fib_trie.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <asm/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <linux/notifier.h>
  75. #include <net/net_namespace.h>
  76. #include <net/ip.h>
  77. #include <net/protocol.h>
  78. #include <net/route.h>
  79. #include <net/tcp.h>
  80. #include <net/sock.h>
  81. #include <net/ip_fib.h>
  82. #include <trace/events/fib.h>
  83. #include "fib_lookup.h"
  84. static BLOCKING_NOTIFIER_HEAD(fib_chain);
  85. int register_fib_notifier(struct notifier_block *nb)
  86. {
  87. return blocking_notifier_chain_register(&fib_chain, nb);
  88. }
  89. EXPORT_SYMBOL(register_fib_notifier);
  90. int unregister_fib_notifier(struct notifier_block *nb)
  91. {
  92. return blocking_notifier_chain_unregister(&fib_chain, nb);
  93. }
  94. EXPORT_SYMBOL(unregister_fib_notifier);
  95. int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
  96. struct fib_notifier_info *info)
  97. {
  98. info->net = net;
  99. return blocking_notifier_call_chain(&fib_chain, event_type, info);
  100. }
  101. static int call_fib_entry_notifiers(struct net *net,
  102. enum fib_event_type event_type, u32 dst,
  103. int dst_len, struct fib_info *fi,
  104. u8 tos, u8 type, u32 tb_id, u32 nlflags)
  105. {
  106. struct fib_entry_notifier_info info = {
  107. .dst = dst,
  108. .dst_len = dst_len,
  109. .fi = fi,
  110. .tos = tos,
  111. .type = type,
  112. .tb_id = tb_id,
  113. .nlflags = nlflags,
  114. };
  115. return call_fib_notifiers(net, event_type, &info.info);
  116. }
  117. #define MAX_STAT_DEPTH 32
  118. #define KEYLENGTH (8*sizeof(t_key))
  119. #define KEY_MAX ((t_key)~0)
  120. typedef unsigned int t_key;
  121. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  122. #define IS_TNODE(n) ((n)->bits)
  123. #define IS_LEAF(n) (!(n)->bits)
  124. struct key_vector {
  125. t_key key;
  126. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  127. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  128. unsigned char slen;
  129. union {
  130. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  131. struct hlist_head leaf;
  132. /* This array is valid if (pos | bits) > 0 (TNODE) */
  133. struct key_vector __rcu *tnode[0];
  134. };
  135. };
  136. struct tnode {
  137. struct rcu_head rcu;
  138. t_key empty_children; /* KEYLENGTH bits needed */
  139. t_key full_children; /* KEYLENGTH bits needed */
  140. struct key_vector __rcu *parent;
  141. struct key_vector kv[1];
  142. #define tn_bits kv[0].bits
  143. };
  144. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  145. #define LEAF_SIZE TNODE_SIZE(1)
  146. #ifdef CONFIG_IP_FIB_TRIE_STATS
  147. struct trie_use_stats {
  148. unsigned int gets;
  149. unsigned int backtrack;
  150. unsigned int semantic_match_passed;
  151. unsigned int semantic_match_miss;
  152. unsigned int null_node_hit;
  153. unsigned int resize_node_skipped;
  154. };
  155. #endif
  156. struct trie_stat {
  157. unsigned int totdepth;
  158. unsigned int maxdepth;
  159. unsigned int tnodes;
  160. unsigned int leaves;
  161. unsigned int nullpointers;
  162. unsigned int prefixes;
  163. unsigned int nodesizes[MAX_STAT_DEPTH];
  164. };
  165. struct trie {
  166. struct key_vector kv[1];
  167. #ifdef CONFIG_IP_FIB_TRIE_STATS
  168. struct trie_use_stats __percpu *stats;
  169. #endif
  170. };
  171. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  172. static size_t tnode_free_size;
  173. /*
  174. * synchronize_rcu after call_rcu for that many pages; it should be especially
  175. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  176. * obtained experimentally, aiming to avoid visible slowdown.
  177. */
  178. static const int sync_pages = 128;
  179. static struct kmem_cache *fn_alias_kmem __read_mostly;
  180. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  181. static inline struct tnode *tn_info(struct key_vector *kv)
  182. {
  183. return container_of(kv, struct tnode, kv[0]);
  184. }
  185. /* caller must hold RTNL */
  186. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  187. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  188. /* caller must hold RCU read lock or RTNL */
  189. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  190. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  191. /* wrapper for rcu_assign_pointer */
  192. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  193. {
  194. if (n)
  195. rcu_assign_pointer(tn_info(n)->parent, tp);
  196. }
  197. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  198. /* This provides us with the number of children in this node, in the case of a
  199. * leaf this will return 0 meaning none of the children are accessible.
  200. */
  201. static inline unsigned long child_length(const struct key_vector *tn)
  202. {
  203. return (1ul << tn->bits) & ~(1ul);
  204. }
  205. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  206. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  207. {
  208. unsigned long index = key ^ kv->key;
  209. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  210. return 0;
  211. return index >> kv->pos;
  212. }
  213. /* To understand this stuff, an understanding of keys and all their bits is
  214. * necessary. Every node in the trie has a key associated with it, but not
  215. * all of the bits in that key are significant.
  216. *
  217. * Consider a node 'n' and its parent 'tp'.
  218. *
  219. * If n is a leaf, every bit in its key is significant. Its presence is
  220. * necessitated by path compression, since during a tree traversal (when
  221. * searching for a leaf - unless we are doing an insertion) we will completely
  222. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  223. * a potentially successful search, that we have indeed been walking the
  224. * correct key path.
  225. *
  226. * Note that we can never "miss" the correct key in the tree if present by
  227. * following the wrong path. Path compression ensures that segments of the key
  228. * that are the same for all keys with a given prefix are skipped, but the
  229. * skipped part *is* identical for each node in the subtrie below the skipped
  230. * bit! trie_insert() in this implementation takes care of that.
  231. *
  232. * if n is an internal node - a 'tnode' here, the various parts of its key
  233. * have many different meanings.
  234. *
  235. * Example:
  236. * _________________________________________________________________
  237. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  238. * -----------------------------------------------------------------
  239. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  240. *
  241. * _________________________________________________________________
  242. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  243. * -----------------------------------------------------------------
  244. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  245. *
  246. * tp->pos = 22
  247. * tp->bits = 3
  248. * n->pos = 13
  249. * n->bits = 4
  250. *
  251. * First, let's just ignore the bits that come before the parent tp, that is
  252. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  253. * point we do not use them for anything.
  254. *
  255. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  256. * index into the parent's child array. That is, they will be used to find
  257. * 'n' among tp's children.
  258. *
  259. * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
  260. * for the node n.
  261. *
  262. * All the bits we have seen so far are significant to the node n. The rest
  263. * of the bits are really not needed or indeed known in n->key.
  264. *
  265. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  266. * n's child array, and will of course be different for each child.
  267. *
  268. * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
  269. * at this point.
  270. */
  271. static const int halve_threshold = 25;
  272. static const int inflate_threshold = 50;
  273. static const int halve_threshold_root = 15;
  274. static const int inflate_threshold_root = 30;
  275. static void __alias_free_mem(struct rcu_head *head)
  276. {
  277. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  278. kmem_cache_free(fn_alias_kmem, fa);
  279. }
  280. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  281. {
  282. call_rcu(&fa->rcu, __alias_free_mem);
  283. }
  284. #define TNODE_KMALLOC_MAX \
  285. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  286. #define TNODE_VMALLOC_MAX \
  287. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  288. static void __node_free_rcu(struct rcu_head *head)
  289. {
  290. struct tnode *n = container_of(head, struct tnode, rcu);
  291. if (!n->tn_bits)
  292. kmem_cache_free(trie_leaf_kmem, n);
  293. else
  294. kvfree(n);
  295. }
  296. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  297. static struct tnode *tnode_alloc(int bits)
  298. {
  299. size_t size;
  300. /* verify bits is within bounds */
  301. if (bits > TNODE_VMALLOC_MAX)
  302. return NULL;
  303. /* determine size and verify it is non-zero and didn't overflow */
  304. size = TNODE_SIZE(1ul << bits);
  305. if (size <= PAGE_SIZE)
  306. return kzalloc(size, GFP_KERNEL);
  307. else
  308. return vzalloc(size);
  309. }
  310. static inline void empty_child_inc(struct key_vector *n)
  311. {
  312. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  313. }
  314. static inline void empty_child_dec(struct key_vector *n)
  315. {
  316. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  317. }
  318. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  319. {
  320. struct key_vector *l;
  321. struct tnode *kv;
  322. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  323. if (!kv)
  324. return NULL;
  325. /* initialize key vector */
  326. l = kv->kv;
  327. l->key = key;
  328. l->pos = 0;
  329. l->bits = 0;
  330. l->slen = fa->fa_slen;
  331. /* link leaf to fib alias */
  332. INIT_HLIST_HEAD(&l->leaf);
  333. hlist_add_head(&fa->fa_list, &l->leaf);
  334. return l;
  335. }
  336. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  337. {
  338. unsigned int shift = pos + bits;
  339. struct key_vector *tn;
  340. struct tnode *tnode;
  341. /* verify bits and pos their msb bits clear and values are valid */
  342. BUG_ON(!bits || (shift > KEYLENGTH));
  343. tnode = tnode_alloc(bits);
  344. if (!tnode)
  345. return NULL;
  346. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  347. sizeof(struct key_vector *) << bits);
  348. if (bits == KEYLENGTH)
  349. tnode->full_children = 1;
  350. else
  351. tnode->empty_children = 1ul << bits;
  352. tn = tnode->kv;
  353. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  354. tn->pos = pos;
  355. tn->bits = bits;
  356. tn->slen = pos;
  357. return tn;
  358. }
  359. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  360. * and no bits are skipped. See discussion in dyntree paper p. 6
  361. */
  362. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  363. {
  364. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  365. }
  366. /* Add a child at position i overwriting the old value.
