123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724 |
- /*
- * linux/mm/vmalloc.c
- *
- * Copyright (C) 1993 Linus Torvalds
- * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
- * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
- * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
- * Numa awareness, Christoph Lameter, SGI, June 2005
- */
- #include <linux/vmalloc.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/highmem.h>
- #include <linux/sched.h>
- #include <linux/slab.h>
- #include <linux/spinlock.h>
- #include <linux/interrupt.h>
- #include <linux/proc_fs.h>
- #include <linux/seq_file.h>
- #include <linux/debugobjects.h>
- #include <linux/kallsyms.h>
- #include <linux/list.h>
- #include <linux/notifier.h>
- #include <linux/rbtree.h>
- #include <linux/radix-tree.h>
- #include <linux/rcupdate.h>
- #include <linux/pfn.h>
- #include <linux/kmemleak.h>
- #include <linux/atomic.h>
- #include <linux/compiler.h>
- #include <linux/llist.h>
- #include <linux/bitops.h>
- #include <asm/uaccess.h>
- #include <asm/tlbflush.h>
- #include <asm/shmparam.h>
- #include "internal.h"
- struct vfree_deferred {
- struct llist_head list;
- struct work_struct wq;
- };
- static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
- static void __vunmap(const void *, int);
- static void free_work(struct work_struct *w)
- {
- struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
- struct llist_node *llnode = llist_del_all(&p->list);
- while (llnode) {
- void *p = llnode;
- llnode = llist_next(llnode);
- __vunmap(p, 1);
- }
- }
- /*** Page table manipulation functions ***/
- static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
- {
- pte_t *pte;
- pte = pte_offset_kernel(pmd, addr);
- do {
- pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
- WARN_ON(!pte_none(ptent) && !pte_present(ptent));
- } while (pte++, addr += PAGE_SIZE, addr != end);
- }
- static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
- {
- pmd_t *pmd;
- unsigned long next;
- pmd = pmd_offset(pud, addr);
- do {
- next = pmd_addr_end(addr, end);
- if (pmd_clear_huge(pmd))
- continue;
- if (pmd_none_or_clear_bad(pmd))
- continue;
- vunmap_pte_range(pmd, addr, next);
- } while (pmd++, addr = next, addr != end);
- }
- static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
- {
- pud_t *pud;
- unsigned long next;
- pud = pud_offset(pgd, addr);
- do {
- next = pud_addr_end(addr, end);
- if (pud_clear_huge(pud))
- continue;
- if (pud_none_or_clear_bad(pud))
- continue;
- vunmap_pmd_range(pud, addr, next);
- } while (pud++, addr = next, addr != end);
- }
- static void vunmap_page_range(unsigned long addr, unsigned long end)
- {
- pgd_t *pgd;
- unsigned long next;
- BUG_ON(addr >= end);
- pgd = pgd_offset_k(addr);
- do {
- next = pgd_addr_end(addr, end);
- if (pgd_none_or_clear_bad(pgd))
- continue;
- vunmap_pud_range(pgd, addr, next);
- } while (pgd++, addr = next, addr != end);
- }
- static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
- unsigned long end, pgprot_t prot, struct page **pages, int *nr)
- {
- pte_t *pte;
- /*
- * nr is a running index into the array which helps higher level
- * callers keep track of where we're up to.
- */
- pte = pte_alloc_kernel(pmd, addr);
- if (!pte)
- return -ENOMEM;
- do {
- struct page *page = pages[*nr];
- if (WARN_ON(!pte_none(*pte)))
- return -EBUSY;
- if (WARN_ON(!page))
- return -ENOMEM;
- set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
- (*nr)++;
- } while (pte++, addr += PAGE_SIZE, addr != end);
- return 0;
- }
- static int vmap_pmd_range(pud_t *pud, unsigned long addr,
- unsigned long end, pgprot_t prot, struct page **pages, int *nr)
- {
- pmd_t *pmd;
- unsigned long next;
- pmd = pmd_alloc(&init_mm, pud, addr);
- if (!pmd)
- return -ENOMEM;
- do {
- next = pmd_addr_end(addr, end);
- if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
- return -ENOMEM;
- } while (pmd++, addr = next, addr != end);
- return 0;
- }
- static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
- unsigned long end, pgprot_t prot, struct page **pages, int *nr)
- {
- pud_t *pud;
- unsigned long next;
- pud = pud_alloc(&init_mm, pgd, addr);
- if (!pud)
- return -ENOMEM;
- do {
- next = pud_addr_end(addr, end);
- if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
- return -ENOMEM;
- } while (pud++, addr = next, addr != end);
- return 0;
- }
- /*
- * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
- * will have pfns corresponding to the "pages" array.
- *
- * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
- */
- static int vmap_page_range_noflush(unsigned long start, unsigned long end,
- pgprot_t prot, struct page **pages)
- {
- pgd_t *pgd;
- unsigned long next;
- unsigned long addr = start;
- int err = 0;
- int nr = 0;
- BUG_ON(addr >= end);
- pgd = pgd_offset_k(addr);
- do {
- next = pgd_addr_end(addr, end);
- err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
- if (err)
- return err;
- } while (pgd++, addr = next, addr != end);
- return nr;
- }
- static int vmap_page_range(unsigned long start, unsigned long end,
- pgprot_t prot, struct page **pages)
- {
- int ret;
- ret = vmap_page_range_noflush(start, end, prot, pages);
- flush_cache_vmap(start, end);
- return ret;
- }
- int is_vmalloc_or_module_addr(const void *x)
- {
- /*
- * ARM, x86-64 and sparc64 put modules in a special place,
- * and fall back on vmalloc() if that fails. Others
- * just put it in the vmalloc space.
- */
- #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
- unsigned long addr = (unsigned long)x;
- if (addr >= MODULES_VADDR && addr < MODULES_END)
- return 1;
- #endif
- return is_vmalloc_addr(x);
- }
- /*
- * Walk a vmap address to the struct page it maps.
- */
- struct page *vmalloc_to_page(const void *vmalloc_addr)
- {
- unsigned long addr = (unsigned long) vmalloc_addr;
- struct page *page = NULL;
- pgd_t *pgd = pgd_offset_k(addr);
- /*
- * XXX we might need to change this if we add VIRTUAL_BUG_ON for
- * architectures that do not vmalloc module space
- */
- VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
- /*
- * Don't dereference bad PUD or PMD (below) entries. This will also
- * identify huge mappings, which we may encounter on architectures
- * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
- * identified as vmalloc addresses by is_vmalloc_addr(), but are
- * not [unambiguously] associated with a struct page, so there is
- * no correct value to return for them.
- */
- if (!pgd_none(*pgd)) {
- pud_t *pud = pud_offset(pgd, addr);
- WARN_ON_ONCE(pud_bad(*pud));
- if (!pud_none(*pud) && !pud_bad(*pud)) {
- pmd_t *pmd = pmd_offset(pud, addr);
- WARN_ON_ONCE(pmd_bad(*pmd));
- if (!pmd_none(*pmd) && !pmd_bad(*pmd)) {
- pte_t *ptep, pte;
- ptep = pte_offset_map(pmd, addr);
- pte = *ptep;
- if (pte_present(pte))
- page = pte_page(pte);
- pte_unmap(ptep);
- }
- }
- }
- return page;
- }
- EXPORT_SYMBOL(vmalloc_to_page);
- /*
- * Map a vmalloc()-space virtual address to the physical page frame number.
- */
- unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
- {
- return page_to_pfn(vmalloc_to_page(vmalloc_addr));
- }
- EXPORT_SYMBOL(vmalloc_to_pfn);
- /*** Global kva allocator ***/
- #define VM_VM_AREA 0x04
- static DEFINE_SPINLOCK(vmap_area_lock);
- /* Export for kexec only */
- LIST_HEAD(vmap_area_list);
- static LLIST_HEAD(vmap_purge_list);
- static struct rb_root vmap_area_root = RB_ROOT;
- /* The vmap cache globals are protected by vmap_area_lock */
- static struct rb_node *free_vmap_cache;
- static unsigned long cached_hole_size;
- static unsigned long cached_vstart;
- static unsigned long cached_align;
- static unsigned long vmap_area_pcpu_hole;
- static struct vmap_area *__find_vmap_area(unsigned long addr)
- {
- struct rb_node *n = vmap_area_root.rb_node;
- while (n) {
- struct vmap_area *va;
- va = rb_entry(n, struct vmap_area, rb_node);
- if (addr < va->va_start)
- n = n->rb_left;
- else if (addr >= va->va_end)
- n = n->rb_right;
- else
- return va;
- }
- return NULL;
- }
- static void __insert_vmap_area(struct vmap_area *va)
- {
- struct rb_node **p = &vmap_area_root.rb_node;
- struct rb_node *parent = NULL;
- struct rb_node *tmp;
- while (*p) {
- struct vmap_area *tmp_va;
- parent = *p;
- tmp_va = rb_entry(parent, struct vmap_area, rb_node);
- if (va->va_start < tmp_va->va_end)
- p = &(*p)->rb_left;
- else if (va->va_end > tmp_va->va_start)
- p = &(*p)->rb_right;
- else
- BUG();
- }
- rb_link_node(&va->rb_node, parent, p);
- rb_insert_color(&va->rb_node, &vmap_area_root);
- /* address-sort this list */
- tmp = rb_prev(&va->rb_node);
- if (tmp) {
- struct vmap_area *prev;
- prev = rb_entry(tmp, struct vmap_area, rb_node);
- list_add_rcu(&va->list, &prev->list);
- } else
- list_add_rcu(&va->list, &vmap_area_list);
- }
- static void purge_vmap_area_lazy(void);
- static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
- /*
- * Allocate a region of KVA of the specified size and alignment, within the
- * vstart and vend.
