swap_state.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/gfp.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/init.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/migrate.h>
  20. #include <asm/pgtable.h>
  21. /*
  22. * swapper_space is a fiction, retained to simplify the path through
  23. * vmscan's shrink_page_list.
  24. */
  25. static const struct address_space_operations swap_aops = {
  26. .writepage = swap_writepage,
  27. .set_page_dirty = swap_set_page_dirty,
  28. #ifdef CONFIG_MIGRATION
  29. .migratepage = migrate_page,
  30. #endif
  31. };
  32. struct address_space swapper_spaces[MAX_SWAPFILES] = {
  33. [0 ... MAX_SWAPFILES - 1] = {
  34. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  35. .i_mmap_writable = ATOMIC_INIT(0),
  36. .a_ops = &swap_aops,
  37. /* swap cache doesn't use writeback related tags */
  38. .flags = 1 << AS_NO_WRITEBACK_TAGS,
  39. }
  40. };
  41. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  42. static struct {
  43. unsigned long add_total;
  44. unsigned long del_total;
  45. unsigned long find_success;
  46. unsigned long find_total;
  47. } swap_cache_info;
  48. unsigned long total_swapcache_pages(void)
  49. {
  50. int i;
  51. unsigned long ret = 0;
  52. for (i = 0; i < MAX_SWAPFILES; i++)
  53. ret += swapper_spaces[i].nrpages;
  54. return ret;
  55. }
  56. static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
  57. void show_swap_cache_info(void)
  58. {
  59. printk("%lu pages in swap cache\n", total_swapcache_pages());
  60. printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  61. swap_cache_info.add_total, swap_cache_info.del_total,
  62. swap_cache_info.find_success, swap_cache_info.find_total);
  63. printk("Free swap = %ldkB\n",
  64. get_nr_swap_pages() << (PAGE_SHIFT - 10));
  65. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  66. }
  67. /*
  68. * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  69. * but sets SwapCache flag and private instead of mapping and index.
  70. */
  71. int __add_to_swap_cache(struct page *page, swp_entry_t entry)
  72. {
  73. int error;
  74. struct address_space *address_space;
  75. VM_BUG_ON_PAGE(!PageLocked(page), page);
  76. VM_BUG_ON_PAGE(PageSwapCache(page), page);
  77. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  78. get_page(page);
  79. SetPageSwapCache(page);
  80. set_page_private(page, entry.val);
  81. address_space = swap_address_space(entry);
  82. spin_lock_irq(&address_space->tree_lock);
  83. error = radix_tree_insert(&address_space->page_tree,
  84. swp_offset(entry), page);
  85. if (likely(!error)) {
  86. address_space->nrpages++;
  87. __inc_node_page_state(page, NR_FILE_PAGES);
  88. INC_CACHE_INFO(add_total);
  89. }
  90. spin_unlock_irq(&address_space->tree_lock);
  91. if (unlikely(error)) {
  92. /*
  93. * Only the context which have set SWAP_HAS_CACHE flag
  94. * would call add_to_swap_cache().
  95. * So add_to_swap_cache() doesn't returns -EEXIST.
  96. */
  97. VM_BUG_ON(error == -EEXIST);
  98. set_page_private(page, 0UL);
  99. ClearPageSwapCache(page);
  100. put_page(page);
  101. }
  102. return error;
  103. }
  104. int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  105. {
  106. int error;
  107. error = radix_tree_maybe_preload(gfp_mask);
  108. if (!error) {
  109. error = __add_to_swap_cache(page, entry);
  110. radix_tree_preload_end();
  111. }
  112. return error;
  113. }
  114. /*
  115. * This must be called only on pages that have
  116. * been verified to be in the swap cache.
