123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579 |
- /*
- * Symmetric key ciphers.
- *
- * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the Free
- * Software Foundation; either version 2 of the License, or (at your option)
- * any later version.
- *
- */
- #ifndef _CRYPTO_SKCIPHER_H
- #define _CRYPTO_SKCIPHER_H
- #include <linux/crypto.h>
- #include <linux/kernel.h>
- #include <linux/slab.h>
- /**
- * struct skcipher_request - Symmetric key cipher request
- * @cryptlen: Number of bytes to encrypt or decrypt
- * @iv: Initialisation Vector
- * @src: Source SG list
- * @dst: Destination SG list
- * @base: Underlying async request request
- * @__ctx: Start of private context data
- */
- struct skcipher_request {
- unsigned int cryptlen;
- u8 *iv;
- struct scatterlist *src;
- struct scatterlist *dst;
- struct crypto_async_request base;
- void *__ctx[] CRYPTO_MINALIGN_ATTR;
- };
- /**
- * struct skcipher_givcrypt_request - Crypto request with IV generation
- * @seq: Sequence number for IV generation
- * @giv: Space for generated IV
- * @creq: The crypto request itself
- */
- struct skcipher_givcrypt_request {
- u64 seq;
- u8 *giv;
- struct ablkcipher_request creq;
- };
- struct crypto_skcipher {
- int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
- unsigned int keylen);
- int (*encrypt)(struct skcipher_request *req);
- int (*decrypt)(struct skcipher_request *req);
- unsigned int ivsize;
- unsigned int reqsize;
- unsigned int keysize;
- struct crypto_tfm base;
- };
- /**
- * struct skcipher_alg - symmetric key cipher definition
- * @min_keysize: Minimum key size supported by the transformation. This is the
- * smallest key length supported by this transformation algorithm.
- * This must be set to one of the pre-defined values as this is
- * not hardware specific. Possible values for this field can be
- * found via git grep "_MIN_KEY_SIZE" include/crypto/
- * @max_keysize: Maximum key size supported by the transformation. This is the
- * largest key length supported by this transformation algorithm.
- * This must be set to one of the pre-defined values as this is
- * not hardware specific. Possible values for this field can be
- * found via git grep "_MAX_KEY_SIZE" include/crypto/
- * @setkey: Set key for the transformation. This function is used to either
- * program a supplied key into the hardware or store the key in the
- * transformation context for programming it later. Note that this
- * function does modify the transformation context. This function can
- * be called multiple times during the existence of the transformation
- * object, so one must make sure the key is properly reprogrammed into
- * the hardware. This function is also responsible for checking the key
- * length for validity. In case a software fallback was put in place in
- * the @cra_init call, this function might need to use the fallback if
- * the algorithm doesn't support all of the key sizes.
- * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
- * the supplied scatterlist containing the blocks of data. The crypto
- * API consumer is responsible for aligning the entries of the
- * scatterlist properly and making sure the chunks are correctly
- * sized. In case a software fallback was put in place in the
- * @cra_init call, this function might need to use the fallback if
- * the algorithm doesn't support all of the key sizes. In case the
- * key was stored in transformation context, the key might need to be
- * re-programmed into the hardware in this function. This function
- * shall not modify the transformation context, as this function may
- * be called in parallel with the same transformation object.
- * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
- * and the conditions are exactly the same.
- * @init: Initialize the cryptographic transformation object. This function
- * is used to initialize the cryptographic transformation object.
- * This function is called only once at the instantiation time, right
- * after the transformation context was allocated. In case the
- * cryptographic hardware has some special requirements which need to
- * be handled by software, this function shall check for the precise
- * requirement of the transformation and put any software fallbacks
- * in place.
- * @exit: Deinitialize the cryptographic transformation object. This is a
- * counterpart to @init, used to remove various changes set in
- * @init.
- * @ivsize: IV size applicable for transformation. The consumer must provide an
- * IV of exactly that size to perform the encrypt or decrypt operation.
- * @chunksize: Equal to the block size except for stream ciphers such as
- * CTR where it is set to the underlying block size.
- * @base: Definition of a generic crypto algorithm.
- *
- * All fields except @ivsize are mandatory and must be filled.