- */
- static struct vmap_area *alloc_vmap_area(unsigned long size,
- unsigned long align,
- unsigned long vstart, unsigned long vend,
- int node, gfp_t gfp_mask)
- {
- struct vmap_area *va;
- struct rb_node *n;
- unsigned long addr;
- int purged = 0;
- struct vmap_area *first;
- BUG_ON(!size);
- BUG_ON(offset_in_page(size));
- BUG_ON(!is_power_of_2(align));
- might_sleep_if(gfpflags_allow_blocking(gfp_mask));
- va = kmalloc_node(sizeof(struct vmap_area),
- gfp_mask & GFP_RECLAIM_MASK, node);
- if (unlikely(!va))
- return ERR_PTR(-ENOMEM);
- /*
- * Only scan the relevant parts containing pointers to other objects
- * to avoid false negatives.
- */
- kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
- retry:
- spin_lock(&vmap_area_lock);
- /*
- * Invalidate cache if we have more permissive parameters.
- * cached_hole_size notes the largest hole noticed _below_
- * the vmap_area cached in free_vmap_cache: if size fits
- * into that hole, we want to scan from vstart to reuse
- * the hole instead of allocating above free_vmap_cache.
- * Note that __free_vmap_area may update free_vmap_cache
- * without updating cached_hole_size or cached_align.
- */
- if (!free_vmap_cache ||
- size < cached_hole_size ||
- vstart < cached_vstart ||
- align < cached_align) {
- nocache:
- cached_hole_size = 0;
- free_vmap_cache = NULL;
- }
- /* record if we encounter less permissive parameters */
- cached_vstart = vstart;
- cached_align = align;
- /* find starting point for our search */
- if (free_vmap_cache) {
- first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
- addr = ALIGN(first->va_end, align);
- if (addr < vstart)
- goto nocache;
- if (addr + size < addr)
- goto overflow;
- } else {
- addr = ALIGN(vstart, align);
- if (addr + size < addr)
- goto overflow;
- n = vmap_area_root.rb_node;
- first = NULL;
- while (n) {
- struct vmap_area *tmp;
- tmp = rb_entry(n, struct vmap_area, rb_node);
- if (tmp->va_end >= addr) {
- first = tmp;
- if (tmp->va_start <= addr)
- break;
- n = n->rb_left;
- } else
- n = n->rb_right;
- }
- if (!first)
- goto found;
- }
- /* from the starting point, walk areas until a suitable hole is found */
- while (addr + size > first->va_start && addr + size <= vend) {
- if (addr + cached_hole_size < first->va_start)
- cached_hole_size = first->va_start - addr;
- addr = ALIGN(first->va_end, align);
- if (addr + size < addr)
- goto overflow;
- if (list_is_last(&first->list, &vmap_area_list))
- goto found;
- first = list_next_entry(first, list);
- }
- found:
- if (addr + size > vend)
- goto overflow;
- va->va_start = addr;
- va->va_end = addr + size;
- va->flags = 0;
- __insert_vmap_area(va);
- free_vmap_cache = &va->rb_node;
- spin_unlock(&vmap_area_lock);
- BUG_ON(!IS_ALIGNED(va->va_start, align));
- BUG_ON(va->va_start < vstart);
- BUG_ON(va->va_end > vend);
- return va;
- overflow:
- spin_unlock(&vmap_area_lock);
- if (!purged) {
- purge_vmap_area_lazy();
- purged = 1;
- goto retry;
- }
- if (gfpflags_allow_blocking(gfp_mask)) {
- unsigned long freed = 0;
- blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
- if (freed > 0) {
- purged = 0;
- goto retry;
- }
- }
- if (printk_ratelimit())
- pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
- size);
- kfree(va);
- return ERR_PTR(-EBUSY);
- }
- int register_vmap_purge_notifier(struct notifier_block *nb)
- {
- return blocking_notifier_chain_register(&vmap_notify_list, nb);
- }
- EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
- int unregister_vmap_purge_notifier(struct notifier_block *nb)
- {
- return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
- }
- EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
- static void __free_vmap_area(struct vmap_area *va)
- {
- BUG_ON(RB_EMPTY_NODE(&va->rb_node));
- if (free_vmap_cache) {
- if (va->va_end < cached_vstart) {
- free_vmap_cache = NULL;
- } else {
- struct vmap_area *cache;
- cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
- if (va->va_start <= cache->va_start) {
- free_vmap_cache = rb_prev(&va->rb_node);
- /*
- * We don't try to update cached_hole_size or
- * cached_align, but it won't go very wrong.
- */
- }
- }
- }
- rb_erase(&va->rb_node, &vmap_area_root);
- RB_CLEAR_NODE(&va->rb_node);
- list_del_rcu(&va->list);
- /*
- * Track the highest possible candidate for pcpu area
- * allocation. Areas outside of vmalloc area can be returned
- * here too, consider only end addresses which fall inside
- * vmalloc area proper.
- */
- if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
- vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
- kfree_rcu(va, rcu_head);
- }
- /*
- * Free a region of KVA allocated by alloc_vmap_area
- */
- static void free_vmap_area(struct vmap_area *va)
- {
- spin_lock(&vmap_area_lock);
- __free_vmap_area(va);
- spin_unlock(&vmap_area_lock);
- }
- /*
- * Clear the pagetable entries of a given vmap_area
- */
- static void unmap_vmap_area(struct vmap_area *va)
- {
- vunmap_page_range(va->va_start, va->va_end);
- }
- static void vmap_debug_free_range(unsigned long start, unsigned long end)
- {
- /*
- * Unmap page tables and force a TLB flush immediately if pagealloc
- * debugging is enabled. This catches use after free bugs similarly to
- * those in linear kernel virtual address space after a page has been
- * freed.
- *
- * All the lazy freeing logic is still retained, in order to minimise
- * intrusiveness of this debugging feature.
- *
- * This is going to be *slow* (linear kernel virtual address debugging
- * doesn't do a broadcast TLB flush so it is a lot faster).
- */
- if (debug_pagealloc_enabled()) {
- vunmap_page_range(start, end);
- flush_tlb_kernel_range(start, end);
- }
- }
- /*
- * lazy_max_pages is the maximum amount of virtual address space we gather up
- * before attempting to purge with a TLB flush.
- *
- * There is a tradeoff here: a larger number will cover more kernel page tables
- * and take slightly longer to purge, but it will linearly reduce the number of
- * global TLB flushes that must be performed. It would seem natural to scale
- * this number up linearly with the number of CPUs (because vmapping activity
- * could also scale linearly with the number of CPUs), however it is likely
- * that in practice, workloads might be constrained in other ways that mean
- * vmap activity will not scale linearly with CPUs. Also, I want to be
- * conservative and not introduce a big latency on huge systems, so go with
- * a less aggressive log scale. It will still be an improvement over the old
- * code, and it will be simple to change the scale factor if we find that it
- * becomes a problem on bigger systems.
- */
- static unsigned long lazy_max_pages(void)
- {
- unsigned int log;
- log = fls(num_online_cpus());
- return log * (32UL * 1024 * 1024 / PAGE_SIZE);
- }
- static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
- /* for per-CPU blocks */
- static void purge_fragmented_blocks_allcpus(void);
- /*
- * called before a call to iounmap() if the caller wants vm_area_struct's
- * immediately freed.
- */
- void set_iounmap_nonlazy(void)
- {
- atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
- }
- /*
- * Purges all lazily-freed vmap areas.
- *
- * If sync is 0 then don't purge if there is already a purge in progress.
- * If force_flush is 1, then flush kernel TLBs between *start and *end even
- * if we found no lazy vmap areas to unmap (callers can use this to optimise
- * their own TLB flushing).
- * Returns with *start = min(*start, lowest purged address)
- * *end = max(*end, highest purged address)
- */
- static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
- int sync, int force_flush)
- {
- static DEFINE_SPINLOCK(purge_lock);
- struct llist_node *valist;
- struct vmap_area *va;
- struct vmap_area *n_va;
- int nr = 0;
- /*
- * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
- * should not expect such behaviour. This just simplifies locking for
- * the case that isn't actually used at the moment anyway.
