12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019 |
- /*
- * Copyright (c) 2013, Kenneth MacKay
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include <linux/random.h>
- #include <linux/slab.h>
- #include <linux/swab.h>
- #include <linux/fips.h>
- #include <crypto/ecdh.h>
- #include "ecc.h"
- #include "ecc_curve_defs.h"
- typedef struct {
- u64 m_low;
- u64 m_high;
- } uint128_t;
- static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
- {
- switch (curve_id) {
- /* In FIPS mode only allow P256 and higher */
- case ECC_CURVE_NIST_P192:
- return fips_enabled ? NULL : &nist_p192;
- case ECC_CURVE_NIST_P256:
- return &nist_p256;
- default:
- return NULL;
- }
- }
- static u64 *ecc_alloc_digits_space(unsigned int ndigits)
- {
- size_t len = ndigits * sizeof(u64);
- if (!len)
- return NULL;
- return kmalloc(len, GFP_KERNEL);
- }
- static void ecc_free_digits_space(u64 *space)
- {
- kzfree(space);
- }
- static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
- {
- struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
- if (!p)
- return NULL;
- p->x = ecc_alloc_digits_space(ndigits);
- if (!p->x)
- goto err_alloc_x;
- p->y = ecc_alloc_digits_space(ndigits);
- if (!p->y)
- goto err_alloc_y;
- p->ndigits = ndigits;
- return p;
- err_alloc_y:
- ecc_free_digits_space(p->x);
- err_alloc_x:
- kfree(p);
- return NULL;
- }
- static void ecc_free_point(struct ecc_point *p)
- {
- if (!p)
- return;
- kzfree(p->x);
- kzfree(p->y);
- kzfree(p);
- }
- static void vli_clear(u64 *vli, unsigned int ndigits)
- {
- int i;
- for (i = 0; i < ndigits; i++)
- vli[i] = 0;
- }
- /* Returns true if vli == 0, false otherwise. */
- static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
- {
- int i;
- for (i = 0; i < ndigits; i++) {
- if (vli[i])
- return false;
- }
- return true;
- }
- /* Returns nonzero if bit bit of vli is set. */
- static u64 vli_test_bit(const u64 *vli, unsigned int bit)
- {
- return (vli[bit / 64] & ((u64)1 << (bit % 64)));
- }
- /* Counts the number of 64-bit "digits" in vli. */
- static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
- {
- int i;
- /* Search from the end until we find a non-zero digit.
- * We do it in reverse because we expect that most digits will
- * be nonzero.
- */
- for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
- return (i + 1);
- }
- /* Counts the number of bits required for vli. */
- static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
- {
- unsigned int i, num_digits;
- u64 digit;
- num_digits = vli_num_digits(vli, ndigits);
- if (num_digits == 0)
- return 0;
- digit = vli[num_digits - 1];
- for (i = 0; digit; i++)
- digit >>= 1;
- return ((num_digits - 1) * 64 + i);
- }
- /* Sets dest = src. */
- static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
- {
- int i;
- for (i = 0; i < ndigits; i++)
- dest[i] = src[i];
- }
- /* Returns sign of left - right. */
- static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
- {
- int i;
- for (i = ndigits - 1; i >= 0; i--) {
- if (left[i] > right[i])
- return 1;
- else if (left[i] < right[i])
- return -1;
- }
- return 0;
- }
- /* Computes result = in << c, returning carry. Can modify in place
- * (if result == in). 0 < shift < 64.