  117. */
  118. void __delete_from_swap_cache(struct page *page)
  119. {
  120. swp_entry_t entry;
  121. struct address_space *address_space;
  122. VM_BUG_ON_PAGE(!PageLocked(page), page);
  123. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  124. VM_BUG_ON_PAGE(PageWriteback(page), page);
  125. entry.val = page_private(page);
  126. address_space = swap_address_space(entry);
  127. radix_tree_delete(&address_space->page_tree, swp_offset(entry));
  128. set_page_private(page, 0);
  129. ClearPageSwapCache(page);
  130. address_space->nrpages--;
  131. __dec_node_page_state(page, NR_FILE_PAGES);
  132. INC_CACHE_INFO(del_total);
  133. }
  134. /**
  135. * add_to_swap - allocate swap space for a page
  136. * @page: page we want to move to swap
  137. *
  138. * Allocate swap space for the page and add the page to the
  139. * swap cache. Caller needs to hold the page lock.
  140. */
  141. int add_to_swap(struct page *page, struct list_head *list)
  142. {
  143. swp_entry_t entry;
  144. int err;
  145. VM_BUG_ON_PAGE(!PageLocked(page), page);
  146. VM_BUG_ON_PAGE(!PageUptodate(page), page);
  147. entry = get_swap_page();
  148. if (!entry.val)
  149. return 0;
  150. if (mem_cgroup_try_charge_swap(page, entry)) {
  151. swapcache_free(entry);
  152. return 0;
  153. }
  154. if (unlikely(PageTransHuge(page)))
  155. if (unlikely(split_huge_page_to_list(page, list))) {
  156. swapcache_free(entry);
  157. return 0;
  158. }
  159. /*
  160. * Radix-tree node allocations from PF_MEMALLOC contexts could
  161. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  162. * stops emergency reserves from being allocated.
  163. *
  164. * TODO: this could cause a theoretical memory reclaim
  165. * deadlock in the swap out path.
  166. */
  167. /*
  168. * Add it to the swap cache.
  169. */
  170. err = add_to_swap_cache(page, entry,
  171. __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
  172. if (!err) {
  173. return 1;
  174. } else { /* -ENOMEM radix-tree allocation failure */
  175. /*
  176. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  177. * clear SWAP_HAS_CACHE flag.
  178. */
  179. swapcache_free(entry);
  180. return 0;
  181. }
  182. }
  183. /*
  184. * This must be called only on pages that have
  185. * been verified to be in the swap cache and locked.
  186. * It will never put the page into the free list,
  187. * the caller has a reference on the page.
  188. */
  189. void delete_from_swap_cache(struct page *page)
  190. {
  191. swp_entry_t entry;
  192. struct address_space *address_space;
  193. entry.val = page_private(page);
  194. address_space = swap_address_space(entry);
  195. spin_lock_irq(&address_space->tree_lock);
  196. __delete_from_swap_cache(page);
  197. spin_unlock_irq(&address_space->tree_lock);
  198. swapcache_free(entry);
  199. put_page(page);
  200. }
  201. /*
  202. * If we are the only user, then try to free up the swap cache.
  203. *
  204. * Its ok to check for PageSwapCache without the page lock
  205. * here because we are going to recheck again inside
  206. * try_to_free_swap() _with_ the lock.
  207. * - Marcelo
  208. */
  209. static inline void free_swap_cache(struct page *page)
  210. {
  211. if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
  212. try_to_free_swap(page);
  213. unlock_page(page);
  214. }
  215. }
  216. /*
  217. * Perform a free_page(), also freeing any swap cache associated with
  218. * this page if it is the last user of the page.
  219. */
  220. void free_page_and_swap_cache(struct page *page)
  221. {
  222. free_swap_cache(page);
  223. if (!is_huge_zero_page(page))
  224. put_page(page);
  225. }
  226. /*
  227. * Passed an array of pages, drop them all from swapcache and then release
  228. * them. They are removed from the LRU and freed if this is their last use.