- */
- if (!sync && !force_flush) {
- if (!spin_trylock(&purge_lock))
- return;
- } else
- spin_lock(&purge_lock);
- if (sync)
- purge_fragmented_blocks_allcpus();
- valist = llist_del_all(&vmap_purge_list);
- llist_for_each_entry(va, valist, purge_list) {
- if (va->va_start < *start)
- *start = va->va_start;
- if (va->va_end > *end)
- *end = va->va_end;
- nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
- }
- if (nr)
- atomic_sub(nr, &vmap_lazy_nr);
- if (nr || force_flush)
- flush_tlb_kernel_range(*start, *end);
- if (nr) {
- spin_lock(&vmap_area_lock);
- llist_for_each_entry_safe(va, n_va, valist, purge_list)
- __free_vmap_area(va);
- spin_unlock(&vmap_area_lock);
- }
- spin_unlock(&purge_lock);
- }
- /*
- * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
- * is already purging.
- */
- static void try_purge_vmap_area_lazy(void)
- {
- unsigned long start = ULONG_MAX, end = 0;
- __purge_vmap_area_lazy(&start, &end, 0, 0);
- }
- /*
- * Kick off a purge of the outstanding lazy areas.
- */
- static void purge_vmap_area_lazy(void)
- {
- unsigned long start = ULONG_MAX, end = 0;
- __purge_vmap_area_lazy(&start, &end, 1, 0);
- }
- /*
- * Free a vmap area, caller ensuring that the area has been unmapped
- * and flush_cache_vunmap had been called for the correct range
- * previously.
- */
- static void free_vmap_area_noflush(struct vmap_area *va)
- {
- int nr_lazy;
- nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
- &vmap_lazy_nr);
- /* After this point, we may free va at any time */
- llist_add(&va->purge_list, &vmap_purge_list);
- if (unlikely(nr_lazy > lazy_max_pages()))
- try_purge_vmap_area_lazy();
- }
- /*
- * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
- * called for the correct range previously.
- */
- static void free_unmap_vmap_area_noflush(struct vmap_area *va)
- {
- unmap_vmap_area(va);
- free_vmap_area_noflush(va);
- }
- /*
- * Free and unmap a vmap area
- */
- static void free_unmap_vmap_area(struct vmap_area *va)
- {
- flush_cache_vunmap(va->va_start, va->va_end);
- free_unmap_vmap_area_noflush(va);
- }
- static struct vmap_area *find_vmap_area(unsigned long addr)
- {
- struct vmap_area *va;
- spin_lock(&vmap_area_lock);
- va = __find_vmap_area(addr);
- spin_unlock(&vmap_area_lock);
- return va;
- }
- static void free_unmap_vmap_area_addr(unsigned long addr)
- {
- struct vmap_area *va;
- va = find_vmap_area(addr);
- BUG_ON(!va);
- free_unmap_vmap_area(va);
- }
- /*** Per cpu kva allocator ***/
- /*
- * vmap space is limited especially on 32 bit architectures. Ensure there is
- * room for at least 16 percpu vmap blocks per CPU.
- */
- /*
- * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
- * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
- * instead (we just need a rough idea)
- */
- #if BITS_PER_LONG == 32
- #define VMALLOC_SPACE (128UL*1024*1024)
- #else
- #define VMALLOC_SPACE (128UL*1024*1024*1024)
- #endif
- #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
- #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
- #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
- #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
- #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
- #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
- #define VMAP_BBMAP_BITS \
- VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
- VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
- VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
- #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
- static bool vmap_initialized __read_mostly = false;
- struct vmap_block_queue {
- spinlock_t lock;
- struct list_head free;
- };
- struct vmap_block {
- spinlock_t lock;
- struct vmap_area *va;
- unsigned long free, dirty;
- unsigned long dirty_min, dirty_max; /*< dirty range */
- struct list_head free_list;
- struct rcu_head rcu_head;
- struct list_head purge;
- };
- /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
- static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
- /*
- * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
- * in the free path. Could get rid of this if we change the API to return a
- * "cookie" from alloc, to be passed to free. But no big deal yet.
- */
- static DEFINE_SPINLOCK(vmap_block_tree_lock);
- static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
- /*
- * We should probably have a fallback mechanism to allocate virtual memory
- * out of partially filled vmap blocks. However vmap block sizing should be
- * fairly reasonable according to the vmalloc size, so it shouldn't be a
- * big problem.
- */
- static unsigned long addr_to_vb_idx(unsigned long addr)
- {
- addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
- addr /= VMAP_BLOCK_SIZE;
- return addr;
- }
- static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
- {
- unsigned long addr;
- addr = va_start + (pages_off << PAGE_SHIFT);
- BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
- return (void *)addr;
- }
- /**
- * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
- * block. Of course pages number can't exceed VMAP_BBMAP_BITS
- * @order: how many 2^order pages should be occupied in newly allocated block
- * @gfp_mask: flags for the page level allocator
- *
- * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
- */
- static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
- {
- struct vmap_block_queue *vbq;
- struct vmap_block *vb;
- struct vmap_area *va;
- unsigned long vb_idx;
- int node, err;
- void *vaddr;
- node = numa_node_id();
- vb = kmalloc_node(sizeof(struct vmap_block),
- gfp_mask & GFP_RECLAIM_MASK, node);
- if (unlikely(!vb))
- return ERR_PTR(-ENOMEM);
- va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
- VMALLOC_START, VMALLOC_END,
- node, gfp_mask);
- if (IS_ERR(va)) {
- kfree(vb);
- return ERR_CAST(va);
- }
- err = radix_tree_preload(gfp_mask);
- if (unlikely(err)) {
- kfree(vb);
- free_vmap_area(va);
- return ERR_PTR(err);
- }
- vaddr = vmap_block_vaddr(va->va_start, 0);
- spin_lock_init(&vb->lock);
- vb->va = va;
- /* At least something should be left free */
- BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
- vb->free = VMAP_BBMAP_BITS - (1UL << order);
- vb->dirty = 0;
- vb->dirty_min = VMAP_BBMAP_BITS;
- vb->dirty_max = 0;
- INIT_LIST_HEAD(&vb->free_list);
- vb_idx = addr_to_vb_idx(va->va_start);
- spin_lock(&vmap_block_tree_lock);
- err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
- spin_unlock(&vmap_block_tree_lock);
- BUG_ON(err);
- radix_tree_preload_end();
- vbq = &get_cpu_var(vmap_block_queue);
- spin_lock(&vbq->lock);
- list_add_tail_rcu(&vb->free_list, &vbq->free);
- spin_unlock(&vbq->lock);
- put_cpu_var(vmap_block_queue);
- return vaddr;
- }
- static void free_vmap_block(struct vmap_block *vb)
- {
- struct vmap_block *tmp;
- unsigned long vb_idx;
- vb_idx = addr_to_vb_idx(vb->va->va_start);
- spin_lock(&vmap_block_tree_lock);
- tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
- spin_unlock(&vmap_block_tree_lock);
- BUG_ON(tmp != vb);
- free_vmap_area_noflush(vb->va);
- kfree_rcu(vb, rcu_head);
- }
- static void purge_fragmented_blocks(int cpu)
- {
- LIST_HEAD(purge);
- struct vmap_block *vb;
- struct vmap_block *n_vb;
- struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
- rcu_read_lock();
- list_for_each_entry_rcu(vb, &vbq->free, free_list) {
- if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
- continue;
- spin_lock(&vb->lock);
- if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
- vb->free = 0; /* prevent further allocs after releasing lock */
- vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
- vb->dirty_min = 0;
- vb->dirty_max = VMAP_BBMAP_BITS;
- spin_lock(&vbq->lock);
- list_del_rcu(&vb->free_list);
- spin_unlock(&vbq->lock);
- spin_unlock(&vb->lock);
- list_add_tail(&vb->purge, &purge);
- } else
- spin_unlock(&vb->lock);
- }
- rcu_read_unlock();
- list_for_each_entry_safe(vb, n_vb, &purge, purge) {
- list_del(&vb->purge);
- free_vmap_block(vb);
- }
- }
- static void purge_fragmented_blocks_allcpus(void)
- {
- int cpu;
- for_each_possible_cpu(cpu)
- purge_fragmented_blocks(cpu);
- }
- static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
- {
- struct vmap_block_queue *vbq;
- struct vmap_block *vb;
- void *vaddr = NULL;
- unsigned int order;
- BUG_ON(offset_in_page(size));
- BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
- if (WARN_ON(size == 0)) {
- /*
- * Allocating 0 bytes isn't what caller wants since
- * get_order(0) returns funny result. Just warn and terminate
- * early.