  367. * Update the value of full_children and empty_children.
  368. */
  369. static void put_child(struct key_vector *tn, unsigned long i,
  370. struct key_vector *n)
  371. {
  372. struct key_vector *chi = get_child(tn, i);
  373. int isfull, wasfull;
  374. BUG_ON(i >= child_length(tn));
  375. /* update emptyChildren, overflow into fullChildren */
  376. if (!n && chi)
  377. empty_child_inc(tn);
  378. if (n && !chi)
  379. empty_child_dec(tn);
  380. /* update fullChildren */
  381. wasfull = tnode_full(tn, chi);
  382. isfull = tnode_full(tn, n);
  383. if (wasfull && !isfull)
  384. tn_info(tn)->full_children--;
  385. else if (!wasfull && isfull)
  386. tn_info(tn)->full_children++;
  387. if (n && (tn->slen < n->slen))
  388. tn->slen = n->slen;
  389. rcu_assign_pointer(tn->tnode[i], n);
  390. }
  391. static void update_children(struct key_vector *tn)
  392. {
  393. unsigned long i;
  394. /* update all of the child parent pointers */
  395. for (i = child_length(tn); i;) {
  396. struct key_vector *inode = get_child(tn, --i);
  397. if (!inode)
  398. continue;
  399. /* Either update the children of a tnode that
  400. * already belongs to us or update the child
  401. * to point to ourselves.
  402. */
  403. if (node_parent(inode) == tn)
  404. update_children(inode);
  405. else
  406. node_set_parent(inode, tn);
  407. }
  408. }
  409. static inline void put_child_root(struct key_vector *tp, t_key key,
  410. struct key_vector *n)
  411. {
  412. if (IS_TRIE(tp))
  413. rcu_assign_pointer(tp->tnode[0], n);
  414. else
  415. put_child(tp, get_index(key, tp), n);
  416. }
  417. static inline void tnode_free_init(struct key_vector *tn)
  418. {
  419. tn_info(tn)->rcu.next = NULL;
  420. }
  421. static inline void tnode_free_append(struct key_vector *tn,
  422. struct key_vector *n)
  423. {
  424. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  425. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  426. }
  427. static void tnode_free(struct key_vector *tn)
  428. {
  429. struct callback_head *head = &tn_info(tn)->rcu;
  430. while (head) {
  431. head = head->next;
  432. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  433. node_free(tn);
  434. tn = container_of(head, struct tnode, rcu)->kv;
  435. }
  436. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  437. tnode_free_size = 0;
  438. synchronize_rcu();
  439. }
  440. }
  441. static struct key_vector *replace(struct trie *t,
  442. struct key_vector *oldtnode,
  443. struct key_vector *tn)
  444. {
  445. struct key_vector *tp = node_parent(oldtnode);
  446. unsigned long i;
  447. /* setup the parent pointer out of and back into this node */
  448. NODE_INIT_PARENT(tn, tp);
  449. put_child_root(tp, tn->key, tn);
  450. /* update all of the child parent pointers */
  451. update_children(tn);
  452. /* all pointers should be clean so we are done */
  453. tnode_free(oldtnode);
  454. /* resize children now that oldtnode is freed */
  455. for (i = child_length(tn); i;) {
  456. struct key_vector *inode = get_child(tn, --i);
  457. /* resize child node */
  458. if (tnode_full(tn, inode))
  459. tn = resize(t, inode);
  460. }
  461. return tp;
  462. }
  463. static struct key_vector *inflate(struct trie *t,
  464. struct key_vector *oldtnode)
  465. {
  466. struct key_vector *tn;
  467. unsigned long i;
  468. t_key m;
  469. pr_debug("In inflate\n");
  470. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  471. if (!tn)
  472. goto notnode;
  473. /* prepare oldtnode to be freed */
  474. tnode_free_init(oldtnode);
  475. /* Assemble all of the pointers in our cluster, in this case that
  476. * represents all of the pointers out of our allocated nodes that
  477. * point to existing tnodes and the links between our allocated
  478. * nodes.
  479. */
  480. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  481. struct key_vector *inode = get_child(oldtnode, --i);
  482. struct key_vector *node0, *node1;
  483. unsigned long j, k;
  484. /* An empty child */
  485. if (!inode)
  486. continue;
  487. /* A leaf or an internal node with skipped bits */
  488. if (!tnode_full(oldtnode, inode)) {
  489. put_child(tn, get_index(inode->key, tn), inode);
  490. continue;
  491. }
  492. /* drop the node in the old tnode free list */
  493. tnode_free_append(oldtnode, inode);
  494. /* An internal node with two children */
  495. if (inode->bits == 1) {
  496. put_child(tn, 2 * i + 1, get_child(inode, 1));
  497. put_child(tn, 2 * i, get_child(inode, 0));
  498. continue;
  499. }
  500. /* We will replace this node 'inode' with two new
  501. * ones, 'node0' and 'node1', each with half of the
  502. * original children. The two new nodes will have
  503. * a position one bit further down the key and this
  504. * means that the "significant" part of their keys
  505. * (see the discussion near the top of this file)
  506. * will differ by one bit, which will be "0" in
  507. * node0's key and "1" in node1's key. Since we are
  508. * moving the key position by one step, the bit that
  509. * we are moving away from - the bit at position
  510. * (tn->pos) - is the one that will differ between
  511. * node0 and node1. So... we synthesize that bit in the
  512. * two new keys.
  513. */
  514. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  515. if (!node1)
  516. goto nomem;
  517. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  518. tnode_free_append(tn, node1);
  519. if (!node0)
  520. goto nomem;
  521. tnode_free_append(tn, node0);
  522. /* populate child pointers in new nodes */
  523. for (k = child_length(inode), j = k / 2; j;) {
  524. put_child(node1, --j, get_child(inode, --k));
  525. put_child(node0, j, get_child(inode, j));
  526. put_child(node1, --j, get_child(inode, --k));
  527. put_child(node0, j, get_child(inode, j));
  528. }
  529. /* link new nodes to parent */
  530. NODE_INIT_PARENT(node1, tn);
  531. NODE_INIT_PARENT(node0, tn);
  532. /* link parent to nodes */
  533. put_child(tn, 2 * i + 1, node1);
  534. put_child(tn, 2 * i, node0);
  535. }
  536. /* setup the parent pointers into and out of this node */
  537. return replace(t, oldtnode, tn);
  538. nomem:
  539. /* all pointers should be clean so we are done */
  540. tnode_free(tn);
  541. notnode:
  542. return NULL;
  543. }
  544. static struct key_vector *halve(struct trie *t,
  545. struct key_vector *oldtnode)
  546. {
  547. struct key_vector *tn;
  548. unsigned long i;
  549. pr_debug("In halve\n");
  550. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  551. if (!tn)
  552. goto notnode;
  553. /* prepare oldtnode to be freed */
  554. tnode_free_init(oldtnode);
  555. /* Assemble all of the pointers in our cluster, in this case that
  556. * represents all of the pointers out of our allocated nodes that
  557. * point to existing tnodes and the links between our allocated
  558. * nodes.
  559. */
  560. for (i = child_length(oldtnode); i;) {
  561. struct key_vector *node1 = get_child(oldtnode, --i);
  562. struct key_vector *node0 = get_child(oldtnode, --i);
  563. struct key_vector *inode;
  564. /* At least one of the children is empty */
  565. if (!node1 || !node0) {
  566. put_child(tn, i / 2, node1 ? : node0);
  567. continue;
  568. }
  569. /* Two nonempty children */
  570. inode = tnode_new(node0->key, oldtnode->pos, 1);
  571. if (!inode)
  572. goto nomem;
  573. tnode_free_append(tn, inode);
  574. /* initialize pointers out of node */
  575. put_child(inode, 1, node1);
  576. put_child(inode, 0, node0);
  577. NODE_INIT_PARENT(inode, tn);
  578. /* link parent to node */
  579. put_child(tn, i / 2, inode);
  580. }
  581. /* setup the parent pointers into and out of this node */
  582. return replace(t, oldtnode, tn);
  583. nomem:
  584. /* all pointers should be clean so we are done */
  585. tnode_free(tn);
  586. notnode:
  587. return NULL;
  588. }
  589. static struct key_vector *collapse(struct trie *t,
  590. struct key_vector *oldtnode)
  591. {
  592. struct key_vector *n, *tp;
  593. unsigned long i;
  594. /* scan the tnode looking for that one child that might still exist */
  595. for (n = NULL, i = child_length(oldtnode); !n && i;)
  596. n = get_child(oldtnode, --i);
  597. /* compress one level */
  598. tp = node_parent(oldtnode);
  599. put_child_root(tp, oldtnode->key, n);
  600. node_set_parent(n, tp);
  601. /* drop dead node */
  602. node_free(oldtnode);
  603. return tp;
  604. }
  605. static unsigned char update_suffix(struct key_vector *tn)
  606. {
  607. unsigned char slen = tn->pos;
  608. unsigned long stride, i;
  609. unsigned char slen_max;
  610. /* only vector 0 can have a suffix length greater than or equal to
  611. * tn->pos + tn->bits, the second highest node will have a suffix
  612. * length at most of tn->pos + tn->bits - 1
  613. */
  614. slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
  615. /* search though the list of children looking for nodes that might
  616. * have a suffix greater than the one we currently have. This is
  617. * why we start with a stride of 2 since a stride of 1 would
  618. * represent the nodes with suffix length equal to tn->pos
  619. */
  620. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  621. struct key_vector *n = get_child(tn, i);
  622. if (!n || (n->slen <= slen))
  623. continue;
  624. /* update stride and slen based on new value */
  625. stride <<= (n->slen - slen);
  626. slen = n->slen;
  627. i &= ~(stride - 1);
  628. /* stop searching if we have hit the maximum possible value */
  629. if (slen >= slen_max)
  630. break;
  631. }
  632. tn->slen = slen;
  633. return slen;
  634. }
  635. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  636. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  637. * Telecommunications, page 6:
  638. * "A node is doubled if the ratio of non-empty children to all
  639. * children in the *doubled* node is at least 'high'."
