rtasd.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. /*
  2. * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Communication to userspace based on kernel/printk.c
  10. */
  11. #include <linux/types.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/poll.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/init.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/cpu.h>
  21. #include <linux/workqueue.h>
  22. #include <linux/slab.h>
  23. #include <asm/uaccess.h>
  24. #include <asm/io.h>
  25. #include <asm/rtas.h>
  26. #include <asm/prom.h>
  27. #include <asm/nvram.h>
  28. #include <linux/atomic.h>
  29. #include <asm/machdep.h>
  30. #include <asm/topology.h>
  31. static DEFINE_SPINLOCK(rtasd_log_lock);
  32. static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
  33. static char *rtas_log_buf;
  34. static unsigned long rtas_log_start;
  35. static unsigned long rtas_log_size;
  36. static int surveillance_timeout = -1;
  37. static unsigned int rtas_error_log_max;
  38. static unsigned int rtas_error_log_buffer_max;
  39. /* RTAS service tokens */
  40. static unsigned int event_scan;
  41. static unsigned int rtas_event_scan_rate;
  42. static bool full_rtas_msgs;
  43. /* Stop logging to nvram after first fatal error */
  44. static int logging_enabled; /* Until we initialize everything,
  45. * make sure we don't try logging
  46. * anything */
  47. static int error_log_cnt;
  48. /*
  49. * Since we use 32 bit RTAS, the physical address of this must be below
  50. * 4G or else bad things happen. Allocate this in the kernel data and
  51. * make it big enough.
  52. */
  53. static unsigned char logdata[RTAS_ERROR_LOG_MAX];
  54. static char *rtas_type[] = {
  55. "Unknown", "Retry", "TCE Error", "Internal Device Failure",
  56. "Timeout", "Data Parity", "Address Parity", "Cache Parity",
  57. "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
  58. };
  59. static char *rtas_event_type(int type)
  60. {
  61. if ((type > 0) && (type < 11))
  62. return rtas_type[type];
  63. switch (type) {
  64. case RTAS_TYPE_EPOW:
  65. return "EPOW";
  66. case RTAS_TYPE_PLATFORM:
  67. return "Platform Error";
  68. case RTAS_TYPE_IO:
  69. return "I/O Event";
  70. case RTAS_TYPE_INFO:
  71. return "Platform Information Event";
  72. case RTAS_TYPE_DEALLOC:
  73. return "Resource Deallocation Event";
  74. case RTAS_TYPE_DUMP:
  75. return "Dump Notification Event";
  76. case RTAS_TYPE_PRRN:
  77. return "Platform Resource Reassignment Event";
  78. }
  79. return rtas_type[0];
  80. }
  81. /* To see this info, grep RTAS /var/log/messages and each entry
  82. * will be collected together with obvious begin/end.
  83. * There will be a unique identifier on the begin and end lines.
  84. * This will persist across reboots.
  85. *
  86. * format of error logs returned from RTAS:
  87. * bytes (size) : contents
  88. * --------------------------------------------------------
  89. * 0-7 (8) : rtas_error_log
  90. * 8-47 (40) : extended info
  91. * 48-51 (4) : vendor id
  92. * 52-1023 (vendor specific) : location code and debug data
  93. */
  94. static void printk_log_rtas(char *buf, int len)
  95. {
  96. int i,j,n = 0;
  97. int perline = 16;
  98. char buffer[64];
  99. char * str = "RTAS event";
  100. if (full_rtas_msgs) {
  101. printk(RTAS_DEBUG "%d -------- %s begin --------\n",
  102. error_log_cnt, str);
  103. /*
  104. * Print perline bytes on each line, each line will start
  105. * with RTAS and a changing number, so syslogd will
  106. * print lines that are otherwise the same. Separate every
  107. * 4 bytes with a space.