- */
- return NULL;
- }
- order = get_order(size);
- rcu_read_lock();
- vbq = &get_cpu_var(vmap_block_queue);
- list_for_each_entry_rcu(vb, &vbq->free, free_list) {
- unsigned long pages_off;
- spin_lock(&vb->lock);
- if (vb->free < (1UL << order)) {
- spin_unlock(&vb->lock);
- continue;
- }
- pages_off = VMAP_BBMAP_BITS - vb->free;
- vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
- vb->free -= 1UL << order;
- if (vb->free == 0) {
- spin_lock(&vbq->lock);
- list_del_rcu(&vb->free_list);
- spin_unlock(&vbq->lock);
- }
- spin_unlock(&vb->lock);
- break;
- }
- put_cpu_var(vmap_block_queue);
- rcu_read_unlock();
- /* Allocate new block if nothing was found */
- if (!vaddr)
- vaddr = new_vmap_block(order, gfp_mask);
- return vaddr;
- }
- static void vb_free(const void *addr, unsigned long size)
- {
- unsigned long offset;
- unsigned long vb_idx;
- unsigned int order;
- struct vmap_block *vb;
- BUG_ON(offset_in_page(size));
- BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
- flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
- order = get_order(size);
- offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
- offset >>= PAGE_SHIFT;
- vb_idx = addr_to_vb_idx((unsigned long)addr);
- rcu_read_lock();
- vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
- rcu_read_unlock();
- BUG_ON(!vb);
- vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
- spin_lock(&vb->lock);
- /* Expand dirty range */
- vb->dirty_min = min(vb->dirty_min, offset);
- vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
- vb->dirty += 1UL << order;
- if (vb->dirty == VMAP_BBMAP_BITS) {
- BUG_ON(vb->free);
- spin_unlock(&vb->lock);
- free_vmap_block(vb);
- } else
- spin_unlock(&vb->lock);
- }
- /**
- * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
- *
- * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
- * to amortize TLB flushing overheads. What this means is that any page you
- * have now, may, in a former life, have been mapped into kernel virtual
- * address by the vmap layer and so there might be some CPUs with TLB entries
- * still referencing that page (additional to the regular 1:1 kernel mapping).
- *
- * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
- * be sure that none of the pages we have control over will have any aliases
- * from the vmap layer.
- */
- void vm_unmap_aliases(void)
- {
- unsigned long start = ULONG_MAX, end = 0;
- int cpu;
- int flush = 0;
- if (unlikely(!vmap_initialized))
- return;
- for_each_possible_cpu(cpu) {
- struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
- struct vmap_block *vb;
- rcu_read_lock();
- list_for_each_entry_rcu(vb, &vbq->free, free_list) {
- spin_lock(&vb->lock);
- if (vb->dirty) {
- unsigned long va_start = vb->va->va_start;
- unsigned long s, e;
- s = va_start + (vb->dirty_min << PAGE_SHIFT);
- e = va_start + (vb->dirty_max << PAGE_SHIFT);
- start = min(s, start);
- end = max(e, end);
- flush = 1;
- }
- spin_unlock(&vb->lock);
- }
- rcu_read_unlock();
- }
- __purge_vmap_area_lazy(&start, &end, 1, flush);
- }
- EXPORT_SYMBOL_GPL(vm_unmap_aliases);
- /**
- * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
- * @mem: the pointer returned by vm_map_ram
- * @count: the count passed to that vm_map_ram call (cannot unmap partial)
- */
- void vm_unmap_ram(const void *mem, unsigned int count)
- {
- unsigned long size = (unsigned long)count << PAGE_SHIFT;
- unsigned long addr = (unsigned long)mem;
- BUG_ON(!addr);
- BUG_ON(addr < VMALLOC_START);
- BUG_ON(addr > VMALLOC_END);
- BUG_ON(!PAGE_ALIGNED(addr));
- debug_check_no_locks_freed(mem, size);
- vmap_debug_free_range(addr, addr+size);
- if (likely(count <= VMAP_MAX_ALLOC))
- vb_free(mem, size);
- else
- free_unmap_vmap_area_addr(addr);
- }
- EXPORT_SYMBOL(vm_unmap_ram);
- /**
- * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
- * @pages: an array of pointers to the pages to be mapped
- * @count: number of pages
- * @node: prefer to allocate data structures on this node
- * @prot: memory protection to use. PAGE_KERNEL for regular RAM
- *
- * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
- * faster than vmap so it's good. But if you mix long-life and short-life
- * objects with vm_map_ram(), it could consume lots of address space through
- * fragmentation (especially on a 32bit machine). You could see failures in
- * the end. Please use this function for short-lived objects.
- *
- * Returns: a pointer to the address that has been mapped, or %NULL on failure
- */
- void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
- {
- unsigned long size = (unsigned long)count << PAGE_SHIFT;
- unsigned long addr;
- void *mem;
- if (likely(count <= VMAP_MAX_ALLOC)) {
- mem = vb_alloc(size, GFP_KERNEL);
- if (IS_ERR(mem))
- return NULL;
- addr = (unsigned long)mem;
- } else {
- struct vmap_area *va;
- va = alloc_vmap_area(size, PAGE_SIZE,
- VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
- if (IS_ERR(va))
- return NULL;
- addr = va->va_start;
- mem = (void *)addr;
- }
- if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
- vm_unmap_ram(mem, count);
- return NULL;
- }
- return mem;
- }
- EXPORT_SYMBOL(vm_map_ram);
- static struct vm_struct *vmlist __initdata;
- /**
- * vm_area_add_early - add vmap area early during boot
- * @vm: vm_struct to add
- *
- * This function is used to add fixed kernel vm area to vmlist before
- * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
- * should contain proper values and the other fields should be zero.
- *
- * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
- */
- void __init vm_area_add_early(struct vm_struct *vm)
- {
- struct vm_struct *tmp, **p;
- BUG_ON(vmap_initialized);
- for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
- if (tmp->addr >= vm->addr) {
- BUG_ON(tmp->addr < vm->addr + vm->size);
- break;
- } else
- BUG_ON(tmp->addr + tmp->size > vm->addr);
- }
- vm->next = *p;
- *p = vm;
- }
- /**
- * vm_area_register_early - register vmap area early during boot
- * @vm: vm_struct to register
- * @align: requested alignment
- *
- * This function is used to register kernel vm area before
- * vmalloc_init() is called. @vm->size and @vm->flags should contain
- * proper values on entry and other fields should be zero. On return,
- * vm->addr contains the allocated address.
- *
- * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
- */
- void __init vm_area_register_early(struct vm_struct *vm, size_t align)
- {
- static size_t vm_init_off __initdata;
- unsigned long addr;
- addr = ALIGN(VMALLOC_START + vm_init_off, align);
- vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
- vm->addr = (void *)addr;
- vm_area_add_early(vm);
- }
- void __init vmalloc_init(void)
- {
- struct vmap_area *va;
- struct vm_struct *tmp;
- int i;
- for_each_possible_cpu(i) {
- struct vmap_block_queue *vbq;
- struct vfree_deferred *p;
- vbq = &per_cpu(vmap_block_queue, i);
- spin_lock_init(&vbq->lock);
- INIT_LIST_HEAD(&vbq->free);
- p = &per_cpu(vfree_deferred, i);
- init_llist_head(&p->list);
- INIT_WORK(&p->wq, free_work);
- }
- /* Import existing vmlist entries. */
- for (tmp = vmlist; tmp; tmp = tmp->next) {
- va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
- va->flags = VM_VM_AREA;
- va->va_start = (unsigned long)tmp->addr;
- va->va_end = va->va_start + tmp->size;
- va->vm = tmp;
- __insert_vmap_area(va);
- }
- vmap_area_pcpu_hole = VMALLOC_END;
- vmap_initialized = true;
- }
- /**
- * map_kernel_range_noflush - map kernel VM area with the specified pages
- * @addr: start of the VM area to map
- * @size: size of the VM area to map
- * @prot: page protection flags to use
- * @pages: pages to map
- *
- * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
- * specify should have been allocated using get_vm_area() and its
- * friends.
- *
- * NOTE:
- * This function does NOT do any cache flushing. The caller is
- * responsible for calling flush_cache_vmap() on to-be-mapped areas
- * before calling this function.
- *
- * RETURNS:
- * The number of pages mapped on success, -errno on failure.
- */
- int map_kernel_range_noflush(unsigned long addr, unsigned long size,
- pgprot_t prot, struct page **pages)
- {
- return vmap_page_range_noflush(addr, addr + size, prot, pages);
- }
- /**
- * unmap_kernel_range_noflush - unmap kernel VM area
- * @addr: start of the VM area to unmap
- * @size: size of the VM area to unmap
- *
- * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
- * specify should have been allocated using get_vm_area() and its
- * friends.
- *
- * NOTE:
- * This function does NOT do any cache flushing. The caller is
- * responsible for calling flush_cache_vunmap() on to-be-mapped areas
- * before calling this function and flush_tlb_kernel_range() after.
- */
- void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
- {
- vunmap_page_range(addr, addr + size);
- }
- EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
- /**
- * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
- * @addr: start of the VM area to unmap
- * @size: size of the VM area to unmap
- *
- * Similar to unmap_kernel_range_noflush() but flushes vcache before
- * the unmapping and tlb after.
- */
- void unmap_kernel_range(unsigned long addr, unsigned long size)
- {
- unsigned long end = addr + size;
- flush_cache_vunmap(addr, end);
- vunmap_page_range(addr, end);
- flush_tlb_kernel_range(addr, end);
- }
- EXPORT_SYMBOL_GPL(unmap_kernel_range);
- int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
- {
- unsigned long addr = (unsigned long)area->addr;
- unsigned long end = addr + get_vm_area_size(area);
- int err;
- err = vmap_page_range(addr, end, prot, pages);
- return err > 0 ? 0 : err;
- }
- EXPORT_SYMBOL_GPL(map_vm_area);
- static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
- unsigned long flags, const void *caller)
- {
- spin_lock(&vmap_area_lock);
- vm->flags = flags;
- vm->addr = (void *)va->va_start;
- vm->size = va->va_end - va->va_start;
- vm->caller = caller;
- va->vm = vm;
- va->flags |= VM_VM_AREA;
- spin_unlock(&vmap_area_lock);
- }
- static void clear_vm_uninitialized_flag(struct vm_struct *vm)
- {
- /*
- * Before removing VM_UNINITIALIZED,
- * we should make sure that vm has proper values.