  640. *
  641. * 'high' in this instance is the variable 'inflate_threshold'. It
  642. * is expressed as a percentage, so we multiply it with
  643. * child_length() and instead of multiplying by 2 (since the
  644. * child array will be doubled by inflate()) and multiplying
  645. * the left-hand side by 100 (to handle the percentage thing) we
  646. * multiply the left-hand side by 50.
  647. *
  648. * The left-hand side may look a bit weird: child_length(tn)
  649. * - tn->empty_children is of course the number of non-null children
  650. * in the current node. tn->full_children is the number of "full"
  651. * children, that is non-null tnodes with a skip value of 0.
  652. * All of those will be doubled in the resulting inflated tnode, so
  653. * we just count them one extra time here.
  654. *
  655. * A clearer way to write this would be:
  656. *
  657. * to_be_doubled = tn->full_children;
  658. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  659. * tn->full_children;
  660. *
  661. * new_child_length = child_length(tn) * 2;
  662. *
  663. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  664. * new_child_length;
  665. * if (new_fill_factor >= inflate_threshold)
  666. *
  667. * ...and so on, tho it would mess up the while () loop.
  668. *
  669. * anyway,
  670. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  671. * inflate_threshold
  672. *
  673. * avoid a division:
  674. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  675. * inflate_threshold * new_child_length
  676. *
  677. * expand not_to_be_doubled and to_be_doubled, and shorten:
  678. * 100 * (child_length(tn) - tn->empty_children +
  679. * tn->full_children) >= inflate_threshold * new_child_length
  680. *
  681. * expand new_child_length:
  682. * 100 * (child_length(tn) - tn->empty_children +
  683. * tn->full_children) >=
  684. * inflate_threshold * child_length(tn) * 2
  685. *
  686. * shorten again:
  687. * 50 * (tn->full_children + child_length(tn) -
  688. * tn->empty_children) >= inflate_threshold *
  689. * child_length(tn)
  690. *
  691. */
  692. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  693. {
  694. unsigned long used = child_length(tn);
  695. unsigned long threshold = used;
  696. /* Keep root node larger */
  697. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  698. used -= tn_info(tn)->empty_children;
  699. used += tn_info(tn)->full_children;
  700. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  701. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  702. }
  703. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  704. {
  705. unsigned long used = child_length(tn);
  706. unsigned long threshold = used;
  707. /* Keep root node larger */
  708. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  709. used -= tn_info(tn)->empty_children;
  710. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  711. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  712. }
  713. static inline bool should_collapse(struct key_vector *tn)
  714. {
  715. unsigned long used = child_length(tn);
  716. used -= tn_info(tn)->empty_children;
  717. /* account for bits == KEYLENGTH case */
  718. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  719. used -= KEY_MAX;
  720. /* One child or none, time to drop us from the trie */
  721. return used < 2;
  722. }
  723. #define MAX_WORK 10
  724. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  725. {
  726. #ifdef CONFIG_IP_FIB_TRIE_STATS
  727. struct trie_use_stats __percpu *stats = t->stats;
  728. #endif
  729. struct key_vector *tp = node_parent(tn);
  730. unsigned long cindex = get_index(tn->key, tp);
  731. int max_work = MAX_WORK;
  732. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  733. tn, inflate_threshold, halve_threshold);
  734. /* track the tnode via the pointer from the parent instead of
  735. * doing it ourselves. This way we can let RCU fully do its
  736. * thing without us interfering
  737. */
  738. BUG_ON(tn != get_child(tp, cindex));
  739. /* Double as long as the resulting node has a number of
  740. * nonempty nodes that are above the threshold.
  741. */
  742. while (should_inflate(tp, tn) && max_work) {
  743. tp = inflate(t, tn);
  744. if (!tp) {
  745. #ifdef CONFIG_IP_FIB_TRIE_STATS
  746. this_cpu_inc(stats->resize_node_skipped);
  747. #endif
  748. break;
  749. }
  750. max_work--;
  751. tn = get_child(tp, cindex);
  752. }
  753. /* update parent in case inflate failed */
  754. tp = node_parent(tn);
  755. /* Return if at least one inflate is run */
  756. if (max_work != MAX_WORK)
  757. return tp;
  758. /* Halve as long as the number of empty children in this
  759. * node is above threshold.
  760. */
  761. while (should_halve(tp, tn) && max_work) {
  762. tp = halve(t, tn);
  763. if (!tp) {
  764. #ifdef CONFIG_IP_FIB_TRIE_STATS
  765. this_cpu_inc(stats->resize_node_skipped);
  766. #endif
  767. break;
  768. }
  769. max_work--;
  770. tn = get_child(tp, cindex);
  771. }
  772. /* Only one child remains */
  773. if (should_collapse(tn))
  774. return collapse(t, tn);
  775. /* update parent in case halve failed */
  776. return node_parent(tn);
  777. }
  778. static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
  779. {
  780. unsigned char node_slen = tn->slen;
  781. while ((node_slen > tn->pos) && (node_slen > slen)) {
  782. slen = update_suffix(tn);
  783. if (node_slen == slen)
  784. break;
  785. tn = node_parent(tn);
  786. node_slen = tn->slen;
  787. }
  788. }
  789. static void node_push_suffix(struct key_vector *tn, unsigned char slen)
  790. {
  791. while (tn->slen < slen) {
  792. tn->slen = slen;
  793. tn = node_parent(tn);
  794. }
  795. }
  796. /* rcu_read_lock needs to be hold by caller from readside */
  797. static struct key_vector *fib_find_node(struct trie *t,
  798. struct key_vector **tp, u32 key)
  799. {
  800. struct key_vector *pn, *n = t->kv;
  801. unsigned long index = 0;
  802. do {
  803. pn = n;
  804. n = get_child_rcu(n, index);
  805. if (!n)
  806. break;
  807. index = get_cindex(key, n);
  808. /* This bit of code is a bit tricky but it combines multiple
  809. * checks into a single check. The prefix consists of the
  810. * prefix plus zeros for the bits in the cindex. The index
  811. * is the difference between the key and this value. From
  812. * this we can actually derive several pieces of data.
  813. * if (index >= (1ul << bits))
  814. * we have a mismatch in skip bits and failed
  815. * else
  816. * we know the value is cindex
  817. *
  818. * This check is safe even if bits == KEYLENGTH due to the
  819. * fact that we can only allocate a node with 32 bits if a
  820. * long is greater than 32 bits.
  821. */
  822. if (index >= (1ul << n->bits)) {
  823. n = NULL;
  824. break;
  825. }
  826. /* keep searching until we find a perfect match leaf or NULL */
  827. } while (IS_TNODE(n));
  828. *tp = pn;
  829. return n;
  830. }
  831. /* Return the first fib alias matching TOS with
  832. * priority less than or equal to PRIO.