  108. */
  109. for (i = 0; i < len; i++) {
  110. j = i % perline;
  111. if (j == 0) {
  112. memset(buffer, 0, sizeof(buffer));
  113. n = sprintf(buffer, "RTAS %d:", i/perline);
  114. }
  115. if ((i % 4) == 0)
  116. n += sprintf(buffer+n, " ");
  117. n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
  118. if (j == (perline-1))
  119. printk(KERN_DEBUG "%s\n", buffer);
  120. }
  121. if ((i % perline) != 0)
  122. printk(KERN_DEBUG "%s\n", buffer);
  123. printk(RTAS_DEBUG "%d -------- %s end ----------\n",
  124. error_log_cnt, str);
  125. } else {
  126. struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
  127. printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
  128. error_log_cnt, rtas_event_type(rtas_error_type(errlog)),
  129. rtas_error_severity(errlog));
  130. }
  131. }
  132. static int log_rtas_len(char * buf)
  133. {
  134. int len;
  135. struct rtas_error_log *err;
  136. uint32_t extended_log_length;
  137. /* rtas fixed header */
  138. len = 8;
  139. err = (struct rtas_error_log *)buf;
  140. extended_log_length = rtas_error_extended_log_length(err);
  141. if (rtas_error_extended(err) && extended_log_length) {
  142. /* extended header */
  143. len += extended_log_length;
  144. }
  145. if (rtas_error_log_max == 0)
  146. rtas_error_log_max = rtas_get_error_log_max();
  147. if (len > rtas_error_log_max)
  148. len = rtas_error_log_max;
  149. return len;
  150. }
  151. /*
  152. * First write to nvram, if fatal error, that is the only
  153. * place we log the info. The error will be picked up
  154. * on the next reboot by rtasd. If not fatal, run the
  155. * method for the type of error. Currently, only RTAS
  156. * errors have methods implemented, but in the future
  157. * there might be a need to store data in nvram before a
  158. * call to panic().
  159. *
  160. * XXX We write to nvram periodically, to indicate error has
  161. * been written and sync'd, but there is a possibility
  162. * that if we don't shutdown correctly, a duplicate error
  163. * record will be created on next reboot.
  164. */
  165. void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
  166. {
  167. unsigned long offset;
  168. unsigned long s;
  169. int len = 0;
  170. pr_debug("rtasd: logging event\n");
  171. if (buf == NULL)
  172. return;
  173. spin_lock_irqsave(&rtasd_log_lock, s);
  174. /* get length and increase count */
  175. switch (err_type & ERR_TYPE_MASK) {
  176. case ERR_TYPE_RTAS_LOG:
  177. len = log_rtas_len(buf);
  178. if (!(err_type & ERR_FLAG_BOOT))
  179. error_log_cnt++;
  180. break;
  181. case ERR_TYPE_KERNEL_PANIC:
  182. default:
  183. WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
  184. spin_unlock_irqrestore(&rtasd_log_lock, s);
  185. return;
  186. }
  187. #ifdef CONFIG_PPC64
  188. /* Write error to NVRAM */
  189. if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
  190. nvram_write_error_log(buf, len, err_type, error_log_cnt);
  191. #endif /* CONFIG_PPC64 */
  192. /*
  193. * rtas errors can occur during boot, and we do want to capture
  194. * those somewhere, even if nvram isn't ready (why not?), and even
  195. * if rtasd isn't ready. Put them into the boot log, at least.
  196. */
  197. if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
  198. printk_log_rtas(buf, len);
  199. /* Check to see if we need to or have stopped logging */
  200. if (fatal || !logging_enabled) {
  201. logging_enabled = 0;
  202. WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
  203. spin_unlock_irqrestore(&rtasd_log_lock, s);
  204. return;
  205. }
  206. /* call type specific method for error */
  207. switch (err_type & ERR_TYPE_MASK) {
  208. case ERR_TYPE_RTAS_LOG:
  209. offset = rtas_error_log_buffer_max *
  210. ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
  211. /* First copy over sequence number */
  212. memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
  213. /* Second copy over error log data */
  214. offset += sizeof(int);
  215. memcpy(&rtas_log_buf[offset], buf, len);
  216. if (rtas_log_size < LOG_NUMBER)
  217. rtas_log_size += 1;
  218. else
  219. rtas_log_start += 1;
  220. WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
  221. spin_unlock_irqrestore(&rtasd_log_lock, s);
  222. wake_up_interruptible(&rtas_log_wait);
  223. break;
  224. case ERR_TYPE_KERNEL_PANIC:
  225. default:
  226. WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
  227. spin_unlock_irqrestore(&rtasd_log_lock, s);
  228. return;
  229. }
  230. }
  231. #ifdef CONFIG_PPC_PSERIES
  232. static s32 prrn_update_scope;
  233. static void prrn_work_fn(struct work_struct *work)
  234. {
  235. /*
  236. * For PRRN, we must pass the negative of the scope value in
  237. * the RTAS event.
  238. */
  239. pseries_devicetree_update(-prrn_update_scope);
  240. }
  241. static DECLARE_WORK(prrn_work, prrn_work_fn);
  242. static void prrn_schedule_update(u32 scope)
  243. {
  244. flush_work(&prrn_work);
  245. prrn_update_scope = scope;
  246. schedule_work(&prrn_work);
  247. }
  248. static void handle_rtas_event(const struct rtas_error_log *log)
  249. {
  250. if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled())
  251. return;
  252. /* For PRRN Events the extended log length is used to denote
  253. * the scope for calling rtas update-nodes.
