red.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. #ifndef __NET_SCHED_RED_H
  2. #define __NET_SCHED_RED_H
  3. #include <linux/types.h>
  4. #include <linux/bug.h>
  5. #include <net/pkt_sched.h>
  6. #include <net/inet_ecn.h>
  7. #include <net/dsfield.h>
  8. #include <linux/reciprocal_div.h>
  9. /* Random Early Detection (RED) algorithm.
  10. =======================================
  11. Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
  12. for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
  13. This file codes a "divisionless" version of RED algorithm
  14. as written down in Fig.17 of the paper.
  15. Short description.
  16. ------------------
  17. When a new packet arrives we calculate the average queue length:
  18. avg = (1-W)*avg + W*current_queue_len,
  19. W is the filter time constant (chosen as 2^(-Wlog)), it controls
  20. the inertia of the algorithm. To allow larger bursts, W should be
  21. decreased.
  22. if (avg > th_max) -> packet marked (dropped).
  23. if (avg < th_min) -> packet passes.
  24. if (th_min < avg < th_max) we calculate probability:
  25. Pb = max_P * (avg - th_min)/(th_max-th_min)
  26. and mark (drop) packet with this probability.
  27. Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
  28. max_P should be small (not 1), usually 0.01..0.02 is good value.
  29. max_P is chosen as a number, so that max_P/(th_max-th_min)
  30. is a negative power of two in order arithmetics to contain
  31. only shifts.
  32. Parameters, settable by user:
  33. -----------------------------
  34. qth_min - bytes (should be < qth_max/2)
  35. qth_max - bytes (should be at least 2*qth_min and less limit)
  36. Wlog - bits (<32) log(1/W).
  37. Plog - bits (<32)
  38. Plog is related to max_P by formula:
  39. max_P = (qth_max-qth_min)/2^Plog;
  40. F.e. if qth_max=128K and qth_min=32K, then Plog=22
  41. corresponds to max_P=0.02
  42. Scell_log
  43. Stab
  44. Lookup table for log((1-W)^(t/t_ave).
  45. NOTES:
  46. Upper bound on W.
  47. -----------------
  48. If you want to allow bursts of L packets of size S,
  49. you should choose W:
  50. L + 1 - th_min/S < (1-(1-W)^L)/W
  51. th_min/S = 32 th_min/S = 4
  52. log(W) L
  53. -1 33
  54. -2 35
  55. -3 39
  56. -4 46
  57. -5 57
  58. -6 75
  59. -7 101
  60. -8 135
  61. -9 190
  62. etc.
  63. */
  64. /*
  65. * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
  66. * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
  67. *
  68. * Every 500 ms:
  69. * if (avg > target and max_p <= 0.5)
  70. * increase max_p : max_p += alpha;
  71. * else if (avg < target and max_p >= 0.01)
  72. * decrease max_p : max_p *= beta;
  73. *
  74. * target :[qth_min + 0.4*(qth_min - qth_max),
  75. * qth_min + 0.6*(qth_min - qth_max)].
  76. * alpha : min(0.01, max_p / 4)
  77. * beta : 0.9
  78. * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
  79. * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
  80. */
  81. #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
  82. #define MAX_P_MIN (1 * RED_ONE_PERCENT)
  83. #define MAX_P_MAX (50 * RED_ONE_PERCENT)
  84. #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
  85. #define RED_STAB_SIZE 256
  86. #define RED_STAB_MASK (RED_STAB_SIZE - 1)
  87. struct red_stats {
  88. u32 prob_drop; /* Early probability drops */
  89. u32 prob_mark; /* Early probability marks */
  90. u32 forced_drop; /* Forced drops, qavg > max_thresh */
  91. u32 forced_mark; /* Forced marks, qavg > max_thresh */
  92. u32 pdrop; /* Drops due to queue limits */
  93. u32 other; /* Drops due to drop() calls */
  94. };
  95. struct red_parms {
  96. /* Parameters */
  97. u32 qth_min; /* Min avg length threshold: Wlog scaled */
  98. u32 qth_max; /* Max avg length threshold: Wlog scaled */
  99. u32 Scell_max;
  100. u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
  101. /* reciprocal_value(max_P / qth_delta) */
  102. struct reciprocal_value max_P_reciprocal;