  833. */
  834. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  835. u8 tos, u32 prio, u32 tb_id)
  836. {
  837. struct fib_alias *fa;
  838. if (!fah)
  839. return NULL;
  840. hlist_for_each_entry(fa, fah, fa_list) {
  841. if (fa->fa_slen < slen)
  842. continue;
  843. if (fa->fa_slen != slen)
  844. break;
  845. if (fa->tb_id > tb_id)
  846. continue;
  847. if (fa->tb_id != tb_id)
  848. break;
  849. if (fa->fa_tos > tos)
  850. continue;
  851. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  852. return fa;
  853. }
  854. return NULL;
  855. }
  856. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  857. {
  858. while (!IS_TRIE(tn))
  859. tn = resize(t, tn);
  860. }
  861. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  862. struct fib_alias *new, t_key key)
  863. {
  864. struct key_vector *n, *l;
  865. l = leaf_new(key, new);
  866. if (!l)
  867. goto noleaf;
  868. /* retrieve child from parent node */
  869. n = get_child(tp, get_index(key, tp));
  870. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  871. *
  872. * Add a new tnode here
  873. * first tnode need some special handling
  874. * leaves us in position for handling as case 3
  875. */
  876. if (n) {
  877. struct key_vector *tn;
  878. tn = tnode_new(key, __fls(key ^ n->key), 1);
  879. if (!tn)
  880. goto notnode;
  881. /* initialize routes out of node */
  882. NODE_INIT_PARENT(tn, tp);
  883. put_child(tn, get_index(key, tn) ^ 1, n);
  884. /* start adding routes into the node */
  885. put_child_root(tp, key, tn);
  886. node_set_parent(n, tn);
  887. /* parent now has a NULL spot where the leaf can go */
  888. tp = tn;
  889. }
  890. /* Case 3: n is NULL, and will just insert a new leaf */
  891. node_push_suffix(tp, new->fa_slen);
  892. NODE_INIT_PARENT(l, tp);
  893. put_child_root(tp, key, l);
  894. trie_rebalance(t, tp);
  895. return 0;
  896. notnode:
  897. node_free(l);
  898. noleaf:
  899. return -ENOMEM;
  900. }
  901. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  902. struct key_vector *l, struct fib_alias *new,
  903. struct fib_alias *fa, t_key key)
  904. {
  905. if (!l)
  906. return fib_insert_node(t, tp, new, key);
  907. if (fa) {
  908. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  909. } else {
  910. struct fib_alias *last;
  911. hlist_for_each_entry(last, &l->leaf, fa_list) {
  912. if (new->fa_slen < last->fa_slen)
  913. break;
  914. if ((new->fa_slen == last->fa_slen) &&
  915. (new->tb_id > last->tb_id))
  916. break;
  917. fa = last;
  918. }
  919. if (fa)
  920. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  921. else
  922. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  923. }
  924. /* if we added to the tail node then we need to update slen */
  925. if (l->slen < new->fa_slen) {
  926. l->slen = new->fa_slen;
  927. node_push_suffix(tp, new->fa_slen);
  928. }
  929. return 0;
  930. }
  931. /* Caller must hold RTNL. */
  932. int fib_table_insert(struct net *net, struct fib_table *tb,
  933. struct fib_config *cfg)
  934. {
  935. struct trie *t = (struct trie *)tb->tb_data;
  936. struct fib_alias *fa, *new_fa;
  937. struct key_vector *l, *tp;
  938. u16 nlflags = NLM_F_EXCL;
  939. struct fib_info *fi;
  940. u8 plen = cfg->fc_dst_len;
  941. u8 slen = KEYLENGTH - plen;
  942. u8 tos = cfg->fc_tos;
  943. u32 key;
  944. int err;
  945. if (plen > KEYLENGTH)
  946. return -EINVAL;
  947. key = ntohl(cfg->fc_dst);
  948. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  949. if ((plen < KEYLENGTH) && (key << plen))
  950. return -EINVAL;
  951. fi = fib_create_info(cfg);
  952. if (IS_ERR(fi)) {
  953. err = PTR_ERR(fi);
  954. goto err;
  955. }
  956. l = fib_find_node(t, &tp, key);
  957. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  958. tb->tb_id) : NULL;
  959. /* Now fa, if non-NULL, points to the first fib alias
  960. * with the same keys [prefix,tos,priority], if such key already
  961. * exists or to the node before which we will insert new one.
  962. *
  963. * If fa is NULL, we will need to allocate a new one and
  964. * insert to the tail of the section matching the suffix length
  965. * of the new alias.
  966. */
  967. if (fa && fa->fa_tos == tos &&
  968. fa->fa_info->fib_priority == fi->fib_priority) {
  969. struct fib_alias *fa_first, *fa_match;
  970. err = -EEXIST;
  971. if (cfg->fc_nlflags & NLM_F_EXCL)
  972. goto out;
  973. nlflags &= ~NLM_F_EXCL;
  974. /* We have 2 goals:
  975. * 1. Find exact match for type, scope, fib_info to avoid
  976. * duplicate routes
  977. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  978. */
  979. fa_match = NULL;
  980. fa_first = fa;
  981. hlist_for_each_entry_from(fa, fa_list) {
  982. if ((fa->fa_slen != slen) ||
  983. (fa->tb_id != tb->tb_id) ||
  984. (fa->fa_tos != tos))
  985. break;
  986. if (fa->fa_info->fib_priority != fi->fib_priority)
  987. break;
  988. if (fa->fa_type == cfg->fc_type &&
  989. fa->fa_info == fi) {
  990. fa_match = fa;
  991. break;
  992. }
  993. }
  994. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  995. struct fib_info *fi_drop;
  996. u8 state;
  997. nlflags |= NLM_F_REPLACE;
  998. fa = fa_first;
  999. if (fa_match) {
  1000. if (fa == fa_match)
  1001. err = 0;
  1002. goto out;
  1003. }
  1004. err = -ENOBUFS;
  1005. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1006. if (!new_fa)
  1007. goto out;
  1008. fi_drop = fa->fa_info;
  1009. new_fa->fa_tos = fa->fa_tos;
  1010. new_fa->fa_info = fi;
  1011. new_fa->fa_type = cfg->fc_type;
  1012. state = fa->fa_state;
  1013. new_fa->fa_state = state & ~FA_S_ACCESSED;
  1014. new_fa->fa_slen = fa->fa_slen;
  1015. new_fa->tb_id = tb->tb_id;
  1016. new_fa->fa_default = -1;
  1017. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1018. alias_free_mem_rcu(fa);
  1019. fib_release_info(fi_drop);
  1020. if (state & FA_S_ACCESSED)
  1021. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1022. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
  1023. key, plen, fi,
  1024. new_fa->fa_tos, cfg->fc_type,
  1025. tb->tb_id, cfg->fc_nlflags);
  1026. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1027. tb->tb_id, &cfg->fc_nlinfo, nlflags);
  1028. goto succeeded;
  1029. }
  1030. /* Error if we find a perfect match which
  1031. * uses the same scope, type, and nexthop
  1032. * information.
  1033. */
  1034. if (fa_match)
  1035. goto out;
  1036. if (cfg->fc_nlflags & NLM_F_APPEND)
  1037. nlflags |= NLM_F_APPEND;
  1038. else
  1039. fa = fa_first;
  1040. }
  1041. err = -ENOENT;
  1042. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1043. goto out;
  1044. nlflags |= NLM_F_CREATE;
  1045. err = -ENOBUFS;
  1046. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1047. if (!new_fa)
  1048. goto out;
  1049. new_fa->fa_info = fi;
  1050. new_fa->fa_tos = tos;
  1051. new_fa->fa_type = cfg->fc_type;
  1052. new_fa->fa_state = 0;
  1053. new_fa->fa_slen = slen;
  1054. new_fa->tb_id = tb->tb_id;
  1055. new_fa->fa_default = -1;
  1056. /* Insert new entry to the list. */
  1057. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1058. if (err)
  1059. goto out_free_new_fa;
  1060. if (!plen)
  1061. tb->tb_num_default++;
  1062. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1063. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
  1064. cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
  1065. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1066. &cfg->fc_nlinfo, nlflags);
  1067. succeeded:
  1068. return 0;
  1069. out_free_new_fa:
  1070. kmem_cache_free(fn_alias_kmem, new_fa);
  1071. out:
  1072. fib_release_info(fi);
  1073. err:
  1074. return err;
  1075. }
  1076. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1077. {
  1078. t_key prefix = n->key;
  1079. return (key ^ prefix) & (prefix | -prefix);
  1080. }
  1081. /* should be called with rcu_read_lock */
  1082. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1083. struct fib_result *res, int fib_flags)
  1084. {
  1085. struct trie *t = (struct trie *) tb->tb_data;
  1086. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1087. struct trie_use_stats __percpu *stats = t->stats;
  1088. #endif
  1089. const t_key key = ntohl(flp->daddr);
  1090. struct key_vector *n, *pn;
  1091. struct fib_alias *fa;
  1092. unsigned long index;
  1093. t_key cindex;
  1094. trace_fib_table_lookup(tb->tb_id, flp);
  1095. pn = t->kv;
  1096. cindex = 0;
  1097. n = get_child_rcu(pn, cindex);
  1098. if (!n)
  1099. return -EAGAIN;
  1100. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1101. this_cpu_inc(stats->gets);
  1102. #endif
  1103. /* Step 1: Travel to the longest prefix match in the trie */
  1104. for (;;) {
  1105. index = get_cindex(key, n);
  1106. /* This bit of code is a bit tricky but it combines multiple
  1107. * checks into a single check. The prefix consists of the
  1108. * prefix plus zeros for the "bits" in the prefix. The index
  1109. * is the difference between the key and this value. From
  1110. * this we can actually derive several pieces of data.
  1111. * if (index >= (1ul << bits))
  1112. * we have a mismatch in skip bits and failed
  1113. * else
  1114. * we know the value is cindex
  1115. *
  1116. * This check is safe even if bits == KEYLENGTH due to the
  1117. * fact that we can only allocate a node with 32 bits if a
  1118. * long is greater than 32 bits.
  1119. */
  1120. if (index >= (1ul << n->bits))
  1121. break;
  1122. /* we have found a leaf. Prefixes have already been compared */
  1123. if (IS_LEAF(n))
  1124. goto found;
  1125. /* only record pn and cindex if we are going to be chopping
  1126. * bits later. Otherwise we are just wasting cycles.
  1127. */
  1128. if (n->slen > n->pos) {
  1129. pn = n;
  1130. cindex = index;
  1131. }
  1132. n = get_child_rcu(n, index);
  1133. if (unlikely(!n))
  1134. goto backtrace;
  1135. }
  1136. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1137. for (;;) {
  1138. /* record the pointer where our next node pointer is stored */
  1139. struct key_vector __rcu **cptr = n->tnode;
  1140. /* This test verifies that none of the bits that differ
  1141. * between the key and the prefix exist in the region of
  1142. * the lsb and higher in the prefix.
