123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- /*
- * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/cache.h>
- #include <linux/crc32.h>
- #include <linux/init.h>
- #include <linux/libfdt.h>
- #include <linux/mm_types.h>
- #include <linux/sched.h>
- #include <linux/types.h>
- #include <asm/fixmap.h>
- #include <asm/kernel-pgtable.h>
- #include <asm/memory.h>
- #include <asm/mmu.h>
- #include <asm/pgtable.h>
- #include <asm/sections.h>
- u64 __ro_after_init module_alloc_base;
- u16 __initdata memstart_offset_seed;
- static __init u64 get_kaslr_seed(void *fdt)
- {
- int node, len;
- u64 *prop;
- u64 ret;
- node = fdt_path_offset(fdt, "/chosen");
- if (node < 0)
- return 0;
- prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
- if (!prop || len != sizeof(u64))
- return 0;
- ret = fdt64_to_cpu(*prop);
- *prop = 0;
- return ret;
- }
- static __init const u8 *get_cmdline(void *fdt)
- {
- static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
- if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
- int node;
- const u8 *prop;
- node = fdt_path_offset(fdt, "/chosen");
- if (node < 0)
- goto out;
- prop = fdt_getprop(fdt, node, "bootargs", NULL);
- if (!prop)
- goto out;
- return prop;
- }
- out:
- return default_cmdline;
- }
- extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size,
- pgprot_t prot);
- /*
- * This routine will be executed with the kernel mapped at its default virtual
- * address, and if it returns successfully, the kernel will be remapped, and
- * start_kernel() will be executed from a randomized virtual offset. The
- * relocation will result in all absolute references (e.g., static variables
- * containing function pointers) to be reinitialized, and zero-initialized
- * .bss variables will be reset to 0.
- */
- u64 __init kaslr_early_init(u64 dt_phys, u64 modulo_offset)
- {
- void *fdt;
- u64 seed, offset, mask, module_range;
- const u8 *cmdline, *str;
- int size;
- /*
- * Set a reasonable default for module_alloc_base in case
- * we end up running with module randomization disabled.
- */
- module_alloc_base = (u64)_etext - MODULES_VSIZE;
- /*
- * Try to map the FDT early. If this fails, we simply bail,
- * and proceed with KASLR disabled. We will make another
- * attempt at mapping the FDT in setup_machine()
- */
- early_fixmap_init();
- fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
- if (!fdt)
- return 0;
- /*
- * Retrieve (and wipe) the seed from the FDT
- */
- seed = get_kaslr_seed(fdt);
- if (!seed)
- return 0;
- /*
- * Check if 'nokaslr' appears on the command line, and
- * return 0 if that is the case.
- */
- cmdline = get_cmdline(fdt);
- str = strstr(cmdline, "nokaslr");
- if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
- return 0;
- /*
- * OK, so we are proceeding with KASLR enabled. Calculate a suitable
- * kernel image offset from the seed. Let's place the kernel in the
- * lower half of the VMALLOC area (VA_BITS - 2).
- * Even if we could randomize at page granularity for 16k and 64k pages,
- * let's always round to 2 MB so we don't interfere with the ability to
- * map using contiguous PTEs
- */
- mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1);
- offset = seed & mask;
- /* use the top 16 bits to randomize the linear region */
- memstart_offset_seed = seed >> 48;
- /*
- * The kernel Image should not extend across a 1GB/32MB/512MB alignment
- * boundary (for 4KB/16KB/64KB granule kernels, respectively). If this
- * happens, increase the KASLR offset by the size of the kernel image
- * rounded up by SWAPPER_BLOCK_SIZE.
- */
- if ((((u64)_text + offset + modulo_offset) >> SWAPPER_TABLE_SHIFT) !=
- (((u64)_end + offset + modulo_offset) >> SWAPPER_TABLE_SHIFT)) {
- u64 kimg_sz = _end - _text;
- offset = (offset + round_up(kimg_sz, SWAPPER_BLOCK_SIZE))
- & mask;
- }
- if (IS_ENABLED(CONFIG_KASAN))
- /*
- * KASAN does not expect the module region to intersect the
- * vmalloc region, since shadow memory is allocated for each
- * module at load time, whereas the vmalloc region is shadowed
- * by KASAN zero pages. So keep modules out of the vmalloc
- * region if KASAN is enabled.
- */
- return offset;
- if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
- /*
- * Randomize the module region independently from the core
- * kernel. This prevents modules from leaking any information
- * about the address of the kernel itself, but results in
- * branches between modules and the core kernel that are
- * resolved via PLTs. (Branches between modules will be
- * resolved normally.)
- */
- module_range = VMALLOC_END - VMALLOC_START - MODULES_VSIZE;
- module_alloc_base = VMALLOC_START;
- } else {
- /*
- * Randomize the module region by setting module_alloc_base to
- * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
- * _stext) . This guarantees that the resulting region still
- * covers [_stext, _etext], and that all relative branches can
- * be resolved without veneers.
- */
- module_range = MODULES_VSIZE - (u64)(_etext - _stext);
- module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
- }
- /* use the lower 21 bits to randomize the base of the module region */
- module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
- module_alloc_base &= PAGE_MASK;
- return offset;
- }
|