  254. */
  255. prrn_schedule_update(rtas_error_extended_log_length(log));
  256. }
  257. #else
  258. static void handle_rtas_event(const struct rtas_error_log *log)
  259. {
  260. return;
  261. }
  262. #endif
  263. static int rtas_log_open(struct inode * inode, struct file * file)
  264. {
  265. return 0;
  266. }
  267. static int rtas_log_release(struct inode * inode, struct file * file)
  268. {
  269. return 0;
  270. }
  271. /* This will check if all events are logged, if they are then, we
  272. * know that we can safely clear the events in NVRAM.
  273. * Next we'll sit and wait for something else to log.
  274. */
  275. static ssize_t rtas_log_read(struct file * file, char __user * buf,
  276. size_t count, loff_t *ppos)
  277. {
  278. int error;
  279. char *tmp;
  280. unsigned long s;
  281. unsigned long offset;
  282. if (!buf || count < rtas_error_log_buffer_max)
  283. return -EINVAL;
  284. count = rtas_error_log_buffer_max;
  285. if (!access_ok(VERIFY_WRITE, buf, count))
  286. return -EFAULT;
  287. tmp = kmalloc(count, GFP_KERNEL);
  288. if (!tmp)
  289. return -ENOMEM;
  290. spin_lock_irqsave(&rtasd_log_lock, s);
  291. /* if it's 0, then we know we got the last one (the one in NVRAM) */
  292. while (rtas_log_size == 0) {
  293. if (file->f_flags & O_NONBLOCK) {
  294. spin_unlock_irqrestore(&rtasd_log_lock, s);
  295. error = -EAGAIN;
  296. goto out;
  297. }
  298. if (!logging_enabled) {
  299. spin_unlock_irqrestore(&rtasd_log_lock, s);
  300. error = -ENODATA;
  301. goto out;
  302. }
  303. #ifdef CONFIG_PPC64
  304. nvram_clear_error_log();
  305. #endif /* CONFIG_PPC64 */
  306. spin_unlock_irqrestore(&rtasd_log_lock, s);
  307. error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
  308. if (error)
  309. goto out;
  310. spin_lock_irqsave(&rtasd_log_lock, s);
  311. }
  312. offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
  313. memcpy(tmp, &rtas_log_buf[offset], count);
  314. rtas_log_start += 1;
  315. rtas_log_size -= 1;
  316. spin_unlock_irqrestore(&rtasd_log_lock, s);
  317. error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
  318. out:
  319. kfree(tmp);
  320. return error;
  321. }
  322. static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
  323. {
  324. poll_wait(file, &rtas_log_wait, wait);
  325. if (rtas_log_size)
  326. return POLLIN | POLLRDNORM;
  327. return 0;
  328. }
  329. static const struct file_operations proc_rtas_log_operations = {
  330. .read = rtas_log_read,
  331. .poll = rtas_log_poll,
  332. .open = rtas_log_open,
  333. .release = rtas_log_release,
  334. .llseek = noop_llseek,
  335. };
  336. static int enable_surveillance(int timeout)
  337. {
  338. int error;
  339. error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
  340. if (error == 0)
  341. return 0;
  342. if (error == -EINVAL) {
  343. printk(KERN_DEBUG "rtasd: surveillance not supported\n");
  344. return 0;
  345. }
  346. printk(KERN_ERR "rtasd: could not update surveillance\n");
  347. return -1;
  348. }
  349. static void do_event_scan(void)
  350. {
  351. int error;
  352. do {
  353. memset(logdata, 0, rtas_error_log_max);
  354. error = rtas_call(event_scan, 4, 1, NULL,
  355. RTAS_EVENT_SCAN_ALL_EVENTS, 0,
  356. __pa(logdata), rtas_error_log_max);
  357. if (error == -1) {
  358. printk(KERN_ERR "event-scan failed\n");
  359. break;
  360. }
  361. if (error == 0) {
  362. pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
  363. handle_rtas_event((struct rtas_error_log *)logdata);
  364. }
  365. } while(error == 0);
  366. }
  367. static void rtas_event_scan(struct work_struct *w);
  368. static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
  369. /*
  370. * Delay should be at least one second since some machines have problems if
  371. * we call event-scan too quickly.