  1143. */
  1144. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1145. goto backtrace;
  1146. /* exit out and process leaf */
  1147. if (unlikely(IS_LEAF(n)))
  1148. break;
  1149. /* Don't bother recording parent info. Since we are in
  1150. * prefix match mode we will have to come back to wherever
  1151. * we started this traversal anyway
  1152. */
  1153. while ((n = rcu_dereference(*cptr)) == NULL) {
  1154. backtrace:
  1155. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1156. if (!n)
  1157. this_cpu_inc(stats->null_node_hit);
  1158. #endif
  1159. /* If we are at cindex 0 there are no more bits for
  1160. * us to strip at this level so we must ascend back
  1161. * up one level to see if there are any more bits to
  1162. * be stripped there.
  1163. */
  1164. while (!cindex) {
  1165. t_key pkey = pn->key;
  1166. /* If we don't have a parent then there is
  1167. * nothing for us to do as we do not have any
  1168. * further nodes to parse.
  1169. */
  1170. if (IS_TRIE(pn))
  1171. return -EAGAIN;
  1172. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1173. this_cpu_inc(stats->backtrack);
  1174. #endif
  1175. /* Get Child's index */
  1176. pn = node_parent_rcu(pn);
  1177. cindex = get_index(pkey, pn);
  1178. }
  1179. /* strip the least significant bit from the cindex */
  1180. cindex &= cindex - 1;
  1181. /* grab pointer for next child node */
  1182. cptr = &pn->tnode[cindex];
  1183. }
  1184. }
  1185. found:
  1186. /* this line carries forward the xor from earlier in the function */
  1187. index = key ^ n->key;
  1188. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1189. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1190. struct fib_info *fi = fa->fa_info;
  1191. int nhsel, err;
  1192. if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
  1193. if (index >= (1ul << fa->fa_slen))
  1194. continue;
  1195. }
  1196. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1197. continue;
  1198. if (fi->fib_dead)
  1199. continue;
  1200. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1201. continue;
  1202. fib_alias_accessed(fa);
  1203. err = fib_props[fa->fa_type].error;
  1204. if (unlikely(err < 0)) {
  1205. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1206. this_cpu_inc(stats->semantic_match_passed);
  1207. #endif
  1208. return err;
  1209. }
  1210. if (fi->fib_flags & RTNH_F_DEAD)
  1211. continue;
  1212. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1213. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1214. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1215. if (nh->nh_flags & RTNH_F_DEAD)
  1216. continue;
  1217. if (in_dev &&
  1218. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1219. nh->nh_flags & RTNH_F_LINKDOWN &&
  1220. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1221. continue;
  1222. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1223. if (flp->flowi4_oif &&
  1224. flp->flowi4_oif != nh->nh_oif)
  1225. continue;
  1226. }
  1227. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1228. atomic_inc(&fi->fib_clntref);
  1229. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1230. res->nh_sel = nhsel;
  1231. res->type = fa->fa_type;
  1232. res->scope = fi->fib_scope;
  1233. res->fi = fi;
  1234. res->table = tb;
  1235. res->fa_head = &n->leaf;
  1236. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1237. this_cpu_inc(stats->semantic_match_passed);
  1238. #endif
  1239. trace_fib_table_lookup_nh(nh);
  1240. return err;
  1241. }
  1242. }
  1243. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1244. this_cpu_inc(stats->semantic_match_miss);
  1245. #endif
  1246. goto backtrace;
  1247. }
  1248. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1249. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1250. struct key_vector *l, struct fib_alias *old)
  1251. {
  1252. /* record the location of the previous list_info entry */
  1253. struct hlist_node **pprev = old->fa_list.pprev;
  1254. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1255. /* remove the fib_alias from the list */
  1256. hlist_del_rcu(&old->fa_list);
  1257. /* if we emptied the list this leaf will be freed and we can sort
  1258. * out parent suffix lengths as a part of trie_rebalance
  1259. */
  1260. if (hlist_empty(&l->leaf)) {
  1261. if (tp->slen == l->slen)
  1262. node_pull_suffix(tp, tp->pos);
  1263. put_child_root(tp, l->key, NULL);
  1264. node_free(l);
  1265. trie_rebalance(t, tp);
  1266. return;
  1267. }
  1268. /* only access fa if it is pointing at the last valid hlist_node */
  1269. if (*pprev)
  1270. return;
  1271. /* update the trie with the latest suffix length */
  1272. l->slen = fa->fa_slen;
  1273. node_pull_suffix(tp, fa->fa_slen);
  1274. }
  1275. /* Caller must hold RTNL. */
  1276. int fib_table_delete(struct net *net, struct fib_table *tb,
  1277. struct fib_config *cfg)
  1278. {
  1279. struct trie *t = (struct trie *) tb->tb_data;
  1280. struct fib_alias *fa, *fa_to_delete;
  1281. struct key_vector *l, *tp;
  1282. u8 plen = cfg->fc_dst_len;
  1283. u8 slen = KEYLENGTH - plen;
  1284. u8 tos = cfg->fc_tos;
  1285. u32 key;
  1286. if (plen > KEYLENGTH)
  1287. return -EINVAL;
  1288. key = ntohl(cfg->fc_dst);
  1289. if ((plen < KEYLENGTH) && (key << plen))
  1290. return -EINVAL;
  1291. l = fib_find_node(t, &tp, key);
  1292. if (!l)
  1293. return -ESRCH;
  1294. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1295. if (!fa)
  1296. return -ESRCH;
  1297. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1298. fa_to_delete = NULL;
  1299. hlist_for_each_entry_from(fa, fa_list) {
  1300. struct fib_info *fi = fa->fa_info;
  1301. if ((fa->fa_slen != slen) ||
  1302. (fa->tb_id != tb->tb_id) ||
  1303. (fa->fa_tos != tos))
  1304. break;
  1305. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1306. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1307. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1308. (!cfg->fc_prefsrc ||
  1309. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1310. (!cfg->fc_protocol ||
  1311. fi->fib_protocol == cfg->fc_protocol) &&
  1312. fib_nh_match(cfg, fi) == 0) {
  1313. fa_to_delete = fa;
  1314. break;
  1315. }
  1316. }
  1317. if (!fa_to_delete)
  1318. return -ESRCH;
  1319. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
  1320. fa_to_delete->fa_info, tos, cfg->fc_type,
  1321. tb->tb_id, 0);
  1322. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1323. &cfg->fc_nlinfo, 0);
  1324. if (!plen)
  1325. tb->tb_num_default--;
  1326. fib_remove_alias(t, tp, l, fa_to_delete);
  1327. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1328. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1329. fib_release_info(fa_to_delete->fa_info);
  1330. alias_free_mem_rcu(fa_to_delete);
  1331. return 0;
  1332. }
  1333. /* Scan for the next leaf starting at the provided key value */
  1334. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1335. {
  1336. struct key_vector *pn, *n = *tn;
  1337. unsigned long cindex;
  1338. /* this loop is meant to try and find the key in the trie */
  1339. do {
  1340. /* record parent and next child index */
  1341. pn = n;
  1342. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1343. if (cindex >> pn->bits)
  1344. break;
  1345. /* descend into the next child */
  1346. n = get_child_rcu(pn, cindex++);
  1347. if (!n)
  1348. break;
  1349. /* guarantee forward progress on the keys */
  1350. if (IS_LEAF(n) && (n->key >= key))
  1351. goto found;
  1352. } while (IS_TNODE(n));
  1353. /* this loop will search for the next leaf with a greater key */
  1354. while (!IS_TRIE(pn)) {
  1355. /* if we exhausted the parent node we will need to climb */
  1356. if (cindex >= (1ul << pn->bits)) {
  1357. t_key pkey = pn->key;
  1358. pn = node_parent_rcu(pn);
  1359. cindex = get_index(pkey, pn) + 1;
  1360. continue;
  1361. }
  1362. /* grab the next available node */
  1363. n = get_child_rcu(pn, cindex++);
  1364. if (!n)
  1365. continue;
  1366. /* no need to compare keys since we bumped the index */
  1367. if (IS_LEAF(n))
  1368. goto found;
  1369. /* Rescan start scanning in new node */
  1370. pn = n;
  1371. cindex = 0;
