12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756 |
- /*
- * SLUB: A slab allocator that limits cache line use instead of queuing
- * objects in per cpu and per node lists.
- *
- * The allocator synchronizes using per slab locks or atomic operatios
- * and only uses a centralized lock to manage a pool of partial slabs.
- *
- * (C) 2007 SGI, Christoph Lameter
- * (C) 2011 Linux Foundation, Christoph Lameter
- */
- #include <linux/mm.h>
- #include <linux/swap.h> /* struct reclaim_state */
- #include <linux/module.h>
- #include <linux/bit_spinlock.h>
- #include <linux/interrupt.h>
- #include <linux/bitops.h>
- #include <linux/slab.h>
- #include "slab.h"
- #include <linux/proc_fs.h>
- #include <linux/notifier.h>
- #include <linux/seq_file.h>
- #include <linux/kasan.h>
- #include <linux/kmemcheck.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/mempolicy.h>
- #include <linux/ctype.h>
- #include <linux/debugobjects.h>
- #include <linux/kallsyms.h>
- #include <linux/memory.h>
- #include <linux/math64.h>
- #include <linux/fault-inject.h>
- #include <linux/stacktrace.h>
- #include <linux/prefetch.h>
- #include <linux/memcontrol.h>
- #include <trace/events/kmem.h>
- #include "internal.h"
- /*
- * Lock order:
- * 1. slab_mutex (Global Mutex)
- * 2. node->list_lock
- * 3. slab_lock(page) (Only on some arches and for debugging)
- *
- * slab_mutex
- *
- * The role of the slab_mutex is to protect the list of all the slabs
- * and to synchronize major metadata changes to slab cache structures.
- *
- * The slab_lock is only used for debugging and on arches that do not
- * have the ability to do a cmpxchg_double. It only protects the second
- * double word in the page struct. Meaning
- * A. page->freelist -> List of object free in a page
- * B. page->counters -> Counters of objects
- * C. page->frozen -> frozen state
- *
- * If a slab is frozen then it is exempt from list management. It is not
- * on any list. The processor that froze the slab is the one who can
- * perform list operations on the page. Other processors may put objects
- * onto the freelist but the processor that froze the slab is the only
- * one that can retrieve the objects from the page's freelist.
- *
- * The list_lock protects the partial and full list on each node and
- * the partial slab counter. If taken then no new slabs may be added or
- * removed from the lists nor make the number of partial slabs be modified.
- * (Note that the total number of slabs is an atomic value that may be
- * modified without taking the list lock).
- *
- * The list_lock is a centralized lock and thus we avoid taking it as
- * much as possible. As long as SLUB does not have to handle partial
- * slabs, operations can continue without any centralized lock. F.e.
- * allocating a long series of objects that fill up slabs does not require
- * the list lock.
- * Interrupts are disabled during allocation and deallocation in order to
- * make the slab allocator safe to use in the context of an irq. In addition
- * interrupts are disabled to ensure that the processor does not change
- * while handling per_cpu slabs, due to kernel preemption.
- *
- * SLUB assigns one slab for allocation to each processor.
- * Allocations only occur from these slabs called cpu slabs.
- *
- * Slabs with free elements are kept on a partial list and during regular
- * operations no list for full slabs is used. If an object in a full slab is
- * freed then the slab will show up again on the partial lists.
- * We track full slabs for debugging purposes though because otherwise we
- * cannot scan all objects.
- *
- * Slabs are freed when they become empty. Teardown and setup is
- * minimal so we rely on the page allocators per cpu caches for
- * fast frees and allocs.
- *
- * Overloading of page flags that are otherwise used for LRU management.
- *
- * PageActive The slab is frozen and exempt from list processing.
- * This means that the slab is dedicated to a purpose
- * such as satisfying allocations for a specific
- * processor. Objects may be freed in the slab while
- * it is frozen but slab_free will then skip the usual
- * list operations. It is up to the processor holding
- * the slab to integrate the slab into the slab lists
- * when the slab is no longer needed.
- *
- * One use of this flag is to mark slabs that are
- * used for allocations. Then such a slab becomes a cpu
- * slab. The cpu slab may be equipped with an additional
- * freelist that allows lockless access to
- * free objects in addition to the regular freelist
- * that requires the slab lock.
- *
- * PageError Slab requires special handling due to debug
- * options set. This moves slab handling out of
- * the fast path and disables lockless freelists.