- */
- struct skcipher_alg {
- int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
- unsigned int keylen);
- int (*encrypt)(struct skcipher_request *req);
- int (*decrypt)(struct skcipher_request *req);
- int (*init)(struct crypto_skcipher *tfm);
- void (*exit)(struct crypto_skcipher *tfm);
- unsigned int min_keysize;
- unsigned int max_keysize;
- unsigned int ivsize;
- unsigned int chunksize;
- struct crypto_alg base;
- };
- #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
- char __##name##_desc[sizeof(struct skcipher_request) + \
- crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
- struct skcipher_request *name = (void *)__##name##_desc
- /**
- * DOC: Symmetric Key Cipher API
- *
- * Symmetric key cipher API is used with the ciphers of type
- * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
- *
- * Asynchronous cipher operations imply that the function invocation for a
- * cipher request returns immediately before the completion of the operation.
- * The cipher request is scheduled as a separate kernel thread and therefore
- * load-balanced on the different CPUs via the process scheduler. To allow
- * the kernel crypto API to inform the caller about the completion of a cipher
- * request, the caller must provide a callback function. That function is
- * invoked with the cipher handle when the request completes.
- *
- * To support the asynchronous operation, additional information than just the
- * cipher handle must be supplied to the kernel crypto API. That additional
- * information is given by filling in the skcipher_request data structure.
- *
- * For the symmetric key cipher API, the state is maintained with the tfm
- * cipher handle. A single tfm can be used across multiple calls and in
- * parallel. For asynchronous block cipher calls, context data supplied and
- * only used by the caller can be referenced the request data structure in
- * addition to the IV used for the cipher request. The maintenance of such
- * state information would be important for a crypto driver implementer to
- * have, because when calling the callback function upon completion of the
- * cipher operation, that callback function may need some information about
- * which operation just finished if it invoked multiple in parallel. This
- * state information is unused by the kernel crypto API.
- */
- static inline struct crypto_skcipher *__crypto_skcipher_cast(
- struct crypto_tfm *tfm)
- {
- return container_of(tfm, struct crypto_skcipher, base);
- }
- /**
- * crypto_alloc_skcipher() - allocate symmetric key cipher handle
- * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
- * skcipher cipher
- * @type: specifies the type of the cipher
- * @mask: specifies the mask for the cipher
- *
- * Allocate a cipher handle for an skcipher. The returned struct
- * crypto_skcipher is the cipher handle that is required for any subsequent
- * API invocation for that skcipher.
- *
- * Return: allocated cipher handle in case of success; IS_ERR() is true in case
- * of an error, PTR_ERR() returns the error code.
- */
- struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
- u32 type, u32 mask);
- static inline struct crypto_tfm *crypto_skcipher_tfm(
- struct crypto_skcipher *tfm)
- {
- return &tfm->base;
- }
- /**
- * crypto_free_skcipher() - zeroize and free cipher handle
- * @tfm: cipher handle to be freed
- */
- static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
- {
- crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
- }
- /**
- * crypto_has_skcipher() - Search for the availability of an skcipher.
- * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
- * skcipher
- * @type: specifies the type of the cipher
- * @mask: specifies the mask for the cipher
- *
- * Return: true when the skcipher is known to the kernel crypto API; false
- * otherwise
- */
- static inline int crypto_has_skcipher(const char *alg_name, u32 type,
- u32 mask)
- {
- return crypto_has_alg(alg_name, crypto_skcipher_type(type),
- crypto_skcipher_mask(mask));
- }
- /**
- * crypto_has_skcipher2() - Search for the availability of an skcipher.
- * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
- * skcipher
- * @type: specifies the type of the skcipher
- * @mask: specifies the mask for the skcipher
- *
- * Return: true when the skcipher is known to the kernel crypto API; false
- * otherwise
- */
- int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
- static inline const char *crypto_skcipher_driver_name(
- struct crypto_skcipher *tfm)
- {
- return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
- }
- static inline struct skcipher_alg *crypto_skcipher_alg(
- struct crypto_skcipher *tfm)
- {
- return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
- struct skcipher_alg, base);
- }
- static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
- {
- if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
- CRYPTO_ALG_TYPE_BLKCIPHER)
- return alg->base.cra_blkcipher.ivsize;
- if (alg->base.cra_ablkcipher.encrypt)
- return alg->base.cra_ablkcipher.ivsize;
- return alg->ivsize;
- }
- /**
- * crypto_skcipher_ivsize() - obtain IV size
- * @tfm: cipher handle
- *
- * The size of the IV for the skcipher referenced by the cipher handle is
- * returned. This IV size may be zero if the cipher does not need an IV.