  1372. }
  1373. *tn = pn;
  1374. return NULL; /* Root of trie */
  1375. found:
  1376. /* if we are at the limit for keys just return NULL for the tnode */
  1377. *tn = pn;
  1378. return n;
  1379. }
  1380. static void fib_trie_free(struct fib_table *tb)
  1381. {
  1382. struct trie *t = (struct trie *)tb->tb_data;
  1383. struct key_vector *pn = t->kv;
  1384. unsigned long cindex = 1;
  1385. struct hlist_node *tmp;
  1386. struct fib_alias *fa;
  1387. /* walk trie in reverse order and free everything */
  1388. for (;;) {
  1389. struct key_vector *n;
  1390. if (!(cindex--)) {
  1391. t_key pkey = pn->key;
  1392. if (IS_TRIE(pn))
  1393. break;
  1394. n = pn;
  1395. pn = node_parent(pn);
  1396. /* drop emptied tnode */
  1397. put_child_root(pn, n->key, NULL);
  1398. node_free(n);
  1399. cindex = get_index(pkey, pn);
  1400. continue;
  1401. }
  1402. /* grab the next available node */
  1403. n = get_child(pn, cindex);
  1404. if (!n)
  1405. continue;
  1406. if (IS_TNODE(n)) {
  1407. /* record pn and cindex for leaf walking */
  1408. pn = n;
  1409. cindex = 1ul << n->bits;
  1410. continue;
  1411. }
  1412. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1413. hlist_del_rcu(&fa->fa_list);
  1414. alias_free_mem_rcu(fa);
  1415. }
  1416. put_child_root(pn, n->key, NULL);
  1417. node_free(n);
  1418. }
  1419. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1420. free_percpu(t->stats);
  1421. #endif
  1422. kfree(tb);
  1423. }
  1424. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1425. {
  1426. struct trie *ot = (struct trie *)oldtb->tb_data;
  1427. struct key_vector *l, *tp = ot->kv;
  1428. struct fib_table *local_tb;
  1429. struct fib_alias *fa;
  1430. struct trie *lt;
  1431. t_key key = 0;
  1432. if (oldtb->tb_data == oldtb->__data)
  1433. return oldtb;
  1434. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1435. if (!local_tb)
  1436. return NULL;
  1437. lt = (struct trie *)local_tb->tb_data;
  1438. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1439. struct key_vector *local_l = NULL, *local_tp;
  1440. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1441. struct fib_alias *new_fa;
  1442. if (local_tb->tb_id != fa->tb_id)
  1443. continue;
  1444. /* clone fa for new local table */
  1445. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1446. if (!new_fa)
  1447. goto out;
  1448. memcpy(new_fa, fa, sizeof(*fa));
  1449. /* insert clone into table */
  1450. if (!local_l)
  1451. local_l = fib_find_node(lt, &local_tp, l->key);
  1452. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1453. NULL, l->key)) {
  1454. kmem_cache_free(fn_alias_kmem, new_fa);
  1455. goto out;
  1456. }
  1457. }
  1458. /* stop loop if key wrapped back to 0 */
  1459. key = l->key + 1;
  1460. if (key < l->key)
  1461. break;
  1462. }
  1463. return local_tb;
  1464. out:
  1465. fib_trie_free(local_tb);
  1466. return NULL;
  1467. }
  1468. /* Caller must hold RTNL */
  1469. void fib_table_flush_external(struct fib_table *tb)
  1470. {
  1471. struct trie *t = (struct trie *)tb->tb_data;
  1472. struct key_vector *pn = t->kv;
  1473. unsigned long cindex = 1;
  1474. struct hlist_node *tmp;
  1475. struct fib_alias *fa;
  1476. /* walk trie in reverse order */
  1477. for (;;) {
  1478. unsigned char slen = 0;
  1479. struct key_vector *n;
  1480. if (!(cindex--)) {
  1481. t_key pkey = pn->key;
  1482. /* cannot resize the trie vector */
  1483. if (IS_TRIE(pn))
  1484. break;
  1485. /* update the suffix to address pulled leaves */
  1486. if (pn->slen > pn->pos)
  1487. update_suffix(pn);
  1488. /* resize completed node */
  1489. pn = resize(t, pn);
  1490. cindex = get_index(pkey, pn);
  1491. continue;
  1492. }
  1493. /* grab the next available node */
  1494. n = get_child(pn, cindex);
  1495. if (!n)
  1496. continue;
  1497. if (IS_TNODE(n)) {
  1498. /* record pn and cindex for leaf walking */
  1499. pn = n;
  1500. cindex = 1ul << n->bits;
  1501. continue;
  1502. }
  1503. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1504. /* if alias was cloned to local then we just
  1505. * need to remove the local copy from main
  1506. */
  1507. if (tb->tb_id != fa->tb_id) {
  1508. hlist_del_rcu(&fa->fa_list);
  1509. alias_free_mem_rcu(fa);
  1510. continue;
  1511. }
  1512. /* record local slen */
  1513. slen = fa->fa_slen;
  1514. }
  1515. /* update leaf slen */
  1516. n->slen = slen;
  1517. if (hlist_empty(&n->leaf)) {
  1518. put_child_root(pn, n->key, NULL);
  1519. node_free(n);
  1520. }
  1521. }
  1522. }
  1523. /* Caller must hold RTNL. */
  1524. int fib_table_flush(struct net *net, struct fib_table *tb)
  1525. {
  1526. struct trie *t = (struct trie *)tb->tb_data;
  1527. struct key_vector *pn = t->kv;
  1528. unsigned long cindex = 1;
  1529. struct hlist_node *tmp;
  1530. struct fib_alias *fa;
  1531. int found = 0;
  1532. /* walk trie in reverse order */
  1533. for (;;) {
  1534. unsigned char slen = 0;
  1535. struct key_vector *n;
  1536. if (!(cindex--)) {
  1537. t_key pkey = pn->key;
  1538. /* cannot resize the trie vector */
  1539. if (IS_TRIE(pn))
  1540. break;
  1541. /* update the suffix to address pulled leaves */
  1542. if (pn->slen > pn->pos)
  1543. update_suffix(pn);
  1544. /* resize completed node */
  1545. pn = resize(t, pn);
  1546. cindex = get_index(pkey, pn);
  1547. continue;
  1548. }
  1549. /* grab the next available node */
  1550. n = get_child(pn, cindex);
  1551. if (!n)
  1552. continue;
  1553. if (IS_TNODE(n)) {
  1554. /* record pn and cindex for leaf walking */
  1555. pn = n;
  1556. cindex = 1ul << n->bits;
  1557. continue;
  1558. }
  1559. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1560. struct fib_info *fi = fa->fa_info;
  1561. if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
  1562. slen = fa->fa_slen;
  1563. continue;
  1564. }
  1565. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
  1566. n->key,
  1567. KEYLENGTH - fa->fa_slen,
  1568. fi, fa->fa_tos, fa->fa_type,
  1569. tb->tb_id, 0);
  1570. hlist_del_rcu(&fa->fa_list);
  1571. fib_release_info(fa->fa_info);
  1572. alias_free_mem_rcu(fa);
  1573. found++;
  1574. }
  1575. /* update leaf slen */
  1576. n->slen = slen;
  1577. if (hlist_empty(&n->leaf)) {
  1578. put_child_root(pn, n->key, NULL);
  1579. node_free(n);
  1580. }
  1581. }
  1582. pr_debug("trie_flush found=%d\n", found);
  1583. return found;
  1584. }
  1585. static void __trie_free_rcu(struct rcu_head *head)
  1586. {
  1587. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1588. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1589. struct trie *t = (struct trie *)tb->tb_data;
  1590. if (tb->tb_data == tb->__data)
  1591. free_percpu(t->stats);
  1592. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1593. kfree(tb);
  1594. }
  1595. void fib_free_table(struct fib_table *tb)
  1596. {
  1597. call_rcu(&tb->rcu, __trie_free_rcu);
  1598. }
  1599. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1600. struct sk_buff *skb, struct netlink_callback *cb)
  1601. {
  1602. __be32 xkey = htonl(l->key);
  1603. struct fib_alias *fa;
  1604. int i, s_i;
  1605. s_i = cb->args[4];
  1606. i = 0;
  1607. /* rcu_read_lock is hold by caller */
  1608. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1609. int err;
  1610. if (i < s_i) {
  1611. i++;
  1612. continue;
  1613. }
  1614. if (tb->tb_id != fa->tb_id) {
  1615. i++;
  1616. continue;
  1617. }
  1618. err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1619. cb->nlh->nlmsg_seq, RTM_NEWROUTE,
  1620. tb->tb_id, fa->fa_type,
  1621. xkey, KEYLENGTH - fa->fa_slen,
  1622. fa->fa_tos, fa->fa_info, NLM_F_MULTI);
  1623. if (err < 0) {
  1624. cb->args[4] = i;
  1625. return err;
  1626. }
  1627. i++;
  1628. }
  1629. cb->args[4] = i;
  1630. return skb->len;
  1631. }
  1632. /* rcu_read_lock needs to be hold by caller from readside */
  1633. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1634. struct netlink_callback *cb)
  1635. {
  1636. struct trie *t = (struct trie *)tb->tb_data;
  1637. struct key_vector *l, *tp = t->kv;
  1638. /* Dump starting at last key.
  1639. * Note: 0.0.0.0/0 (ie default) is first key.