  372. */
  373. static unsigned long event_scan_delay = 1*HZ;
  374. static int first_pass = 1;
  375. static void rtas_event_scan(struct work_struct *w)
  376. {
  377. unsigned int cpu;
  378. do_event_scan();
  379. get_online_cpus();
  380. /* raw_ OK because just using CPU as starting point. */
  381. cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
  382. if (cpu >= nr_cpu_ids) {
  383. cpu = cpumask_first(cpu_online_mask);
  384. if (first_pass) {
  385. first_pass = 0;
  386. event_scan_delay = 30*HZ/rtas_event_scan_rate;
  387. if (surveillance_timeout != -1) {
  388. pr_debug("rtasd: enabling surveillance\n");
  389. enable_surveillance(surveillance_timeout);
  390. pr_debug("rtasd: surveillance enabled\n");
  391. }
  392. }
  393. }
  394. schedule_delayed_work_on(cpu, &event_scan_work,
  395. __round_jiffies_relative(event_scan_delay, cpu));
  396. put_online_cpus();
  397. }
  398. #ifdef CONFIG_PPC64
  399. static void retrieve_nvram_error_log(void)
  400. {
  401. unsigned int err_type ;
  402. int rc ;
  403. /* See if we have any error stored in NVRAM */
  404. memset(logdata, 0, rtas_error_log_max);
  405. rc = nvram_read_error_log(logdata, rtas_error_log_max,
  406. &err_type, &error_log_cnt);
  407. /* We can use rtas_log_buf now */
  408. logging_enabled = 1;
  409. if (!rc) {
  410. if (err_type != ERR_FLAG_ALREADY_LOGGED) {
  411. pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
  412. }
  413. }
  414. }
  415. #else /* CONFIG_PPC64 */
  416. static void retrieve_nvram_error_log(void)
  417. {
  418. }
  419. #endif /* CONFIG_PPC64 */
  420. static void start_event_scan(void)
  421. {
  422. printk(KERN_DEBUG "RTAS daemon started\n");
  423. pr_debug("rtasd: will sleep for %d milliseconds\n",
  424. (30000 / rtas_event_scan_rate));
  425. /* Retrieve errors from nvram if any */
  426. retrieve_nvram_error_log();
  427. schedule_delayed_work_on(cpumask_first(cpu_online_mask),
  428. &event_scan_work, event_scan_delay);
  429. }
  430. /* Cancel the rtas event scan work */
  431. void rtas_cancel_event_scan(void)
  432. {
  433. cancel_delayed_work_sync(&event_scan_work);
  434. }
  435. EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
  436. static int __init rtas_event_scan_init(void)
  437. {
  438. if (!machine_is(pseries) && !machine_is(chrp))
  439. return 0;
  440. /* No RTAS */
  441. event_scan = rtas_token("event-scan");
  442. if (event_scan == RTAS_UNKNOWN_SERVICE) {
  443. printk(KERN_INFO "rtasd: No event-scan on system\n");
  444. return -ENODEV;
  445. }
  446. rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
  447. if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
  448. printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
  449. return -ENODEV;
  450. }
  451. if (!rtas_event_scan_rate) {
  452. /* Broken firmware: take a rate of zero to mean don't scan */
  453. printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
  454. return 0;
  455. }
  456. /* Make room for the sequence number */
  457. rtas_error_log_max = rtas_get_error_log_max();
  458. rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
  459. rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
  460. if (!rtas_log_buf) {
  461. printk(KERN_ERR "rtasd: no memory\n");
  462. return -ENOMEM;
  463. }
  464. start_event_scan();
  465. return 0;
  466. }
  467. arch_initcall(rtas_event_scan_init);
  468. static int __init rtas_init(void)
  469. {
  470. struct proc_dir_entry *entry;
  471. if (!machine_is(pseries) && !machine_is(chrp))
  472. return 0;
  473. if (!rtas_log_buf)
  474. return -ENODEV;
  475. entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL,
  476. &proc_rtas_log_operations);
  477. if (!entry)
  478. printk(KERN_ERR "Failed to create error_log proc entry\n");
  479. return 0;
  480. }
  481. __initcall(rtas_init);
  482. static int __init surveillance_setup(char *str)
  483. {
  484. int i;
  485. /* We only do surveillance on pseries */
  486. if (!machine_is(pseries))
  487. return 0;
  488. if (get_option(&str,&i)) {
  489. if (i >= 0 && i <= 255)
  490. surveillance_timeout = i;
  491. }
  492. return 1;
  493. }
  494. __setup("surveillance=", surveillance_setup);
  495. static int __init rtasmsgs_setup(char *str)
  496. {
  497. return (kstrtobool(str, &full_rtas_msgs) == 0);
  498. }
  499. __setup("rtasmsgs=", rtasmsgs_setup);