- * Pair with smp_rmb() in show_numa_info().
- */
- smp_wmb();
- vm->flags &= ~VM_UNINITIALIZED;
- }
- static struct vm_struct *__get_vm_area_node(unsigned long size,
- unsigned long align, unsigned long flags, unsigned long start,
- unsigned long end, int node, gfp_t gfp_mask, const void *caller)
- {
- struct vmap_area *va;
- struct vm_struct *area;
- BUG_ON(in_interrupt());
- size = PAGE_ALIGN(size);
- if (unlikely(!size))
- return NULL;
- if (flags & VM_IOREMAP)
- align = 1ul << clamp_t(int, get_count_order_long(size),
- PAGE_SHIFT, IOREMAP_MAX_ORDER);
- area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
- if (unlikely(!area))
- return NULL;
- if (!(flags & VM_NO_GUARD))
- size += PAGE_SIZE;
- va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
- if (IS_ERR(va)) {
- kfree(area);
- return NULL;
- }
- setup_vmalloc_vm(area, va, flags, caller);
- return area;
- }
- struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
- unsigned long start, unsigned long end)
- {
- return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
- GFP_KERNEL, __builtin_return_address(0));
- }
- EXPORT_SYMBOL_GPL(__get_vm_area);
- struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
- unsigned long start, unsigned long end,
- const void *caller)
- {
- return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
- GFP_KERNEL, caller);
- }
- /**
- * get_vm_area - reserve a contiguous kernel virtual area
- * @size: size of the area
- * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
- *
- * Search an area of @size in the kernel virtual mapping area,
- * and reserved it for out purposes. Returns the area descriptor
- * on success or %NULL on failure.
- */
- struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
- {
- return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
- NUMA_NO_NODE, GFP_KERNEL,
- __builtin_return_address(0));
- }
- struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
- const void *caller)
- {
- return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
- NUMA_NO_NODE, GFP_KERNEL, caller);
- }
- /**
- * find_vm_area - find a continuous kernel virtual area
- * @addr: base address
- *
- * Search for the kernel VM area starting at @addr, and return it.
- * It is up to the caller to do all required locking to keep the returned
- * pointer valid.
- */
- struct vm_struct *find_vm_area(const void *addr)
- {
- struct vmap_area *va;
- va = find_vmap_area((unsigned long)addr);
- if (va && va->flags & VM_VM_AREA)
- return va->vm;
- return NULL;
- }
- /**
- * remove_vm_area - find and remove a continuous kernel virtual area
- * @addr: base address
- *
- * Search for the kernel VM area starting at @addr, and remove it.
- * This function returns the found VM area, but using it is NOT safe
- * on SMP machines, except for its size or flags.
- */
- struct vm_struct *remove_vm_area(const void *addr)
- {
- struct vmap_area *va;
- va = find_vmap_area((unsigned long)addr);
- if (va && va->flags & VM_VM_AREA) {
- struct vm_struct *vm = va->vm;
- spin_lock(&vmap_area_lock);
- va->vm = NULL;
- va->flags &= ~VM_VM_AREA;
- spin_unlock(&vmap_area_lock);
- vmap_debug_free_range(va->va_start, va->va_end);
- kasan_free_shadow(vm);
- free_unmap_vmap_area(va);
- return vm;
- }
- return NULL;
- }
- static void __vunmap(const void *addr, int deallocate_pages)
- {
- struct vm_struct *area;
- if (!addr)
- return;
- if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
- addr))
- return;
- area = find_vmap_area((unsigned long)addr)->vm;
- if (unlikely(!area)) {
- WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
- addr);
- return;
- }
- debug_check_no_locks_freed(addr, get_vm_area_size(area));
- debug_check_no_obj_freed(addr, get_vm_area_size(area));
- remove_vm_area(addr);
- if (deallocate_pages) {
- int i;
- for (i = 0; i < area->nr_pages; i++) {
- struct page *page = area->pages[i];
- BUG_ON(!page);
- __free_pages(page, 0);
- }
- kvfree(area->pages);
- }
- kfree(area);
- return;
- }
-
- /**
- * vfree - release memory allocated by vmalloc()
- * @addr: memory base address
- *
- * Free the virtually continuous memory area starting at @addr, as
- * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
- * NULL, no operation is performed.
- *
- * Must not be called in NMI context (strictly speaking, only if we don't
- * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
- * conventions for vfree() arch-depenedent would be a really bad idea)
- *
- * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
- */
- void vfree(const void *addr)
- {
- BUG_ON(in_nmi());
- kmemleak_free(addr);
- if (!addr)
- return;
- if (unlikely(in_interrupt())) {
- struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
- if (llist_add((struct llist_node *)addr, &p->list))
- schedule_work(&p->wq);
- } else
- __vunmap(addr, 1);
- }
- EXPORT_SYMBOL(vfree);
- /**
- * vunmap - release virtual mapping obtained by vmap()
- * @addr: memory base address
- *
- * Free the virtually contiguous memory area starting at @addr,
- * which was created from the page array passed to vmap().
- *
- * Must not be called in interrupt context.
- */
- void vunmap(const void *addr)
- {
- BUG_ON(in_interrupt());
- might_sleep();
- if (addr)
- __vunmap(addr, 0);
- }
- EXPORT_SYMBOL(vunmap);
- /**
- * vmap - map an array of pages into virtually contiguous space
- * @pages: array of page pointers
- * @count: number of pages to map
- * @flags: vm_area->flags
- * @prot: page protection for the mapping
- *
- * Maps @count pages from @pages into contiguous kernel virtual
- * space.
- */
- void *vmap(struct page **pages, unsigned int count,
- unsigned long flags, pgprot_t prot)
- {
- struct vm_struct *area;
- unsigned long size; /* In bytes */
- might_sleep();
- if (count > totalram_pages)
- return NULL;
- size = (unsigned long)count << PAGE_SHIFT;
- area = get_vm_area_caller(size, flags, __builtin_return_address(0));
- if (!area)
- return NULL;
- if (map_vm_area(area, prot, pages)) {
- vunmap(area->addr);
- return NULL;
- }
- return area->addr;
- }
- EXPORT_SYMBOL(vmap);
- static void *__vmalloc_node(unsigned long size, unsigned long align,
- gfp_t gfp_mask, pgprot_t prot,
- int node, const void *caller);
- static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
- pgprot_t prot, int node)
- {
- struct page **pages;
- unsigned int nr_pages, array_size, i;
- const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
- const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
- nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
- array_size = (nr_pages * sizeof(struct page *));
- area->nr_pages = nr_pages;
- /* Please note that the recursion is strictly bounded. */
- if (array_size > PAGE_SIZE) {
- pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
- PAGE_KERNEL, node, area->caller);
- } else {
- pages = kmalloc_node(array_size, nested_gfp, node);
- }
- area->pages = pages;
- if (!area->pages) {
- remove_vm_area(area->addr);
- kfree(area);
- return NULL;
- }
- for (i = 0; i < area->nr_pages; i++) {
- struct page *page;
- if (node == NUMA_NO_NODE)
- page = alloc_page(alloc_mask);
- else
- page = alloc_pages_node(node, alloc_mask, 0);
- if (unlikely(!page)) {
- /* Successfully allocated i pages, free them in __vunmap() */
- area->nr_pages = i;
- goto fail;
- }
- area->pages[i] = page;
- if (gfpflags_allow_blocking(gfp_mask))
- cond_resched();
- }
- if (map_vm_area(area, prot, pages))
- goto fail;
- return area->addr;
- fail:
- warn_alloc(gfp_mask,
- "vmalloc: allocation failure, allocated %ld of %ld bytes",
- (area->nr_pages*PAGE_SIZE), area->size);
- vfree(area->addr);
- return NULL;
- }
- /**
- * __vmalloc_node_range - allocate virtually contiguous memory
- * @size: allocation size
- * @align: desired alignment
- * @start: vm area range start
- * @end: vm area range end
- * @gfp_mask: flags for the page level allocator
- * @prot: protection mask for the allocated pages
- * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
- * @node: node to use for allocation or NUMA_NO_NODE
- * @caller: caller's return address
- *
- * Allocate enough pages to cover @size from the page level
- * allocator with @gfp_mask flags. Map them into contiguous
- * kernel virtual space, using a pagetable protection of @prot.