  1640. */
  1641. int count = cb->args[2];
  1642. t_key key = cb->args[3];
  1643. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1644. int err;
  1645. err = fn_trie_dump_leaf(l, tb, skb, cb);
  1646. if (err < 0) {
  1647. cb->args[3] = key;
  1648. cb->args[2] = count;
  1649. return err;
  1650. }
  1651. ++count;
  1652. key = l->key + 1;
  1653. memset(&cb->args[4], 0,
  1654. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1655. /* stop loop if key wrapped back to 0 */
  1656. if (key < l->key)
  1657. break;
  1658. }
  1659. cb->args[3] = key;
  1660. cb->args[2] = count;
  1661. return skb->len;
  1662. }
  1663. void __init fib_trie_init(void)
  1664. {
  1665. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1666. sizeof(struct fib_alias),
  1667. 0, SLAB_PANIC, NULL);
  1668. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1669. LEAF_SIZE,
  1670. 0, SLAB_PANIC, NULL);
  1671. }
  1672. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1673. {
  1674. struct fib_table *tb;
  1675. struct trie *t;
  1676. size_t sz = sizeof(*tb);
  1677. if (!alias)
  1678. sz += sizeof(struct trie);
  1679. tb = kzalloc(sz, GFP_KERNEL);
  1680. if (!tb)
  1681. return NULL;
  1682. tb->tb_id = id;
  1683. tb->tb_num_default = 0;
  1684. tb->tb_data = (alias ? alias->__data : tb->__data);
  1685. if (alias)
  1686. return tb;
  1687. t = (struct trie *) tb->tb_data;
  1688. t->kv[0].pos = KEYLENGTH;
  1689. t->kv[0].slen = KEYLENGTH;
  1690. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1691. t->stats = alloc_percpu(struct trie_use_stats);
  1692. if (!t->stats) {
  1693. kfree(tb);
  1694. tb = NULL;
  1695. }
  1696. #endif
  1697. return tb;
  1698. }
  1699. #ifdef CONFIG_PROC_FS
  1700. /* Depth first Trie walk iterator */
  1701. struct fib_trie_iter {
  1702. struct seq_net_private p;
  1703. struct fib_table *tb;
  1704. struct key_vector *tnode;
  1705. unsigned int index;
  1706. unsigned int depth;
  1707. };
  1708. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1709. {
  1710. unsigned long cindex = iter->index;
  1711. struct key_vector *pn = iter->tnode;
  1712. t_key pkey;
  1713. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1714. iter->tnode, iter->index, iter->depth);
  1715. while (!IS_TRIE(pn)) {
  1716. while (cindex < child_length(pn)) {
  1717. struct key_vector *n = get_child_rcu(pn, cindex++);
  1718. if (!n)
  1719. continue;
  1720. if (IS_LEAF(n)) {
  1721. iter->tnode = pn;
  1722. iter->index = cindex;
  1723. } else {
  1724. /* push down one level */
  1725. iter->tnode = n;
  1726. iter->index = 0;
  1727. ++iter->depth;
  1728. }
  1729. return n;
  1730. }
  1731. /* Current node exhausted, pop back up */
  1732. pkey = pn->key;
  1733. pn = node_parent_rcu(pn);
  1734. cindex = get_index(pkey, pn) + 1;
  1735. --iter->depth;
  1736. }
  1737. /* record root node so further searches know we are done */
  1738. iter->tnode = pn;
  1739. iter->index = 0;
  1740. return NULL;
  1741. }
  1742. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1743. struct trie *t)
  1744. {
  1745. struct key_vector *n, *pn;
  1746. if (!t)
  1747. return NULL;
  1748. pn = t->kv;
  1749. n = rcu_dereference(pn->tnode[0]);
  1750. if (!n)
  1751. return NULL;
  1752. if (IS_TNODE(n)) {
  1753. iter->tnode = n;
  1754. iter->index = 0;
  1755. iter->depth = 1;
  1756. } else {
  1757. iter->tnode = pn;
  1758. iter->index = 0;
  1759. iter->depth = 0;
  1760. }
  1761. return n;
  1762. }
  1763. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1764. {
  1765. struct key_vector *n;
  1766. struct fib_trie_iter iter;
  1767. memset(s, 0, sizeof(*s));
  1768. rcu_read_lock();
  1769. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1770. if (IS_LEAF(n)) {
  1771. struct fib_alias *fa;
  1772. s->leaves++;
  1773. s->totdepth += iter.depth;
  1774. if (iter.depth > s->maxdepth)
  1775. s->maxdepth = iter.depth;
  1776. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1777. ++s->prefixes;
  1778. } else {
  1779. s->tnodes++;
  1780. if (n->bits < MAX_STAT_DEPTH)
  1781. s->nodesizes[n->bits]++;
  1782. s->nullpointers += tn_info(n)->empty_children;
  1783. }
  1784. }
  1785. rcu_read_unlock();
  1786. }
  1787. /*
  1788. * This outputs /proc/net/fib_triestats
  1789. */
  1790. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1791. {
  1792. unsigned int i, max, pointers, bytes, avdepth;
  1793. if (stat->leaves)
  1794. avdepth = stat->totdepth*100 / stat->leaves;
  1795. else
  1796. avdepth = 0;
  1797. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1798. avdepth / 100, avdepth % 100);
  1799. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1800. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1801. bytes = LEAF_SIZE * stat->leaves;
  1802. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1803. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1804. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1805. bytes += TNODE_SIZE(0) * stat->tnodes;
  1806. max = MAX_STAT_DEPTH;
  1807. while (max > 0 && stat->nodesizes[max-1] == 0)
  1808. max--;
  1809. pointers = 0;
  1810. for (i = 1; i < max; i++)
  1811. if (stat->nodesizes[i] != 0) {
  1812. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1813. pointers += (1<<i) * stat->nodesizes[i];
  1814. }
  1815. seq_putc(seq, '\n');
  1816. seq_printf(seq, "\tPointers: %u\n", pointers);
  1817. bytes += sizeof(struct key_vector *) * pointers;
  1818. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1819. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1820. }
  1821. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1822. static void trie_show_usage(struct seq_file *seq,
  1823. const struct trie_use_stats __percpu *stats)
  1824. {
  1825. struct trie_use_stats s = { 0 };
  1826. int cpu;
  1827. /* loop through all of the CPUs and gather up the stats */
  1828. for_each_possible_cpu(cpu) {
  1829. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1830. s.gets += pcpu->gets;
  1831. s.backtrack += pcpu->backtrack;
  1832. s.semantic_match_passed += pcpu->semantic_match_passed;
  1833. s.semantic_match_miss += pcpu->semantic_match_miss;
  1834. s.null_node_hit += pcpu->null_node_hit;
  1835. s.resize_node_skipped += pcpu->resize_node_skipped;
  1836. }
  1837. seq_printf(seq, "\nCounters:\n---------\n");
  1838. seq_printf(seq, "gets = %u\n", s.gets);
  1839. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1840. seq_printf(seq, "semantic match passed = %u\n",
  1841. s.semantic_match_passed);
  1842. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1843. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1844. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1845. }
  1846. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1847. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1848. {
  1849. if (tb->tb_id == RT_TABLE_LOCAL)
  1850. seq_puts(seq, "Local:\n");
  1851. else if (tb->tb_id == RT_TABLE_MAIN)
  1852. seq_puts(seq, "Main:\n");
  1853. else
  1854. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1855. }
  1856. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1857. {
  1858. struct net *net = (struct net *)seq->private;
  1859. unsigned int h;
  1860. seq_printf(seq,
  1861. "Basic info: size of leaf:"
  1862. " %Zd bytes, size of tnode: %Zd bytes.\n",
  1863. LEAF_SIZE, TNODE_SIZE(0));
  1864. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1865. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1866. struct fib_table *tb;
  1867. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1868. struct trie *t = (struct trie *) tb->tb_data;
  1869. struct trie_stat stat;
  1870. if (!t)
  1871. continue;
  1872. fib_table_print(seq, tb);
  1873. trie_collect_stats(t, &stat);
  1874. trie_show_stats(seq, &stat);
  1875. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1876. trie_show_usage(seq, t->stats);
  1877. #endif
  1878. }
  1879. }
  1880. return 0;
  1881. }
  1882. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1883. {
  1884. return single_open_net(inode, file, fib_triestat_seq_show);
  1885. }
  1886. static const struct file_operations fib_triestat_fops = {
  1887. .owner = THIS_MODULE,
  1888. .open = fib_triestat_seq_open,
  1889. .read = seq_read,
  1890. .llseek = seq_lseek,
  1891. .release = single_release_net,
  1892. };
  1893. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1894. {
  1895. struct fib_trie_iter *iter = seq->private;
  1896. struct net *net = seq_file_net(seq);
  1897. loff_t idx = 0;
  1898. unsigned int h;
  1899. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1900. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1901. struct fib_table *tb;
  1902. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1903. struct key_vector *n;
  1904. for (n = fib_trie_get_first(iter,
  1905. (struct trie *) tb->tb_data);
  1906. n; n = fib_trie_get_next(iter))
  1907. if (pos == idx++) {
  1908. iter->tb = tb;
  1909. return n;
  1910. }
  1911. }
  1912. }
  1913. return NULL;
  1914. }
  1915. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1916. __acquires(RCU)
  1917. {
  1918. rcu_read_lock();
  1919. return fib_trie_get_idx(seq, *pos);
  1920. }
  1921. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1922. {
  1923. struct fib_trie_iter *iter = seq->private;
  1924. struct net *net = seq_file_net(seq);
  1925. struct fib_table *tb = iter->tb;
  1926. struct hlist_node *tb_node;
  1927. unsigned int h;
  1928. struct key_vector *n;
  1929. ++*pos;
  1930. /* next node in same table */
  1931. n = fib_trie_get_next(iter);
  1932. if (n)
  1933. return n;