  103. u32 qth_delta; /* max_th - min_th */
  104. u32 target_min; /* min_th + 0.4*(max_th - min_th) */
  105. u32 target_max; /* min_th + 0.6*(max_th - min_th) */
  106. u8 Scell_log;
  107. u8 Wlog; /* log(W) */
  108. u8 Plog; /* random number bits */
  109. u8 Stab[RED_STAB_SIZE];
  110. };
  111. struct red_vars {
  112. /* Variables */
  113. int qcount; /* Number of packets since last random
  114. number generation */
  115. u32 qR; /* Cached random number */
  116. unsigned long qavg; /* Average queue length: Wlog scaled */
  117. ktime_t qidlestart; /* Start of current idle period */
  118. };
  119. static inline u32 red_maxp(u8 Plog)
  120. {
  121. return Plog < 32 ? (~0U >> Plog) : ~0U;
  122. }
  123. static inline void red_set_vars(struct red_vars *v)
  124. {
  125. /* Reset average queue length, the value is strictly bound
  126. * to the parameters below, reseting hurts a bit but leaving
  127. * it might result in an unreasonable qavg for a while. --TGR
  128. */
  129. v->qavg = 0;
  130. v->qcount = -1;
  131. }
  132. static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog)
  133. {
  134. if (fls(qth_min) + Wlog > 32)
  135. return false;
  136. if (fls(qth_max) + Wlog > 32)
  137. return false;
  138. if (qth_max < qth_min)
  139. return false;
  140. return true;
  141. }
  142. static inline void red_set_parms(struct red_parms *p,
  143. u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
  144. u8 Scell_log, u8 *stab, u32 max_P)
  145. {
  146. int delta = qth_max - qth_min;
  147. u32 max_p_delta;
  148. p->qth_min = qth_min << Wlog;
  149. p->qth_max = qth_max << Wlog;
  150. p->Wlog = Wlog;
  151. p->Plog = Plog;
  152. if (delta <= 0)
  153. delta = 1;
  154. p->qth_delta = delta;
  155. if (!max_P) {
  156. max_P = red_maxp(Plog);
  157. max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
  158. }
  159. p->max_P = max_P;
  160. max_p_delta = max_P / delta;
  161. max_p_delta = max(max_p_delta, 1U);
  162. p->max_P_reciprocal = reciprocal_value(max_p_delta);
  163. /* RED Adaptative target :
  164. * [min_th + 0.4*(min_th - max_th),
  165. * min_th + 0.6*(min_th - max_th)].
  166. */
  167. delta /= 5;
  168. p->target_min = qth_min + 2*delta;
  169. p->target_max = qth_min + 3*delta;
  170. p->Scell_log = Scell_log;
  171. p->Scell_max = (255 << Scell_log);
  172. if (stab)
  173. memcpy(p->Stab, stab, sizeof(p->Stab));
  174. }
  175. static inline int red_is_idling(const struct red_vars *v)
  176. {
  177. return v->qidlestart.tv64 != 0;
  178. }
  179. static inline void red_start_of_idle_period(struct red_vars *v)
  180. {
  181. v->qidlestart = ktime_get();
  182. }
  183. static inline void red_end_of_idle_period(struct red_vars *v)
  184. {
  185. v->qidlestart.tv64 = 0;
  186. }
  187. static inline void red_restart(struct red_vars *v)
  188. {
  189. red_end_of_idle_period(v);
  190. v->qavg = 0;
  191. v->qcount = -1;
  192. }
  193. static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
  194. const struct red_vars *v)
  195. {
  196. s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
  197. long us_idle = min_t(s64, delta, p->Scell_max);
  198. int shift;
  199. /*
  200. * The problem: ideally, average length queue recalcultion should
  201. * be done over constant clock intervals. This is too expensive, so
  202. * that the calculation is driven by outgoing packets.
  203. * When the queue is idle we have to model this clock by hand.
  204. *
  205. * SF+VJ proposed to "generate":
  206. *
  207. * m = idletime / (average_pkt_size / bandwidth)
  208. *
  209. * dummy packets as a burst after idle time, i.e.
  210. *
  211. * v->qavg *= (1-W)^m
  212. *
  213. * This is an apparently overcomplicated solution (f.e. we have to
  214. * precompute a table to make this calculation in reasonable time)
  215. * I believe that a simpler model may be used here,
  216. * but it is field for experiments.