  229. */
  230. void free_pages_and_swap_cache(struct page **pages, int nr)
  231. {
  232. struct page **pagep = pages;
  233. int i;
  234. lru_add_drain();
  235. for (i = 0; i < nr; i++)
  236. free_swap_cache(pagep[i]);
  237. release_pages(pagep, nr, false);
  238. }
  239. /*
  240. * Lookup a swap entry in the swap cache. A found page will be returned
  241. * unlocked and with its refcount incremented - we rely on the kernel
  242. * lock getting page table operations atomic even if we drop the page
  243. * lock before returning.
  244. */
  245. struct page * lookup_swap_cache(swp_entry_t entry)
  246. {
  247. struct page *page;
  248. page = find_get_page(swap_address_space(entry), swp_offset(entry));
  249. if (page) {
  250. INC_CACHE_INFO(find_success);
  251. if (TestClearPageReadahead(page))
  252. atomic_inc(&swapin_readahead_hits);
  253. }
  254. INC_CACHE_INFO(find_total);
  255. return page;
  256. }
  257. struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  258. struct vm_area_struct *vma, unsigned long addr,
  259. bool *new_page_allocated)
  260. {
  261. struct page *found_page, *new_page = NULL;
  262. struct address_space *swapper_space = swap_address_space(entry);
  263. int err;
  264. *new_page_allocated = false;
  265. do {
  266. /*
  267. * First check the swap cache. Since this is normally
  268. * called after lookup_swap_cache() failed, re-calling
  269. * that would confuse statistics.
  270. */
  271. found_page = find_get_page(swapper_space, swp_offset(entry));
  272. if (found_page)
  273. break;
  274. /*
  275. * Get a new page to read into from swap.
  276. */
  277. if (!new_page) {
  278. new_page = alloc_page_vma(gfp_mask, vma, addr);
  279. if (!new_page)
  280. break; /* Out of memory */
  281. }
  282. /*
  283. * call radix_tree_preload() while we can wait.
  284. */
  285. err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
  286. if (err)
  287. break;
  288. /*
  289. * Swap entry may have been freed since our caller observed it.
  290. */
  291. err = swapcache_prepare(entry);
  292. if (err == -EEXIST) {
  293. radix_tree_preload_end();
  294. /*
  295. * We might race against get_swap_page() and stumble
  296. * across a SWAP_HAS_CACHE swap_map entry whose page
  297. * has not been brought into the swapcache yet, while
  298. * the other end is scheduled away waiting on discard
  299. * I/O completion at scan_swap_map().
  300. *
  301. * In order to avoid turning this transitory state
  302. * into a permanent loop around this -EEXIST case
  303. * if !CONFIG_PREEMPT and the I/O completion happens
  304. * to be waiting on the CPU waitqueue where we are now
  305. * busy looping, we just conditionally invoke the
  306. * scheduler here, if there are some more important
  307. * tasks to run.
  308. */
  309. cond_resched();
  310. continue;
  311. }
  312. if (err) { /* swp entry is obsolete ? */
  313. radix_tree_preload_end();
  314. break;
  315. }
  316. /* May fail (-ENOMEM) if radix-tree node allocation failed. */
  317. __SetPageLocked(new_page);
  318. __SetPageSwapBacked(new_page);
  319. err = __add_to_swap_cache(new_page, entry);
  320. if (likely(!err)) {
  321. radix_tree_preload_end();
  322. /*
  323. * Initiate read into locked page and return.
  324. */
  325. lru_cache_add_anon(new_page);
  326. *new_page_allocated = true;
  327. return new_page;
  328. }
  329. radix_tree_preload_end();
  330. __ClearPageLocked(new_page);
  331. /*
  332. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  333. * clear SWAP_HAS_CACHE flag.
  334. */
  335. swapcache_free(entry);
  336. } while (err != -ENOMEM);
  337. if (new_page)
  338. put_page(new_page);
  339. return found_page;
  340. }
  341. /*
  342. * Locate a page of swap in physical memory, reserving swap cache space
  343. * and reading the disk if it is not already cached.