  1934. /* walk rest of this hash chain */
  1935. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1936. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1937. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1938. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1939. if (n)
  1940. goto found;
  1941. }
  1942. /* new hash chain */
  1943. while (++h < FIB_TABLE_HASHSZ) {
  1944. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1945. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1946. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1947. if (n)
  1948. goto found;
  1949. }
  1950. }
  1951. return NULL;
  1952. found:
  1953. iter->tb = tb;
  1954. return n;
  1955. }
  1956. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  1957. __releases(RCU)
  1958. {
  1959. rcu_read_unlock();
  1960. }
  1961. static void seq_indent(struct seq_file *seq, int n)
  1962. {
  1963. while (n-- > 0)
  1964. seq_puts(seq, " ");
  1965. }
  1966. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  1967. {
  1968. switch (s) {
  1969. case RT_SCOPE_UNIVERSE: return "universe";
  1970. case RT_SCOPE_SITE: return "site";
  1971. case RT_SCOPE_LINK: return "link";
  1972. case RT_SCOPE_HOST: return "host";
  1973. case RT_SCOPE_NOWHERE: return "nowhere";
  1974. default:
  1975. snprintf(buf, len, "scope=%d", s);
  1976. return buf;
  1977. }
  1978. }
  1979. static const char *const rtn_type_names[__RTN_MAX] = {
  1980. [RTN_UNSPEC] = "UNSPEC",
  1981. [RTN_UNICAST] = "UNICAST",
  1982. [RTN_LOCAL] = "LOCAL",
  1983. [RTN_BROADCAST] = "BROADCAST",
  1984. [RTN_ANYCAST] = "ANYCAST",
  1985. [RTN_MULTICAST] = "MULTICAST",
  1986. [RTN_BLACKHOLE] = "BLACKHOLE",
  1987. [RTN_UNREACHABLE] = "UNREACHABLE",
  1988. [RTN_PROHIBIT] = "PROHIBIT",
  1989. [RTN_THROW] = "THROW",
  1990. [RTN_NAT] = "NAT",
  1991. [RTN_XRESOLVE] = "XRESOLVE",
  1992. };
  1993. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  1994. {
  1995. if (t < __RTN_MAX && rtn_type_names[t])
  1996. return rtn_type_names[t];
  1997. snprintf(buf, len, "type %u", t);
  1998. return buf;
  1999. }
  2000. /* Pretty print the trie */
  2001. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  2002. {
  2003. const struct fib_trie_iter *iter = seq->private;
  2004. struct key_vector *n = v;
  2005. if (IS_TRIE(node_parent_rcu(n)))
  2006. fib_table_print(seq, iter->tb);
  2007. if (IS_TNODE(n)) {
  2008. __be32 prf = htonl(n->key);
  2009. seq_indent(seq, iter->depth-1);
  2010. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  2011. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  2012. tn_info(n)->full_children,
  2013. tn_info(n)->empty_children);
  2014. } else {
  2015. __be32 val = htonl(n->key);
  2016. struct fib_alias *fa;
  2017. seq_indent(seq, iter->depth);
  2018. seq_printf(seq, " |-- %pI4\n", &val);
  2019. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  2020. char buf1[32], buf2[32];
  2021. seq_indent(seq, iter->depth + 1);
  2022. seq_printf(seq, " /%zu %s %s",
  2023. KEYLENGTH - fa->fa_slen,
  2024. rtn_scope(buf1, sizeof(buf1),
  2025. fa->fa_info->fib_scope),
  2026. rtn_type(buf2, sizeof(buf2),
  2027. fa->fa_type));
  2028. if (fa->fa_tos)
  2029. seq_printf(seq, " tos=%d", fa->fa_tos);
  2030. seq_putc(seq, '\n');
  2031. }
  2032. }
  2033. return 0;
  2034. }
  2035. static const struct seq_operations fib_trie_seq_ops = {
  2036. .start = fib_trie_seq_start,
  2037. .next = fib_trie_seq_next,
  2038. .stop = fib_trie_seq_stop,
  2039. .show = fib_trie_seq_show,
  2040. };
  2041. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2042. {
  2043. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2044. sizeof(struct fib_trie_iter));
  2045. }
  2046. static const struct file_operations fib_trie_fops = {
  2047. .owner = THIS_MODULE,
  2048. .open = fib_trie_seq_open,
  2049. .read = seq_read,
  2050. .llseek = seq_lseek,
  2051. .release = seq_release_net,
  2052. };
  2053. struct fib_route_iter {
  2054. struct seq_net_private p;
  2055. struct fib_table *main_tb;
  2056. struct key_vector *tnode;
  2057. loff_t pos;
  2058. t_key key;
  2059. };
  2060. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2061. loff_t pos)
  2062. {
  2063. struct key_vector *l, **tp = &iter->tnode;
  2064. t_key key;
  2065. /* use cached location of previously found key */
  2066. if (iter->pos > 0 && pos >= iter->pos) {
  2067. key = iter->key;
  2068. } else {
  2069. iter->pos = 1;
  2070. key = 0;
  2071. }
  2072. pos -= iter->pos;
  2073. while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
  2074. key = l->key + 1;
  2075. iter->pos++;
  2076. l = NULL;
  2077. /* handle unlikely case of a key wrap */
  2078. if (!key)
  2079. break;
  2080. }
  2081. if (l)
  2082. iter->key = l->key; /* remember it */
  2083. else
  2084. iter->pos = 0; /* forget it */
  2085. return l;
  2086. }
  2087. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2088. __acquires(RCU)
  2089. {
  2090. struct fib_route_iter *iter = seq->private;
  2091. struct fib_table *tb;
  2092. struct trie *t;
  2093. rcu_read_lock();
  2094. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2095. if (!tb)
  2096. return NULL;
  2097. iter->main_tb = tb;
  2098. t = (struct trie *)tb->tb_data;
  2099. iter->tnode = t->kv;
  2100. if (*pos != 0)
  2101. return fib_route_get_idx(iter, *pos);
  2102. iter->pos = 0;
  2103. iter->key = KEY_MAX;
  2104. return SEQ_START_TOKEN;
  2105. }
  2106. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2107. {
  2108. struct fib_route_iter *iter = seq->private;
  2109. struct key_vector *l = NULL;
  2110. t_key key = iter->key + 1;
  2111. ++*pos;
  2112. /* only allow key of 0 for start of sequence */
  2113. if ((v == SEQ_START_TOKEN) || key)
  2114. l = leaf_walk_rcu(&iter->tnode, key);
  2115. if (l) {
  2116. iter->key = l->key;
  2117. iter->pos++;
  2118. } else {
  2119. iter->pos = 0;
  2120. }
  2121. return l;
  2122. }
  2123. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2124. __releases(RCU)
  2125. {
  2126. rcu_read_unlock();
  2127. }
  2128. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2129. {
  2130. unsigned int flags = 0;
  2131. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2132. flags = RTF_REJECT;
  2133. if (fi && fi->fib_nh->nh_gw)
  2134. flags |= RTF_GATEWAY;
  2135. if (mask == htonl(0xFFFFFFFF))
  2136. flags |= RTF_HOST;
  2137. flags |= RTF_UP;
  2138. return flags;
  2139. }
  2140. /*
  2141. * This outputs /proc/net/route.
  2142. * The format of the file is not supposed to be changed
  2143. * and needs to be same as fib_hash output to avoid breaking
  2144. * legacy utilities
  2145. */
  2146. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2147. {
  2148. struct fib_route_iter *iter = seq->private;
  2149. struct fib_table *tb = iter->main_tb;
  2150. struct fib_alias *fa;
  2151. struct key_vector *l = v;
  2152. __be32 prefix;
  2153. if (v == SEQ_START_TOKEN) {
  2154. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2155. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2156. "\tWindow\tIRTT");
  2157. return 0;
  2158. }
  2159. prefix = htonl(l->key);
  2160. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2161. const struct fib_info *fi = fa->fa_info;
  2162. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2163. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2164. if ((fa->fa_type == RTN_BROADCAST) ||
  2165. (fa->fa_type == RTN_MULTICAST))
  2166. continue;
  2167. if (fa->tb_id != tb->tb_id)
  2168. continue;
  2169. seq_setwidth(seq, 127);
  2170. if (fi)
  2171. seq_printf(seq,
  2172. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2173. "%d\t%08X\t%d\t%u\t%u",
  2174. fi->fib_dev ? fi->fib_dev->name : "*",
  2175. prefix,
  2176. fi->fib_nh->nh_gw, flags, 0, 0,
  2177. fi->fib_priority,
  2178. mask,
  2179. (fi->fib_advmss ?
  2180. fi->fib_advmss + 40 : 0),
  2181. fi->fib_window,
  2182. fi->fib_rtt >> 3);
  2183. else
  2184. seq_printf(seq,
  2185. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2186. "%d\t%08X\t%d\t%u\t%u",
  2187. prefix, 0, flags, 0, 0, 0,
  2188. mask, 0, 0, 0);
  2189. seq_pad(seq, '\n');
  2190. }
  2191. return 0;
  2192. }
  2193. static const struct seq_operations fib_route_seq_ops = {
  2194. .start = fib_route_seq_start,
  2195. .next = fib_route_seq_next,
  2196. .stop = fib_route_seq_stop,
  2197. .show = fib_route_seq_show,
  2198. };
  2199. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2200. {
  2201. return seq_open_net(inode, file, &fib_route_seq_ops,
  2202. sizeof(struct fib_route_iter));
  2203. }
  2204. static const struct file_operations fib_route_fops = {
  2205. .owner = THIS_MODULE,
  2206. .open = fib_route_seq_open,
  2207. .read = seq_read,
  2208. .llseek = seq_lseek,
  2209. .release = seq_release_net,
  2210. };
  2211. int __net_init fib_proc_init(struct net *net)
  2212. {
  2213. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2214. goto out1;
  2215. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2216. &fib_triestat_fops))
  2217. goto out2;
  2218. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2219. goto out3;
  2220. return 0;
  2221. out3:
  2222. remove_proc_entry("fib_triestat", net->proc_net);
  2223. out2:
  2224. remove_proc_entry("fib_trie", net->proc_net);
  2225. out1:
  2226. return -ENOMEM;
  2227. }
  2228. void __net_exit fib_proc_exit(struct net *net)
  2229. {
  2230. remove_proc_entry("fib_trie", net->proc_net);
  2231. remove_proc_entry("fib_triestat", net->proc_net);
  2232. remove_proc_entry("route", net->proc_net);
  2233. }
  2234. #endif /* CONFIG_PROC_FS */