- */
- static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
- unsigned int ndigits)
- {
- u64 carry = 0;
- int i;
- for (i = 0; i < ndigits; i++) {
- u64 temp = in[i];
- result[i] = (temp << shift) | carry;
- carry = temp >> (64 - shift);
- }
- return carry;
- }
- /* Computes vli = vli >> 1. */
- static void vli_rshift1(u64 *vli, unsigned int ndigits)
- {
- u64 *end = vli;
- u64 carry = 0;
- vli += ndigits;
- while (vli-- > end) {
- u64 temp = *vli;
- *vli = (temp >> 1) | carry;
- carry = temp << 63;
- }
- }
- /* Computes result = left + right, returning carry. Can modify in place. */
- static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
- unsigned int ndigits)
- {
- u64 carry = 0;
- int i;
- for (i = 0; i < ndigits; i++) {
- u64 sum;
- sum = left[i] + right[i] + carry;
- if (sum != left[i])
- carry = (sum < left[i]);
- result[i] = sum;
- }
- return carry;
- }
- /* Computes result = left - right, returning borrow. Can modify in place. */
- static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
- unsigned int ndigits)
- {
- u64 borrow = 0;
- int i;
- for (i = 0; i < ndigits; i++) {
- u64 diff;
- diff = left[i] - right[i] - borrow;
- if (diff != left[i])
- borrow = (diff > left[i]);
- result[i] = diff;
- }
- return borrow;
- }
- static uint128_t mul_64_64(u64 left, u64 right)
- {
- u64 a0 = left & 0xffffffffull;
- u64 a1 = left >> 32;
- u64 b0 = right & 0xffffffffull;
- u64 b1 = right >> 32;
- u64 m0 = a0 * b0;
- u64 m1 = a0 * b1;
- u64 m2 = a1 * b0;
- u64 m3 = a1 * b1;
- uint128_t result;
- m2 += (m0 >> 32);
- m2 += m1;
- /* Overflow */
- if (m2 < m1)
- m3 += 0x100000000ull;
- result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
- result.m_high = m3 + (m2 >> 32);
- return result;
- }
- static uint128_t add_128_128(uint128_t a, uint128_t b)
- {
- uint128_t result;
- result.m_low = a.m_low + b.m_low;
- result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
- return result;
- }
- static void vli_mult(u64 *result, const u64 *left, const u64 *right,
- unsigned int ndigits)
- {
- uint128_t r01 = { 0, 0 };
- u64 r2 = 0;
- unsigned int i, k;
- /* Compute each digit of result in sequence, maintaining the
- * carries.
- */
- for (k = 0; k < ndigits * 2 - 1; k++) {
- unsigned int min;
- if (k < ndigits)
- min = 0;
- else
- min = (k + 1) - ndigits;
- for (i = min; i <= k && i < ndigits; i++) {
- uint128_t product;
- product = mul_64_64(left[i], right[k - i]);
- r01 = add_128_128(r01, product);
- r2 += (r01.m_high < product.m_high);
- }
- result[k] = r01.m_low;
- r01.m_low = r01.m_high;
- r01.m_high = r2;
- r2 = 0;
- }
- result[ndigits * 2 - 1] = r01.m_low;
- }
- static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
- {
- uint128_t r01 = { 0, 0 };
- u64 r2 = 0;
- int i, k;
- for (k = 0; k < ndigits * 2 - 1; k++) {
- unsigned int min;
- if (k < ndigits)
- min = 0;
- else
- min = (k + 1) - ndigits;
- for (i = min; i <= k && i <= k - i; i++) {
- uint128_t product;
- product = mul_64_64(left[i], left[k - i]);
- if (i < k - i) {
- r2 += product.m_high >> 63;
- product.m_high = (product.m_high << 1) |
- (product.m_low >> 63);
- product.m_low <<= 1;
- }
- r01 = add_128_128(r01, product);
- r2 += (r01.m_high < product.m_high);
- }
- result[k] = r01.m_low;
- r01.m_low = r01.m_high;
- r01.m_high = r2;
- r2 = 0;
- }
- result[ndigits * 2 - 1] = r01.m_low;
- }
- /* Computes result = (left + right) % mod.
- * Assumes that left < mod and right < mod, result != mod.
- */
- static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
- const u64 *mod, unsigned int ndigits)
- {
- u64 carry;
- carry = vli_add(result, left, right, ndigits);
- /* result > mod (result = mod + remainder), so subtract mod to
- * get remainder.
- */
- if (carry || vli_cmp(result, mod, ndigits) >= 0)
- vli_sub(result, result, mod, ndigits);
- }
- /* Computes result = (left - right) % mod.
- * Assumes that left < mod and right < mod, result != mod.
- */
- static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
- const u64 *mod, unsigned int ndigits)
- {
- u64 borrow = vli_sub(result, left, right, ndigits);
- /* In this case, p_result == -diff == (max int) - diff.
- * Since -x % d == d - x, we can get the correct result from
- * result + mod (with overflow).
- */
- if (borrow)
- vli_add(result, result, mod, ndigits);
- }
- /* Computes p_result = p_product % curve_p.