  217. */
  218. shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
  219. if (shift)
  220. return v->qavg >> shift;
  221. else {
  222. /* Approximate initial part of exponent with linear function:
  223. *
  224. * (1-W)^m ~= 1-mW + ...
  225. *
  226. * Seems, it is the best solution to
  227. * problem of too coarse exponent tabulation.
  228. */
  229. us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
  230. if (us_idle < (v->qavg >> 1))
  231. return v->qavg - us_idle;
  232. else
  233. return v->qavg >> 1;
  234. }
  235. }
  236. static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
  237. const struct red_vars *v,
  238. unsigned int backlog)
  239. {
  240. /*
  241. * NOTE: v->qavg is fixed point number with point at Wlog.
  242. * The formula below is equvalent to floating point
  243. * version:
  244. *
  245. * qavg = qavg*(1-W) + backlog*W;
  246. *
  247. * --ANK (980924)
  248. */
  249. return v->qavg + (backlog - (v->qavg >> p->Wlog));
  250. }
  251. static inline unsigned long red_calc_qavg(const struct red_parms *p,
  252. const struct red_vars *v,
  253. unsigned int backlog)
  254. {
  255. if (!red_is_idling(v))
  256. return red_calc_qavg_no_idle_time(p, v, backlog);
  257. else
  258. return red_calc_qavg_from_idle_time(p, v);
  259. }
  260. static inline u32 red_random(const struct red_parms *p)
  261. {
  262. return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
  263. }
  264. static inline int red_mark_probability(const struct red_parms *p,
  265. const struct red_vars *v,
  266. unsigned long qavg)
  267. {
  268. /* The formula used below causes questions.
  269. OK. qR is random number in the interval
  270. (0..1/max_P)*(qth_max-qth_min)
  271. i.e. 0..(2^Plog). If we used floating point
  272. arithmetics, it would be: (2^Plog)*rnd_num,
  273. where rnd_num is less 1.
  274. Taking into account, that qavg have fixed
  275. point at Wlog, two lines
  276. below have the following floating point equivalent:
  277. max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
  278. Any questions? --ANK (980924)
  279. */
  280. return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
  281. }
  282. enum {
  283. RED_BELOW_MIN_THRESH,
  284. RED_BETWEEN_TRESH,
  285. RED_ABOVE_MAX_TRESH,
  286. };
  287. static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
  288. {
  289. if (qavg < p->qth_min)
  290. return RED_BELOW_MIN_THRESH;
  291. else if (qavg >= p->qth_max)
  292. return RED_ABOVE_MAX_TRESH;
  293. else
  294. return RED_BETWEEN_TRESH;
  295. }
  296. enum {
  297. RED_DONT_MARK,
  298. RED_PROB_MARK,
  299. RED_HARD_MARK,
  300. };
  301. static inline int red_action(const struct red_parms *p,
  302. struct red_vars *v,
  303. unsigned long qavg)
  304. {
  305. switch (red_cmp_thresh(p, qavg)) {
  306. case RED_BELOW_MIN_THRESH:
  307. v->qcount = -1;
  308. return RED_DONT_MARK;
  309. case RED_BETWEEN_TRESH:
  310. if (++v->qcount) {
  311. if (red_mark_probability(p, v, qavg)) {
  312. v->qcount = 0;
  313. v->qR = red_random(p);
  314. return RED_PROB_MARK;
  315. }
  316. } else
  317. v->qR = red_random(p);
  318. return RED_DONT_MARK;
  319. case RED_ABOVE_MAX_TRESH:
  320. v->qcount = -1;
  321. return RED_HARD_MARK;
  322. }
  323. BUG();
  324. return RED_DONT_MARK;
  325. }
  326. static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
  327. {
  328. unsigned long qavg;
  329. u32 max_p_delta;
  330. qavg = v->qavg;
  331. if (red_is_idling(v))
  332. qavg = red_calc_qavg_from_idle_time(p, v);
  333. /* v->qavg is fixed point number with point at Wlog */
  334. qavg >>= p->Wlog;
  335. if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
  336. p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
  337. else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
  338. p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
  339. max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
  340. max_p_delta = max(max_p_delta, 1U);
  341. p->max_P_reciprocal = reciprocal_value(max_p_delta);
  342. }
  343. #endif