  344. * A failure return means that either the page allocation failed or that
  345. * the swap entry is no longer in use.
  346. */
  347. struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  348. struct vm_area_struct *vma, unsigned long addr)
  349. {
  350. bool page_was_allocated;
  351. struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
  352. vma, addr, &page_was_allocated);
  353. if (page_was_allocated)
  354. swap_readpage(retpage);
  355. return retpage;
  356. }
  357. static unsigned long swapin_nr_pages(unsigned long offset)
  358. {
  359. static unsigned long prev_offset;
  360. unsigned int pages, max_pages, last_ra;
  361. static atomic_t last_readahead_pages;
  362. max_pages = 1 << READ_ONCE(page_cluster);
  363. if (max_pages <= 1)
  364. return 1;
  365. /*
  366. * This heuristic has been found to work well on both sequential and
  367. * random loads, swapping to hard disk or to SSD: please don't ask
  368. * what the "+ 2" means, it just happens to work well, that's all.
  369. */
  370. pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
  371. if (pages == 2) {
  372. /*
  373. * We can have no readahead hits to judge by: but must not get
  374. * stuck here forever, so check for an adjacent offset instead
  375. * (and don't even bother to check whether swap type is same).
  376. */
  377. if (offset != prev_offset + 1 && offset != prev_offset - 1)
  378. pages = 1;
  379. prev_offset = offset;
  380. } else {
  381. unsigned int roundup = 4;
  382. while (roundup < pages)
  383. roundup <<= 1;
  384. pages = roundup;
  385. }
  386. if (pages > max_pages)
  387. pages = max_pages;
  388. /* Don't shrink readahead too fast */
  389. last_ra = atomic_read(&last_readahead_pages) / 2;
  390. if (pages < last_ra)
  391. pages = last_ra;
  392. atomic_set(&last_readahead_pages, pages);
  393. return pages;
  394. }
  395. /**
  396. * swapin_readahead - swap in pages in hope we need them soon
  397. * @entry: swap entry of this memory
  398. * @gfp_mask: memory allocation flags
  399. * @vma: user vma this address belongs to
  400. * @addr: target address for mempolicy
  401. *
  402. * Returns the struct page for entry and addr, after queueing swapin.
  403. *
  404. * Primitive swap readahead code. We simply read an aligned block of
  405. * (1 << page_cluster) entries in the swap area. This method is chosen
  406. * because it doesn't cost us any seek time. We also make sure to queue
  407. * the 'original' request together with the readahead ones...
  408. *
  409. * This has been extended to use the NUMA policies from the mm triggering
  410. * the readahead.
  411. *
  412. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  413. */
  414. struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  415. struct vm_area_struct *vma, unsigned long addr)
  416. {
  417. struct page *page;
  418. unsigned long entry_offset = swp_offset(entry);
  419. unsigned long offset = entry_offset;
  420. unsigned long start_offset, end_offset;
  421. unsigned long mask;
  422. struct blk_plug plug;
  423. mask = swapin_nr_pages(offset) - 1;
  424. if (!mask)
  425. goto skip;
  426. /* Read a page_cluster sized and aligned cluster around offset. */
  427. start_offset = offset & ~mask;
  428. end_offset = offset | mask;
  429. if (!start_offset) /* First page is swap header. */
  430. start_offset++;
  431. blk_start_plug(&plug);
  432. for (offset = start_offset; offset <= end_offset ; offset++) {
  433. /* Ok, do the async read-ahead now */
  434. page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  435. gfp_mask, vma, addr);
  436. if (!page)
  437. continue;
  438. if (offset != entry_offset)
  439. SetPageReadahead(page);
  440. put_page(page);
  441. }
  442. blk_finish_plug(&plug);
  443. lru_add_drain(); /* Push any new pages onto the LRU now */
  444. skip:
  445. return read_swap_cache_async(entry, gfp_mask, vma, addr);
  446. }