- */
- void *__vmalloc_node_range(unsigned long size, unsigned long align,
- unsigned long start, unsigned long end, gfp_t gfp_mask,
- pgprot_t prot, unsigned long vm_flags, int node,
- const void *caller)
- {
- struct vm_struct *area;
- void *addr;
- unsigned long real_size = size;
- size = PAGE_ALIGN(size);
- if (!size || (size >> PAGE_SHIFT) > totalram_pages)
- goto fail;
- area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
- vm_flags, start, end, node, gfp_mask, caller);
- if (!area)
- goto fail;
- addr = __vmalloc_area_node(area, gfp_mask, prot, node);
- if (!addr)
- return NULL;
- /*
- * In this function, newly allocated vm_struct has VM_UNINITIALIZED
- * flag. It means that vm_struct is not fully initialized.
- * Now, it is fully initialized, so remove this flag here.
- */
- clear_vm_uninitialized_flag(area);
- /*
- * A ref_count = 2 is needed because vm_struct allocated in
- * __get_vm_area_node() contains a reference to the virtual address of
- * the vmalloc'ed block.
- */
- kmemleak_alloc(addr, real_size, 2, gfp_mask);
- return addr;
- fail:
- warn_alloc(gfp_mask,
- "vmalloc: allocation failure: %lu bytes", real_size);
- return NULL;
- }
- /**
- * __vmalloc_node - allocate virtually contiguous memory
- * @size: allocation size
- * @align: desired alignment
- * @gfp_mask: flags for the page level allocator
- * @prot: protection mask for the allocated pages
- * @node: node to use for allocation or NUMA_NO_NODE
- * @caller: caller's return address
- *
- * Allocate enough pages to cover @size from the page level
- * allocator with @gfp_mask flags. Map them into contiguous
- * kernel virtual space, using a pagetable protection of @prot.
- */
- static void *__vmalloc_node(unsigned long size, unsigned long align,
- gfp_t gfp_mask, pgprot_t prot,
- int node, const void *caller)
- {
- return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
- gfp_mask, prot, 0, node, caller);
- }
- void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
- {
- return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
- __builtin_return_address(0));
- }
- EXPORT_SYMBOL(__vmalloc);
- static inline void *__vmalloc_node_flags(unsigned long size,
- int node, gfp_t flags)
- {
- return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
- node, __builtin_return_address(0));
- }
- /**
- * vmalloc - allocate virtually contiguous memory
- * @size: allocation size
- * Allocate enough pages to cover @size from the page level
- * allocator and map them into contiguous kernel virtual space.
- *
- * For tight control over page level allocator and protection flags
- * use __vmalloc() instead.
- */
- void *vmalloc(unsigned long size)
- {
- return __vmalloc_node_flags(size, NUMA_NO_NODE,
- GFP_KERNEL | __GFP_HIGHMEM);
- }
- EXPORT_SYMBOL(vmalloc);
- /**
- * vzalloc - allocate virtually contiguous memory with zero fill
- * @size: allocation size
- * Allocate enough pages to cover @size from the page level
- * allocator and map them into contiguous kernel virtual space.
- * The memory allocated is set to zero.
- *
- * For tight control over page level allocator and protection flags
- * use __vmalloc() instead.
- */
- void *vzalloc(unsigned long size)
- {
- return __vmalloc_node_flags(size, NUMA_NO_NODE,
- GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
- }
- EXPORT_SYMBOL(vzalloc);
- /**
- * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
- * @size: allocation size
- *
- * The resulting memory area is zeroed so it can be mapped to userspace
- * without leaking data.
- */
- void *vmalloc_user(unsigned long size)
- {
- struct vm_struct *area;
- void *ret;
- ret = __vmalloc_node(size, SHMLBA,
- GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
- PAGE_KERNEL, NUMA_NO_NODE,
- __builtin_return_address(0));
- if (ret) {
- area = find_vm_area(ret);
- area->flags |= VM_USERMAP;
- }
- return ret;
- }
- EXPORT_SYMBOL(vmalloc_user);
- /**
- * vmalloc_node - allocate memory on a specific node
- * @size: allocation size
- * @node: numa node
- *
- * Allocate enough pages to cover @size from the page level
- * allocator and map them into contiguous kernel virtual space.
- *
- * For tight control over page level allocator and protection flags
- * use __vmalloc() instead.
- */
- void *vmalloc_node(unsigned long size, int node)
- {
- return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
- node, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(vmalloc_node);
- /**
- * vzalloc_node - allocate memory on a specific node with zero fill
- * @size: allocation size
- * @node: numa node
- *
- * Allocate enough pages to cover @size from the page level
- * allocator and map them into contiguous kernel virtual space.
- * The memory allocated is set to zero.
- *
- * For tight control over page level allocator and protection flags
- * use __vmalloc_node() instead.
- */
- void *vzalloc_node(unsigned long size, int node)
- {
- return __vmalloc_node_flags(size, node,
- GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
- }
- EXPORT_SYMBOL(vzalloc_node);
- #ifndef PAGE_KERNEL_EXEC
- # define PAGE_KERNEL_EXEC PAGE_KERNEL
- #endif
- /**
- * vmalloc_exec - allocate virtually contiguous, executable memory
- * @size: allocation size
- *
- * Kernel-internal function to allocate enough pages to cover @size
- * the page level allocator and map them into contiguous and
- * executable kernel virtual space.
- *
- * For tight control over page level allocator and protection flags
- * use __vmalloc() instead.
- */
- void *vmalloc_exec(unsigned long size)
- {
- return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
- NUMA_NO_NODE, __builtin_return_address(0));
- }
- #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
- #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
- #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
- #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
- #else
- #define GFP_VMALLOC32 GFP_KERNEL
- #endif
- /**
- * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
- * @size: allocation size
- *
- * Allocate enough 32bit PA addressable pages to cover @size from the
- * page level allocator and map them into contiguous kernel virtual space.
- */
- void *vmalloc_32(unsigned long size)
- {
- return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
- NUMA_NO_NODE, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(vmalloc_32);
- /**
- * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
- * @size: allocation size
- *
- * The resulting memory area is 32bit addressable and zeroed so it can be
- * mapped to userspace without leaking data.
- */
- void *vmalloc_32_user(unsigned long size)
- {
- struct vm_struct *area;
- void *ret;
- ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
- NUMA_NO_NODE, __builtin_return_address(0));
- if (ret) {
- area = find_vm_area(ret);
- area->flags |= VM_USERMAP;
- }
- return ret;
- }
- EXPORT_SYMBOL(vmalloc_32_user);
- /*
- * small helper routine , copy contents to buf from addr.
- * If the page is not present, fill zero.
- */
- static int aligned_vread(char *buf, char *addr, unsigned long count)
- {
- struct page *p;
- int copied = 0;
- while (count) {
- unsigned long offset, length;
- offset = offset_in_page(addr);
- length = PAGE_SIZE - offset;
- if (length > count)
- length = count;
- p = vmalloc_to_page(addr);
- /*
- * To do safe access to this _mapped_ area, we need
- * lock. But adding lock here means that we need to add
- * overhead of vmalloc()/vfree() calles for this _debug_
- * interface, rarely used. Instead of that, we'll use
- * kmap() and get small overhead in this access function.
- */
- if (p) {
- /*
- * we can expect USER0 is not used (see vread/vwrite's
- * function description)
- */
- void *map = kmap_atomic(p);
- memcpy(buf, map + offset, length);
- kunmap_atomic(map);
- } else
- memset(buf, 0, length);
- addr += length;
- buf += length;
- copied += length;
- count -= length;
- }
- return copied;
- }
- static int aligned_vwrite(char *buf, char *addr, unsigned long count)
- {
- struct page *p;
- int copied = 0;
- while (count) {
- unsigned long offset, length;
- offset = offset_in_page(addr);
- length = PAGE_SIZE - offset;
- if (length > count)
- length = count;
- p = vmalloc_to_page(addr);
- /*
- * To do safe access to this _mapped_ area, we need
- * lock. But adding lock here means that we need to add
- * overhead of vmalloc()/vfree() calles for this _debug_
- * interface, rarely used. Instead of that, we'll use
- * kmap() and get small overhead in this access function.
- */
- if (p) {
- /*
- * we can expect USER0 is not used (see vread/vwrite's
- * function description)
- */
- void *map = kmap_atomic(p);
- memcpy(map + offset, buf, length);
- kunmap_atomic(map);
- }
- addr += length;
- buf += length;
- copied += length;
- count -= length;
- }
- return copied;
- }
- /**
- * vread() - read vmalloc area in a safe way.
- * @buf: buffer for reading data
- * @addr: vm address.
- * @count: number of bytes to be read.
- *
- * Returns # of bytes which addr and buf should be increased.
- * (same number to @count). Returns 0 if [addr...addr+count) doesn't
- * includes any intersect with alive vmalloc area.
- *
- * This function checks that addr is a valid vmalloc'ed area, and
- * copy data from that area to a given buffer. If the given memory range
- * of [addr...addr+count) includes some valid address, data is copied to
- * proper area of @buf. If there are memory holes, they'll be zero-filled.
- * IOREMAP area is treated as memory hole and no copy is done.
- *
- * If [addr...addr+count) doesn't includes any intersects with alive
- * vm_struct area, returns 0. @buf should be kernel's buffer.