- * See algorithm 5 and 6 from
- * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
- */
- static void vli_mmod_fast_192(u64 *result, const u64 *product,
- const u64 *curve_prime, u64 *tmp)
- {
- const unsigned int ndigits = 3;
- int carry;
- vli_set(result, product, ndigits);
- vli_set(tmp, &product[3], ndigits);
- carry = vli_add(result, result, tmp, ndigits);
- tmp[0] = 0;
- tmp[1] = product[3];
- tmp[2] = product[4];
- carry += vli_add(result, result, tmp, ndigits);
- tmp[0] = tmp[1] = product[5];
- tmp[2] = 0;
- carry += vli_add(result, result, tmp, ndigits);
- while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
- carry -= vli_sub(result, result, curve_prime, ndigits);
- }
- /* Computes result = product % curve_prime
- * from http://www.nsa.gov/ia/_files/nist-routines.pdf
- */
- static void vli_mmod_fast_256(u64 *result, const u64 *product,
- const u64 *curve_prime, u64 *tmp)
- {
- int carry;
- const unsigned int ndigits = 4;
- /* t */
- vli_set(result, product, ndigits);
- /* s1 */
- tmp[0] = 0;
- tmp[1] = product[5] & 0xffffffff00000000ull;
- tmp[2] = product[6];
- tmp[3] = product[7];
- carry = vli_lshift(tmp, tmp, 1, ndigits);
- carry += vli_add(result, result, tmp, ndigits);
- /* s2 */
- tmp[1] = product[6] << 32;
- tmp[2] = (product[6] >> 32) | (product[7] << 32);
- tmp[3] = product[7] >> 32;
- carry += vli_lshift(tmp, tmp, 1, ndigits);
- carry += vli_add(result, result, tmp, ndigits);
- /* s3 */
- tmp[0] = product[4];
- tmp[1] = product[5] & 0xffffffff;
- tmp[2] = 0;
- tmp[3] = product[7];
- carry += vli_add(result, result, tmp, ndigits);
- /* s4 */
- tmp[0] = (product[4] >> 32) | (product[5] << 32);
- tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
- tmp[2] = product[7];
- tmp[3] = (product[6] >> 32) | (product[4] << 32);
- carry += vli_add(result, result, tmp, ndigits);
- /* d1 */
- tmp[0] = (product[5] >> 32) | (product[6] << 32);
- tmp[1] = (product[6] >> 32);
- tmp[2] = 0;
- tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
- carry -= vli_sub(result, result, tmp, ndigits);
- /* d2 */
- tmp[0] = product[6];
- tmp[1] = product[7];
- tmp[2] = 0;
- tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
- carry -= vli_sub(result, result, tmp, ndigits);
- /* d3 */
- tmp[0] = (product[6] >> 32) | (product[7] << 32);
- tmp[1] = (product[7] >> 32) | (product[4] << 32);
- tmp[2] = (product[4] >> 32) | (product[5] << 32);
- tmp[3] = (product[6] << 32);
- carry -= vli_sub(result, result, tmp, ndigits);
- /* d4 */
- tmp[0] = product[7];
- tmp[1] = product[4] & 0xffffffff00000000ull;
- tmp[2] = product[5];
- tmp[3] = product[6] & 0xffffffff00000000ull;
- carry -= vli_sub(result, result, tmp, ndigits);
- if (carry < 0) {
- do {
- carry += vli_add(result, result, curve_prime, ndigits);
- } while (carry < 0);
- } else {
- while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
- carry -= vli_sub(result, result, curve_prime, ndigits);
- }
- }
- /* Computes result = product % curve_prime
- * from http://www.nsa.gov/ia/_files/nist-routines.pdf
- */
- static bool vli_mmod_fast(u64 *result, u64 *product,
- const u64 *curve_prime, unsigned int ndigits)
- {
- u64 tmp[2 * ndigits];
- switch (ndigits) {
- case 3:
- vli_mmod_fast_192(result, product, curve_prime, tmp);
- break;
- case 4:
- vli_mmod_fast_256(result, product, curve_prime, tmp);
- break;
- default:
- pr_err("unsupports digits size!\n");
- return false;
- }
- return true;
- }
- /* Computes result = (left * right) % curve_prime. */
- static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
- const u64 *curve_prime, unsigned int ndigits)
- {
- u64 product[2 * ndigits];
- vli_mult(product, left, right, ndigits);
- vli_mmod_fast(result, product, curve_prime, ndigits);
- }
- /* Computes result = left^2 % curve_prime. */
- static void vli_mod_square_fast(u64 *result, const u64 *left,
- const u64 *curve_prime, unsigned int ndigits)
- {
- u64 product[2 * ndigits];
- vli_square(product, left, ndigits);
- vli_mmod_fast(result, product, curve_prime, ndigits);
- }
- #define EVEN(vli) (!(vli[0] & 1))
- /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
- * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
- * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
- */
- static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
- unsigned int ndigits)
- {
- u64 a[ndigits], b[ndigits];
- u64 u[ndigits], v[ndigits];
- u64 carry;
- int cmp_result;
- if (vli_is_zero(input, ndigits)) {
- vli_clear(result, ndigits);
- return;
- }
- vli_set(a, input, ndigits);
- vli_set(b, mod, ndigits);
- vli_clear(u, ndigits);
- u[0] = 1;
- vli_clear(v, ndigits);
- while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
- carry = 0;
- if (EVEN(a)) {
- vli_rshift1(a, ndigits);
- if (!EVEN(u))
- carry = vli_add(u, u, mod, ndigits);
- vli_rshift1(u, ndigits);
- if (carry)
- u[ndigits - 1] |= 0x8000000000000000ull;
- } else if (EVEN(b)) {
- vli_rshift1(b, ndigits);
- if (!EVEN(v))
- carry = vli_add(v, v, mod, ndigits);
- vli_rshift1(v, ndigits);
- if (carry)
- v[ndigits - 1] |= 0x8000000000000000ull;
- } else if (cmp_result > 0) {
- vli_sub(a, a, b, ndigits);
- vli_rshift1(a, ndigits);
- if (vli_cmp(u, v, ndigits) < 0)
- vli_add(u, u, mod, ndigits);
- vli_sub(u, u, v, ndigits);
- if (!EVEN(u))
- carry = vli_add(u, u, mod, ndigits);
- vli_rshift1(u, ndigits);
- if (carry)
- u[ndigits - 1] |= 0x8000000000000000ull;
- } else {
- vli_sub(b, b, a, ndigits);
- vli_rshift1(b, ndigits);
- if (vli_cmp(v, u, ndigits) < 0)
- vli_add(v, v, mod, ndigits);
- vli_sub(v, v, u, ndigits);
- if (!EVEN(v))
- carry = vli_add(v, v, mod, ndigits);
- vli_rshift1(v, ndigits);
- if (carry)
- v[ndigits - 1] |= 0x8000000000000000ull;
- }
- }
- vli_set(result, u, ndigits);
- }
- /* ------ Point operations ------ */
- /* Returns true if p_point is the point at infinity, false otherwise. */
- static bool ecc_point_is_zero(const struct ecc_point *point)
- {
- return (vli_is_zero(point->x, point->ndigits) &&
- vli_is_zero(point->y, point->ndigits));
- }
- /* Point multiplication algorithm using Montgomery's ladder with co-Z
- * coordinates. From http://eprint.iacr.org/2011/338.pdf
- */
- /* Double in place */
- static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
- u64 *curve_prime, unsigned int ndigits)
- {
- /* t1 = x, t2 = y, t3 = z */
- u64 t4[ndigits];
- u64 t5[ndigits];
- if (vli_is_zero(z1, ndigits))
- return;
- /* t4 = y1^2 */
- vli_mod_square_fast(t4, y1, curve_prime, ndigits);
- /* t5 = x1*y1^2 = A */
- vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
- /* t4 = y1^4 */
- vli_mod_square_fast(t4, t4, curve_prime, ndigits);
- /* t2 = y1*z1 = z3 */
- vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
- /* t3 = z1^2 */
- vli_mod_square_fast(z1, z1, curve_prime, ndigits);
- /* t1 = x1 + z1^2 */
- vli_mod_add(x1, x1, z1, curve_prime, ndigits);
- /* t3 = 2*z1^2 */
- vli_mod_add(z1, z1, z1, curve_prime, ndigits);
- /* t3 = x1 - z1^2 */
- vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
- /* t1 = x1^2 - z1^4 */
- vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
- /* t3 = 2*(x1^2 - z1^4) */
- vli_mod_add(z1, x1, x1, curve_prime, ndigits);
- /* t1 = 3*(x1^2 - z1^4) */
- vli_mod_add(x1, x1, z1, curve_prime, ndigits);
- if (vli_test_bit(x1, 0)) {
- u64 carry = vli_add(x1, x1, curve_prime, ndigits);
- vli_rshift1(x1, ndigits);
- x1[ndigits - 1] |= carry << 63;
- } else {
- vli_rshift1(x1, ndigits);
- }
- /* t1 = 3/2*(x1^2 - z1^4) = B */
- /* t3 = B^2 */
- vli_mod_square_fast(z1, x1, curve_prime, ndigits);
- /* t3 = B^2 - A */
- vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
- /* t3 = B^2 - 2A = x3 */
- vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
- /* t5 = A - x3 */
- vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
- /* t1 = B * (A - x3) */
- vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
- /* t4 = B * (A - x3) - y1^4 = y3 */
- vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
- vli_set(x1, z1, ndigits);
- vli_set(z1, y1, ndigits);
- vli_set(y1, t4, ndigits);
- }
- /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
- static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime,
- unsigned int ndigits)
- {
- u64 t1[ndigits];
- vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */
- vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
- vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */
- vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
- }
- /* P = (x1, y1) => 2P, (x2, y2) => P' */
- static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
- u64 *p_initial_z, u64 *curve_prime,
- unsigned int ndigits)
- {
- u64 z[ndigits];
- vli_set(x2, x1, ndigits);
- vli_set(y2, y1, ndigits);
- vli_clear(z, ndigits);
- z[0] = 1;
- if (p_initial_z)
- vli_set(z, p_initial_z, ndigits);
- apply_z(x1, y1, z, curve_prime, ndigits);
- ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
- apply_z(x2, y2, z, curve_prime, ndigits);
- }
- /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
- * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
- * or P => P', Q => P + Q
- */
- static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
- unsigned int ndigits)
- {
- /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
- u64 t5[ndigits];
- /* t5 = x2 - x1 */
- vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
- /* t5 = (x2 - x1)^2 = A */
- vli_mod_square_fast(t5, t5, curve_prime, ndigits);
- /* t1 = x1*A = B */
- vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
- /* t3 = x2*A = C */
- vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
- /* t4 = y2 - y1 */
- vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
- /* t5 = (y2 - y1)^2 = D */
- vli_mod_square_fast(t5, y2, curve_prime, ndigits);
- /* t5 = D - B */
- vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
- /* t5 = D - B - C = x3 */
- vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
- /* t3 = C - B */
- vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
- /* t2 = y1*(C - B) */
- vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
- /* t3 = B - x3 */
- vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
- /* t4 = (y2 - y1)*(B - x3) */
- vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
- /* t4 = y3 */
- vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
- vli_set(x2, t5, ndigits);
- }
- /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
- * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
- * or P => P - Q, Q => P + Q
- */
- static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
- unsigned int ndigits)
- {
- /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
- u64 t5[ndigits];
- u64 t6[ndigits];
- u64 t7[ndigits];
- /* t5 = x2 - x1 */
- vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
- /* t5 = (x2 - x1)^2 = A */
- vli_mod_square_fast(t5, t5, curve_prime, ndigits);
- /* t1 = x1*A = B */
- vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
- /* t3 = x2*A = C */
- vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
- /* t4 = y2 + y1 */
- vli_mod_add(t5, y2, y1, curve_prime, ndigits);
- /* t4 = y2 - y1 */
- vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
- /* t6 = C - B */
- vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
- /* t2 = y1 * (C - B) */
- vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
- /* t6 = B + C */
- vli_mod_add(t6, x1, x2, curve_prime, ndigits);
- /* t3 = (y2 - y1)^2 */
- vli_mod_square_fast(x2, y2, curve_prime, ndigits);
- /* t3 = x3 */
- vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
- /* t7 = B - x3 */
- vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
- /* t4 = (y2 - y1)*(B - x3) */
- vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
- /* t4 = y3 */
- vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
- /* t7 = (y2 + y1)^2 = F */
- vli_mod_square_fast(t7, t5, curve_prime, ndigits);
- /* t7 = x3' */
- vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
- /* t6 = x3' - B */
- vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
- /* t6 = (y2 + y1)*(x3' - B) */
- vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
- /* t2 = y3' */
- vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
- vli_set(x1, t7, ndigits);
- }
- static void ecc_point_mult(struct ecc_point *result,
- const struct ecc_point *point, const u64 *scalar,
- u64 *initial_z, u64 *curve_prime,
- unsigned int ndigits)
- {
- /* R0 and R1 */
- u64 rx[2][ndigits];
- u64 ry[2][ndigits];
- u64 z[ndigits];