- *
- * Return: IV size in bytes
- */
- static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
- {
- return tfm->ivsize;
- }
- static inline unsigned int crypto_skcipher_alg_chunksize(
- struct skcipher_alg *alg)
- {
- if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
- CRYPTO_ALG_TYPE_BLKCIPHER)
- return alg->base.cra_blocksize;
- if (alg->base.cra_ablkcipher.encrypt)
- return alg->base.cra_blocksize;
- return alg->chunksize;
- }
- /**
- * crypto_skcipher_chunksize() - obtain chunk size
- * @tfm: cipher handle
- *
- * The block size is set to one for ciphers such as CTR. However,
- * you still need to provide incremental updates in multiples of
- * the underlying block size as the IV does not have sub-block
- * granularity. This is known in this API as the chunk size.
- *
- * Return: chunk size in bytes
- */
- static inline unsigned int crypto_skcipher_chunksize(
- struct crypto_skcipher *tfm)
- {
- return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
- }
- /**
- * crypto_skcipher_blocksize() - obtain block size of cipher
- * @tfm: cipher handle
- *
- * The block size for the skcipher referenced with the cipher handle is
- * returned. The caller may use that information to allocate appropriate
- * memory for the data returned by the encryption or decryption operation
- *
- * Return: block size of cipher
- */
- static inline unsigned int crypto_skcipher_blocksize(
- struct crypto_skcipher *tfm)
- {
- return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
- }
- static inline unsigned int crypto_skcipher_alignmask(
- struct crypto_skcipher *tfm)
- {
- return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
- }
- static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
- {
- return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
- }
- static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
- u32 flags)
- {
- crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
- }
- static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
- u32 flags)
- {
- crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
- }
- /**
- * crypto_skcipher_setkey() - set key for cipher
- * @tfm: cipher handle
- * @key: buffer holding the key
- * @keylen: length of the key in bytes
- *
- * The caller provided key is set for the skcipher referenced by the cipher
- * handle.
- *
- * Note, the key length determines the cipher type. Many block ciphers implement
- * different cipher modes depending on the key size, such as AES-128 vs AES-192
- * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
- * is performed.
- *
- * Return: 0 if the setting of the key was successful; < 0 if an error occurred
- */
- static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
- const u8 *key, unsigned int keylen)
- {
- return tfm->setkey(tfm, key, keylen);
- }
- static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm)
- {
- return tfm->keysize;
- }
- static inline unsigned int crypto_skcipher_default_keysize(
- struct crypto_skcipher *tfm)
- {
- return tfm->keysize;
- }
- /**
- * crypto_skcipher_reqtfm() - obtain cipher handle from request
- * @req: skcipher_request out of which the cipher handle is to be obtained
- *
- * Return the crypto_skcipher handle when furnishing an skcipher_request
- * data structure.
- *
- * Return: crypto_skcipher handle
- */
- static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
- struct skcipher_request *req)
- {
- return __crypto_skcipher_cast(req->base.tfm);
- }
- /**
- * crypto_skcipher_encrypt() - encrypt plaintext
- * @req: reference to the skcipher_request handle that holds all information
- * needed to perform the cipher operation
- *
- * Encrypt plaintext data using the skcipher_request handle. That data
- * structure and how it is filled with data is discussed with the
- * skcipher_request_* functions.
- *
- * Return: 0 if the cipher operation was successful; < 0 if an error occurred
- */
- static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
- {
- struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
- return tfm->encrypt(req);
- }
- /**
- * crypto_skcipher_decrypt() - decrypt ciphertext
- * @req: reference to the skcipher_request handle that holds all information
- * needed to perform the cipher operation
- *
- * Decrypt ciphertext data using the skcipher_request handle. That data
- * structure and how it is filled with data is discussed with the
- * skcipher_request_* functions.
- *
- * Return: 0 if the cipher operation was successful; < 0 if an error occurred
- */
- static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
- {
- struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
- return tfm->decrypt(req);
- }
- /**
- * DOC: Symmetric Key Cipher Request Handle
- *
- * The skcipher_request data structure contains all pointers to data
- * required for the symmetric key cipher operation. This includes the cipher
- * handle (which can be used by multiple skcipher_request instances), pointer
- * to plaintext and ciphertext, asynchronous callback function, etc. It acts
- * as a handle to the skcipher_request_* API calls in a similar way as
- * skcipher handle to the crypto_skcipher_* API calls.
