5573. sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
  5574. NULL);
  5575. sort_clone_roots = 1;
  5576. ret = ensure_commit_roots_uptodate(sctx);
  5577. if (ret)
  5578. goto out;
  5579. current->journal_info = BTRFS_SEND_TRANS_STUB;
  5580. ret = send_subvol(sctx);
  5581. current->journal_info = NULL;
  5582. if (ret < 0)
  5583. goto out;
  5584. if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
  5585. ret = begin_cmd(sctx, BTRFS_SEND_C_END);
  5586. if (ret < 0)
  5587. goto out;
  5588. ret = send_cmd(sctx);
  5589. if (ret < 0)
  5590. goto out;
  5591. }
  5592. out:
  5593. WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
  5594. while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
  5595. struct rb_node *n;
  5596. struct pending_dir_move *pm;
  5597. n = rb_first(&sctx->pending_dir_moves);
  5598. pm = rb_entry(n, struct pending_dir_move, node);
  5599. while (!list_empty(&pm->list)) {
  5600. struct pending_dir_move *pm2;
  5601. pm2 = list_first_entry(&pm->list,
  5602. struct pending_dir_move, list);
  5603. free_pending_move(sctx, pm2);
  5604. }
  5605. free_pending_move(sctx, pm);
  5606. }
  5607. WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
  5608. while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
  5609. struct rb_node *n;
  5610. struct waiting_dir_move *dm;
  5611. n = rb_first(&sctx->waiting_dir_moves);
  5612. dm = rb_entry(n, struct waiting_dir_move, node);
  5613. rb_erase(&dm->node, &sctx->waiting_dir_moves);
  5614. kfree(dm);
  5615. }
  5616. WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
  5617. while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
  5618. struct rb_node *n;
  5619. struct orphan_dir_info *odi;
  5620. n = rb_first(&sctx->orphan_dirs);
  5621. odi = rb_entry(n, struct orphan_dir_info, node);
  5622. free_orphan_dir_info(sctx, odi);
  5623. }
  5624. if (sort_clone_roots) {
  5625. for (i = 0; i < sctx->clone_roots_cnt; i++)
  5626. btrfs_root_dec_send_in_progress(
  5627. sctx->clone_roots[i].root);
  5628. } else {
  5629. for (i = 0; sctx && i < clone_sources_to_rollback; i++)
  5630. btrfs_root_dec_send_in_progress(
  5631. sctx->clone_roots[i].root);
  5632. btrfs_root_dec_send_in_progress(send_root);
  5633. }
  5634. if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
  5635. btrfs_root_dec_send_in_progress(sctx->parent_root);
  5636. kfree(arg);
  5637. kvfree(clone_sources_tmp);
  5638. if (sctx) {
  5639. if (sctx->send_filp)
  5640. fput(sctx->send_filp);
  5641. kvfree(sctx->clone_roots);
  5642. kvfree(sctx->send_buf);
  5643. kvfree(sctx->read_buf);
  5644. name_cache_free(sctx);
  5645. kfree(sctx);
  5646. }
  5647. return ret;
  5648. }