- *
- * Note: In usual ops, vread() is never necessary because the caller
- * should know vmalloc() area is valid and can use memcpy().
- * This is for routines which have to access vmalloc area without
- * any informaion, as /dev/kmem.
- *
- */
- long vread(char *buf, char *addr, unsigned long count)
- {
- struct vmap_area *va;
- struct vm_struct *vm;
- char *vaddr, *buf_start = buf;
- unsigned long buflen = count;
- unsigned long n;
- /* Don't allow overflow */
- if ((unsigned long) addr + count < count)
- count = -(unsigned long) addr;
- spin_lock(&vmap_area_lock);
- list_for_each_entry(va, &vmap_area_list, list) {
- if (!count)
- break;
- if (!(va->flags & VM_VM_AREA))
- continue;
- vm = va->vm;
- vaddr = (char *) vm->addr;
- if (addr >= vaddr + get_vm_area_size(vm))
- continue;
- while (addr < vaddr) {
- if (count == 0)
- goto finished;
- *buf = '\0';
- buf++;
- addr++;
- count--;
- }
- n = vaddr + get_vm_area_size(vm) - addr;
- if (n > count)
- n = count;
- if (!(vm->flags & VM_IOREMAP))
- aligned_vread(buf, addr, n);
- else /* IOREMAP area is treated as memory hole */
- memset(buf, 0, n);
- buf += n;
- addr += n;
- count -= n;
- }
- finished:
- spin_unlock(&vmap_area_lock);
- if (buf == buf_start)
- return 0;
- /* zero-fill memory holes */
- if (buf != buf_start + buflen)
- memset(buf, 0, buflen - (buf - buf_start));
- return buflen;
- }
- /**
- * vwrite() - write vmalloc area in a safe way.
- * @buf: buffer for source data
- * @addr: vm address.
- * @count: number of bytes to be read.
- *
- * Returns # of bytes which addr and buf should be incresed.
- * (same number to @count).
- * If [addr...addr+count) doesn't includes any intersect with valid
- * vmalloc area, returns 0.
- *
- * This function checks that addr is a valid vmalloc'ed area, and
- * copy data from a buffer to the given addr. If specified range of
- * [addr...addr+count) includes some valid address, data is copied from
- * proper area of @buf. If there are memory holes, no copy to hole.
- * IOREMAP area is treated as memory hole and no copy is done.
- *
- * If [addr...addr+count) doesn't includes any intersects with alive
- * vm_struct area, returns 0. @buf should be kernel's buffer.
- *
- * Note: In usual ops, vwrite() is never necessary because the caller
- * should know vmalloc() area is valid and can use memcpy().
- * This is for routines which have to access vmalloc area without
- * any informaion, as /dev/kmem.
- */
- long vwrite(char *buf, char *addr, unsigned long count)
- {
- struct vmap_area *va;
- struct vm_struct *vm;
- char *vaddr;
- unsigned long n, buflen;
- int copied = 0;
- /* Don't allow overflow */
- if ((unsigned long) addr + count < count)
- count = -(unsigned long) addr;
- buflen = count;
- spin_lock(&vmap_area_lock);
- list_for_each_entry(va, &vmap_area_list, list) {
- if (!count)
- break;
- if (!(va->flags & VM_VM_AREA))
- continue;
- vm = va->vm;
- vaddr = (char *) vm->addr;
- if (addr >= vaddr + get_vm_area_size(vm))
- continue;
- while (addr < vaddr) {
- if (count == 0)
- goto finished;
- buf++;
- addr++;
- count--;
- }
- n = vaddr + get_vm_area_size(vm) - addr;
- if (n > count)
- n = count;
- if (!(vm->flags & VM_IOREMAP)) {
- aligned_vwrite(buf, addr, n);
- copied++;
- }
- buf += n;
- addr += n;
- count -= n;
- }
- finished:
- spin_unlock(&vmap_area_lock);
- if (!copied)
- return 0;
- return buflen;
- }
- /**
- * remap_vmalloc_range_partial - map vmalloc pages to userspace
- * @vma: vma to cover
- * @uaddr: target user address to start at
- * @kaddr: virtual address of vmalloc kernel memory
- * @size: size of map area
- *
- * Returns: 0 for success, -Exxx on failure
- *
- * This function checks that @kaddr is a valid vmalloc'ed area,
- * and that it is big enough to cover the range starting at
- * @uaddr in @vma. Will return failure if that criteria isn't
- * met.
- *
- * Similar to remap_pfn_range() (see mm/memory.c)
- */
- int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
- void *kaddr, unsigned long size)
- {
- struct vm_struct *area;
- size = PAGE_ALIGN(size);
- if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
- return -EINVAL;
- area = find_vm_area(kaddr);
- if (!area)
- return -EINVAL;
- if (!(area->flags & VM_USERMAP))
- return -EINVAL;
- if (kaddr + size > area->addr + area->size)
- return -EINVAL;
- do {
- struct page *page = vmalloc_to_page(kaddr);
- int ret;
- ret = vm_insert_page(vma, uaddr, page);
- if (ret)
- return ret;
- uaddr += PAGE_SIZE;
- kaddr += PAGE_SIZE;
- size -= PAGE_SIZE;
- } while (size > 0);
- vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
- return 0;
- }
- EXPORT_SYMBOL(remap_vmalloc_range_partial);
- /**
- * remap_vmalloc_range - map vmalloc pages to userspace
- * @vma: vma to cover (map full range of vma)
- * @addr: vmalloc memory
- * @pgoff: number of pages into addr before first page to map
- *
- * Returns: 0 for success, -Exxx on failure
- *
- * This function checks that addr is a valid vmalloc'ed area, and
- * that it is big enough to cover the vma. Will return failure if
- * that criteria isn't met.
- *
- * Similar to remap_pfn_range() (see mm/memory.c)
- */
- int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
- unsigned long pgoff)
- {
- return remap_vmalloc_range_partial(vma, vma->vm_start,
- addr + (pgoff << PAGE_SHIFT),
- vma->vm_end - vma->vm_start);
- }
- EXPORT_SYMBOL(remap_vmalloc_range);
- /*
- * Implement a stub for vmalloc_sync_all() if the architecture chose not to
- * have one.
- */
- void __weak vmalloc_sync_all(void)
- {
- }
- static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
- {
- pte_t ***p = data;
- if (p) {
- *(*p) = pte;
- (*p)++;
- }
- return 0;
- }
- /**
- * alloc_vm_area - allocate a range of kernel address space
- * @size: size of the area
- * @ptes: returns the PTEs for the address space
- *
- * Returns: NULL on failure, vm_struct on success
- *
- * This function reserves a range of kernel address space, and
- * allocates pagetables to map that range. No actual mappings
- * are created.
- *
- * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
- * allocated for the VM area are returned.
- */
- struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
- {
- struct vm_struct *area;
- area = get_vm_area_caller(size, VM_IOREMAP,
- __builtin_return_address(0));
- if (area == NULL)
- return NULL;
- /*
- * This ensures that page tables are constructed for this region
- * of kernel virtual address space and mapped into init_mm.
- */
- if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
- size, f, ptes ? &ptes : NULL)) {
- free_vm_area(area);
- return NULL;
- }
- return area;
- }
- EXPORT_SYMBOL_GPL(alloc_vm_area);
- void free_vm_area(struct vm_struct *area)
- {
- struct vm_struct *ret;
- ret = remove_vm_area(area->addr);
- BUG_ON(ret != area);
- kfree(area);
- }
- EXPORT_SYMBOL_GPL(free_vm_area);
- #ifdef CONFIG_SMP
- static struct vmap_area *node_to_va(struct rb_node *n)
- {
- return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
- }
- /**
- * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
- * @end: target address
- * @pnext: out arg for the next vmap_area
- * @pprev: out arg for the previous vmap_area
- *
- * Returns: %true if either or both of next and prev are found,
- * %false if no vmap_area exists
- *
- * Find vmap_areas end addresses of which enclose @end. ie. if not
- * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
- */
- static bool pvm_find_next_prev(unsigned long end,
- struct vmap_area **pnext,
- struct vmap_area **pprev)
- {
- struct rb_node *n = vmap_area_root.rb_node;
- struct vmap_area *va = NULL;
- while (n) {
- va = rb_entry(n, struct vmap_area, rb_node);
- if (end < va->va_end)
- n = n->rb_left;
- else if (end > va->va_end)
- n = n->rb_right;
- else
- break;
- }
- if (!va)
- return false;
- if (va->va_end > end) {
- *pnext = va;
- *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
- } else {
- *pprev = va;
- *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
- }
- return true;
- }
- /**
- * pvm_determine_end - find the highest aligned address between two vmap_areas
- * @pnext: in/out arg for the next vmap_area
- * @pprev: in/out arg for the previous vmap_area
- * @align: alignment
- *
- * Returns: determined end address
- *
- * Find the highest aligned address between *@pnext and *@pprev below
- * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
- * down address is between the end addresses of the two vmap_areas.
- *
- * Please note that the address returned by this function may fall
- * inside *@pnext vmap_area. The caller is responsible for checking
- * that.