- */
- /**
- * crypto_skcipher_reqsize() - obtain size of the request data structure
- * @tfm: cipher handle
- *
- * Return: number of bytes
- */
- static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
- {
- return tfm->reqsize;
- }
- /**
- * skcipher_request_set_tfm() - update cipher handle reference in request
- * @req: request handle to be modified
- * @tfm: cipher handle that shall be added to the request handle
- *
- * Allow the caller to replace the existing skcipher handle in the request
- * data structure with a different one.
- */
- static inline void skcipher_request_set_tfm(struct skcipher_request *req,
- struct crypto_skcipher *tfm)
- {
- req->base.tfm = crypto_skcipher_tfm(tfm);
- }
- static inline struct skcipher_request *skcipher_request_cast(
- struct crypto_async_request *req)
- {
- return container_of(req, struct skcipher_request, base);
- }
- /**
- * skcipher_request_alloc() - allocate request data structure
- * @tfm: cipher handle to be registered with the request
- * @gfp: memory allocation flag that is handed to kmalloc by the API call.
- *
- * Allocate the request data structure that must be used with the skcipher
- * encrypt and decrypt API calls. During the allocation, the provided skcipher
- * handle is registered in the request data structure.
- *
- * Return: allocated request handle in case of success, or NULL if out of memory
- */
- static inline struct skcipher_request *skcipher_request_alloc(
- struct crypto_skcipher *tfm, gfp_t gfp)
- {
- struct skcipher_request *req;
- req = kmalloc(sizeof(struct skcipher_request) +
- crypto_skcipher_reqsize(tfm), gfp);
- if (likely(req))
- skcipher_request_set_tfm(req, tfm);
- return req;
- }
- /**
- * skcipher_request_free() - zeroize and free request data structure
- * @req: request data structure cipher handle to be freed
- */
- static inline void skcipher_request_free(struct skcipher_request *req)
- {
- kzfree(req);
- }
- static inline void skcipher_request_zero(struct skcipher_request *req)
- {
- struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
- memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
- }
- /**
- * skcipher_request_set_callback() - set asynchronous callback function
- * @req: request handle
- * @flags: specify zero or an ORing of the flags
- * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
- * increase the wait queue beyond the initial maximum size;
- * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
- * @compl: callback function pointer to be registered with the request handle
- * @data: The data pointer refers to memory that is not used by the kernel
- * crypto API, but provided to the callback function for it to use. Here,
- * the caller can provide a reference to memory the callback function can
- * operate on. As the callback function is invoked asynchronously to the
- * related functionality, it may need to access data structures of the
- * related functionality which can be referenced using this pointer. The
- * callback function can access the memory via the "data" field in the
- * crypto_async_request data structure provided to the callback function.
- *
- * This function allows setting the callback function that is triggered once the
- * cipher operation completes.
- *
- * The callback function is registered with the skcipher_request handle and
- * must comply with the following template
- *
- * void callback_function(struct crypto_async_request *req, int error)
- */
- static inline void skcipher_request_set_callback(struct skcipher_request *req,
- u32 flags,
- crypto_completion_t compl,
- void *data)
- {
- req->base.complete = compl;
- req->base.data = data;
- req->base.flags = flags;
- }
- /**
- * skcipher_request_set_crypt() - set data buffers
- * @req: request handle
- * @src: source scatter / gather list
- * @dst: destination scatter / gather list
- * @cryptlen: number of bytes to process from @src
- * @iv: IV for the cipher operation which must comply with the IV size defined
- * by crypto_skcipher_ivsize
- *
- * This function allows setting of the source data and destination data
- * scatter / gather lists.
- *
- * For encryption, the source is treated as the plaintext and the
- * destination is the ciphertext. For a decryption operation, the use is
- * reversed - the source is the ciphertext and the destination is the plaintext.
- */
- static inline void skcipher_request_set_crypt(
- struct skcipher_request *req,
- struct scatterlist *src, struct scatterlist *dst,
- unsigned int cryptlen, void *iv)
- {
- req->src = src;
- req->dst = dst;
- req->cryptlen = cryptlen;
- req->iv = iv;
- }
- #endif /* _CRYPTO_SKCIPHER_H */
|