- int i, nb;
- int num_bits = vli_num_bits(scalar, ndigits);
- vli_set(rx[1], point->x, ndigits);
- vli_set(ry[1], point->y, ndigits);
- xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
- ndigits);
- for (i = num_bits - 2; i > 0; i--) {
- nb = !vli_test_bit(scalar, i);
- xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
- ndigits);
- xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
- ndigits);
- }
- nb = !vli_test_bit(scalar, 0);
- xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
- ndigits);
- /* Find final 1/Z value. */
- /* X1 - X0 */
- vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
- /* Yb * (X1 - X0) */
- vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
- /* xP * Yb * (X1 - X0) */
- vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
- /* 1 / (xP * Yb * (X1 - X0)) */
- vli_mod_inv(z, z, curve_prime, point->ndigits);
- /* yP / (xP * Yb * (X1 - X0)) */
- vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
- /* Xb * yP / (xP * Yb * (X1 - X0)) */
- vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
- /* End 1/Z calculation */
- xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
- apply_z(rx[0], ry[0], z, curve_prime, ndigits);
- vli_set(result->x, rx[0], ndigits);
- vli_set(result->y, ry[0], ndigits);
- }
- static inline void ecc_swap_digits(const u64 *in, u64 *out,
- unsigned int ndigits)
- {
- int i;
- for (i = 0; i < ndigits; i++)
- out[i] = __swab64(in[ndigits - 1 - i]);
- }
- int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
- const u8 *private_key, unsigned int private_key_len)
- {
- int nbytes;
- const struct ecc_curve *curve = ecc_get_curve(curve_id);
- if (!private_key)
- return -EINVAL;
- nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
- if (private_key_len != nbytes)
- return -EINVAL;
- if (vli_is_zero((const u64 *)&private_key[0], ndigits))
- return -EINVAL;
- /* Make sure the private key is in the range [1, n-1]. */
- if (vli_cmp(curve->n, (const u64 *)&private_key[0], ndigits) != 1)
- return -EINVAL;
- return 0;
- }
- int ecdh_make_pub_key(unsigned int curve_id, unsigned int ndigits,
- const u8 *private_key, unsigned int private_key_len,
- u8 *public_key, unsigned int public_key_len)
- {
- int ret = 0;
- struct ecc_point *pk;
- u64 priv[ndigits];
- unsigned int nbytes;
- const struct ecc_curve *curve = ecc_get_curve(curve_id);
- if (!private_key || !curve) {
- ret = -EINVAL;
- goto out;
- }
- ecc_swap_digits((const u64 *)private_key, priv, ndigits);
- pk = ecc_alloc_point(ndigits);
- if (!pk) {
- ret = -ENOMEM;
- goto out;
- }
- ecc_point_mult(pk, &curve->g, priv, NULL, curve->p, ndigits);
- if (ecc_point_is_zero(pk)) {
- ret = -EAGAIN;
- goto err_free_point;
- }
- nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
- ecc_swap_digits(pk->x, (u64 *)public_key, ndigits);
- ecc_swap_digits(pk->y, (u64 *)&public_key[nbytes], ndigits);
- err_free_point:
- ecc_free_point(pk);
- out:
- return ret;
- }
- int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
- const u8 *private_key, unsigned int private_key_len,
- const u8 *public_key, unsigned int public_key_len,
- u8 *secret, unsigned int secret_len)
- {
- int ret = 0;
- struct ecc_point *product, *pk;
- u64 priv[ndigits];
- u64 rand_z[ndigits];
- unsigned int nbytes;
- const struct ecc_curve *curve = ecc_get_curve(curve_id);
- if (!private_key || !public_key || !curve) {
- ret = -EINVAL;
- goto out;
- }
- nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
- get_random_bytes(rand_z, nbytes);
- pk = ecc_alloc_point(ndigits);
- if (!pk) {
- ret = -ENOMEM;
- goto out;
- }
- product = ecc_alloc_point(ndigits);
- if (!product) {
- ret = -ENOMEM;
- goto err_alloc_product;
- }
- ecc_swap_digits((const u64 *)public_key, pk->x, ndigits);
- ecc_swap_digits((const u64 *)&public_key[nbytes], pk->y, ndigits);
- ecc_swap_digits((const u64 *)private_key, priv, ndigits);
- ecc_point_mult(product, pk, priv, rand_z, curve->p, ndigits);
- ecc_swap_digits(product->x, (u64 *)secret, ndigits);
- if (ecc_point_is_zero(product))
- ret = -EFAULT;
- ecc_free_point(product);
- err_alloc_product:
- ecc_free_point(pk);
- out:
- return ret;
- }
|