- */
- static unsigned long pvm_determine_end(struct vmap_area **pnext,
- struct vmap_area **pprev,
- unsigned long align)
- {
- const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
- unsigned long addr;
- if (*pnext)
- addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
- else
- addr = vmalloc_end;
- while (*pprev && (*pprev)->va_end > addr) {
- *pnext = *pprev;
- *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
- }
- return addr;
- }
- /**
- * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
- * @offsets: array containing offset of each area
- * @sizes: array containing size of each area
- * @nr_vms: the number of areas to allocate
- * @align: alignment, all entries in @offsets and @sizes must be aligned to this
- *
- * Returns: kmalloc'd vm_struct pointer array pointing to allocated
- * vm_structs on success, %NULL on failure
- *
- * Percpu allocator wants to use congruent vm areas so that it can
- * maintain the offsets among percpu areas. This function allocates
- * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
- * be scattered pretty far, distance between two areas easily going up
- * to gigabytes. To avoid interacting with regular vmallocs, these
- * areas are allocated from top.
- *
- * Despite its complicated look, this allocator is rather simple. It
- * does everything top-down and scans areas from the end looking for
- * matching slot. While scanning, if any of the areas overlaps with
- * existing vmap_area, the base address is pulled down to fit the
- * area. Scanning is repeated till all the areas fit and then all
- * necessary data structres are inserted and the result is returned.
- */
- struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
- const size_t *sizes, int nr_vms,
- size_t align)
- {
- const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
- const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
- struct vmap_area **vas, *prev, *next;
- struct vm_struct **vms;
- int area, area2, last_area, term_area;
- unsigned long base, start, end, last_end;
- bool purged = false;
- /* verify parameters and allocate data structures */
- BUG_ON(offset_in_page(align) || !is_power_of_2(align));
- for (last_area = 0, area = 0; area < nr_vms; area++) {
- start = offsets[area];
- end = start + sizes[area];
- /* is everything aligned properly? */
- BUG_ON(!IS_ALIGNED(offsets[area], align));
- BUG_ON(!IS_ALIGNED(sizes[area], align));
- /* detect the area with the highest address */
- if (start > offsets[last_area])
- last_area = area;
- for (area2 = 0; area2 < nr_vms; area2++) {
- unsigned long start2 = offsets[area2];
- unsigned long end2 = start2 + sizes[area2];
- if (area2 == area)
- continue;
- BUG_ON(start2 >= start && start2 < end);
- BUG_ON(end2 <= end && end2 > start);
- }
- }
- last_end = offsets[last_area] + sizes[last_area];
- if (vmalloc_end - vmalloc_start < last_end) {
- WARN_ON(true);
- return NULL;
- }
- vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
- vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
- if (!vas || !vms)
- goto err_free2;
- for (area = 0; area < nr_vms; area++) {
- vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
- vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
- if (!vas[area] || !vms[area])
- goto err_free;
- }
- retry:
- spin_lock(&vmap_area_lock);
- /* start scanning - we scan from the top, begin with the last area */
- area = term_area = last_area;
- start = offsets[area];
- end = start + sizes[area];
- if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
- base = vmalloc_end - last_end;
- goto found;
- }
- base = pvm_determine_end(&next, &prev, align) - end;
- while (true) {
- BUG_ON(next && next->va_end <= base + end);
- BUG_ON(prev && prev->va_end > base + end);
- /*
- * base might have underflowed, add last_end before
- * comparing.
- */
- if (base + last_end < vmalloc_start + last_end) {
- spin_unlock(&vmap_area_lock);
- if (!purged) {
- purge_vmap_area_lazy();
- purged = true;
- goto retry;
- }
- goto err_free;
- }
- /*
- * If next overlaps, move base downwards so that it's
- * right below next and then recheck.
- */
- if (next && next->va_start < base + end) {
- base = pvm_determine_end(&next, &prev, align) - end;
- term_area = area;
- continue;
- }
- /*
- * If prev overlaps, shift down next and prev and move
- * base so that it's right below new next and then
- * recheck.
- */
- if (prev && prev->va_end > base + start) {
- next = prev;
- prev = node_to_va(rb_prev(&next->rb_node));
- base = pvm_determine_end(&next, &prev, align) - end;
- term_area = area;
- continue;
- }
- /*
- * This area fits, move on to the previous one. If
- * the previous one is the terminal one, we're done.
- */
- area = (area + nr_vms - 1) % nr_vms;
- if (area == term_area)
- break;
- start = offsets[area];
- end = start + sizes[area];
- pvm_find_next_prev(base + end, &next, &prev);
- }
- found:
- /* we've found a fitting base, insert all va's */
- for (area = 0; area < nr_vms; area++) {
- struct vmap_area *va = vas[area];
- va->va_start = base + offsets[area];
- va->va_end = va->va_start + sizes[area];
- __insert_vmap_area(va);
- }
- vmap_area_pcpu_hole = base + offsets[last_area];
- spin_unlock(&vmap_area_lock);
- /* insert all vm's */
- for (area = 0; area < nr_vms; area++)
- setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
- pcpu_get_vm_areas);
- kfree(vas);
- return vms;
- err_free:
- for (area = 0; area < nr_vms; area++) {
- kfree(vas[area]);
- kfree(vms[area]);
- }
- err_free2:
- kfree(vas);
- kfree(vms);
- return NULL;
- }
- /**
- * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
- * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
- * @nr_vms: the number of allocated areas
- *
- * Free vm_structs and the array allocated by pcpu_get_vm_areas().
- */
- void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
- {
- int i;
- for (i = 0; i < nr_vms; i++)
- free_vm_area(vms[i]);
- kfree(vms);
- }
- #endif /* CONFIG_SMP */
- #ifdef CONFIG_PROC_FS
- static void *s_start(struct seq_file *m, loff_t *pos)
- __acquires(&vmap_area_lock)
- {
- loff_t n = *pos;
- struct vmap_area *va;
- spin_lock(&vmap_area_lock);
- va = list_first_entry(&vmap_area_list, typeof(*va), list);
- while (n > 0 && &va->list != &vmap_area_list) {
- n--;
- va = list_next_entry(va, list);
- }
- if (!n && &va->list != &vmap_area_list)
- return va;
- return NULL;
- }
- static void *s_next(struct seq_file *m, void *p, loff_t *pos)
- {
- struct vmap_area *va = p, *next;
- ++*pos;
- next = list_next_entry(va, list);
- if (&next->list != &vmap_area_list)
- return next;
- return NULL;
- }
- static void s_stop(struct seq_file *m, void *p)
- __releases(&vmap_area_lock)
- {
- spin_unlock(&vmap_area_lock);
- }
- static void show_numa_info(struct seq_file *m, struct vm_struct *v)
- {
- if (IS_ENABLED(CONFIG_NUMA)) {
- unsigned int nr, *counters = m->private;
- if (!counters)
- return;
- if (v->flags & VM_UNINITIALIZED)
- return;
- /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
- smp_rmb();
- memset(counters, 0, nr_node_ids * sizeof(unsigned int));
- for (nr = 0; nr < v->nr_pages; nr++)
- counters[page_to_nid(v->pages[nr])]++;
- for_each_node_state(nr, N_HIGH_MEMORY)
- if (counters[nr])
- seq_printf(m, " N%u=%u", nr, counters[nr]);
- }
- }
- static int s_show(struct seq_file *m, void *p)
- {
- struct vmap_area *va = p;
- struct vm_struct *v;
- /*
- * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
- * behalf of vmap area is being tear down or vm_map_ram allocation.
- */
- if (!(va->flags & VM_VM_AREA))
- return 0;
- v = va->vm;
- seq_printf(m, "0x%pK-0x%pK %7ld",
- v->addr, v->addr + v->size, v->size);
- if (v->caller)
- seq_printf(m, " %pS", v->caller);
- if (v->nr_pages)
- seq_printf(m, " pages=%d", v->nr_pages);
- if (v->phys_addr)
- seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
- if (v->flags & VM_IOREMAP)
- seq_puts(m, " ioremap");
- if (v->flags & VM_ALLOC)
- seq_puts(m, " vmalloc");
- if (v->flags & VM_MAP)
- seq_puts(m, " vmap");
- if (v->flags & VM_USERMAP)
- seq_puts(m, " user");
- if (is_vmalloc_addr(v->pages))
- seq_puts(m, " vpages");
- show_numa_info(m, v);
- seq_putc(m, '\n');
- return 0;
- }
- static const struct seq_operations vmalloc_op = {
- .start = s_start,
- .next = s_next,
- .stop = s_stop,
- .show = s_show,
- };
- static int vmalloc_open(struct inode *inode, struct file *file)
- {
- if (IS_ENABLED(CONFIG_NUMA))
- return seq_open_private(file, &vmalloc_op,
- nr_node_ids * sizeof(unsigned int));
- else
- return seq_open(file, &vmalloc_op);
- }
- static const struct file_operations proc_vmalloc_operations = {
- .open = vmalloc_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = seq_release_private,
- };
- static int __init proc_vmalloc_init(void)
- {
- proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
- return 0;
- }
- module_init(proc_vmalloc_init);
- #endif
|