- */
- static inline int kmem_cache_debug(struct kmem_cache *s)
- {
- #ifdef CONFIG_SLUB_DEBUG
- return unlikely(s->flags & SLAB_DEBUG_FLAGS);
- #else
- return 0;
- #endif
- }
- void *fixup_red_left(struct kmem_cache *s, void *p)
- {
- if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
- p += s->red_left_pad;
- return p;
- }
- static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
- {
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- return !kmem_cache_debug(s);
- #else
- return false;
- #endif
- }
- /*
- * Issues still to be resolved:
- *
- * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
- *
- * - Variable sizing of the per node arrays
- */
- /* Enable to test recovery from slab corruption on boot */
- #undef SLUB_RESILIENCY_TEST
- /* Enable to log cmpxchg failures */
- #undef SLUB_DEBUG_CMPXCHG
- /*
- * Mininum number of partial slabs. These will be left on the partial
- * lists even if they are empty. kmem_cache_shrink may reclaim them.
- */
- #define MIN_PARTIAL 5
- /*
- * Maximum number of desirable partial slabs.
- * The existence of more partial slabs makes kmem_cache_shrink
- * sort the partial list by the number of objects in use.
- */
- #define MAX_PARTIAL 10
- #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
- SLAB_POISON | SLAB_STORE_USER)
- /*
- * These debug flags cannot use CMPXCHG because there might be consistency
- * issues when checking or reading debug information
- */
- #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
- SLAB_TRACE)
- /*
- * Debugging flags that require metadata to be stored in the slab. These get
- * disabled when slub_debug=O is used and a cache's min order increases with
- * metadata.
- */
- #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
- #define OO_SHIFT 16
- #define OO_MASK ((1 << OO_SHIFT) - 1)
- #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
- /* Internal SLUB flags */
- #define __OBJECT_POISON 0x80000000UL /* Poison object */
- #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
- /*
- * Tracking user of a slab.
- */
- #define TRACK_ADDRS_COUNT 16
- struct track {
- unsigned long addr; /* Called from address */
- #ifdef CONFIG_STACKTRACE
- unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
- #endif
- int cpu; /* Was running on cpu */
- int pid; /* Pid context */
- unsigned long when; /* When did the operation occur */
- };
- enum track_item { TRACK_ALLOC, TRACK_FREE };
- #ifdef CONFIG_SYSFS
- static int sysfs_slab_add(struct kmem_cache *);
- static int sysfs_slab_alias(struct kmem_cache *, const char *);
- static void memcg_propagate_slab_attrs(struct kmem_cache *s);
- #else
- static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
- static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
- { return 0; }
- static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
- #endif
- static inline void stat(const struct kmem_cache *s, enum stat_item si)
- {
- #ifdef CONFIG_SLUB_STATS
- /*
- * The rmw is racy on a preemptible kernel but this is acceptable, so
- * avoid this_cpu_add()'s irq-disable overhead.
- */
- raw_cpu_inc(s->cpu_slab->stat[si]);
- #endif
- }
- /********************************************************************
- * Core slab cache functions
- *******************************************************************/
- static inline void *get_freepointer(struct kmem_cache *s, void *object)
- {
- return *(void **)(object + s->offset);
- }
- static void prefetch_freepointer(const struct kmem_cache *s, void *object)
- {
- prefetch(object + s->offset);
- }
- static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
- {
- void *p;
- if (!debug_pagealloc_enabled())
- return get_freepointer(s, object);
- probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
- return p;
- }
- static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
- {
- *(void **)(object + s->offset) = fp;
- }
- /* Loop over all objects in a slab */
- #define for_each_object(__p, __s, __addr, __objects) \
- for (__p = fixup_red_left(__s, __addr); \
- __p < (__addr) + (__objects) * (__s)->size; \
- __p += (__s)->size)
- #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
- for (__p = fixup_red_left(__s, __addr), __idx = 1; \
- __idx <= __objects; \
- __p += (__s)->size, __idx++)
- /* Determine object index from a given position */
- static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
- {
- return (p - addr) / s->size;
- }
- static inline int order_objects(int order, unsigned long size, int reserved)
- {
- return ((PAGE_SIZE << order) - reserved) / size;
- }
- static inline struct kmem_cache_order_objects oo_make(int order,
- unsigned long size, int reserved)
- {
- struct kmem_cache_order_objects x = {
- (order << OO_SHIFT) + order_objects(order, size, reserved)
- };
- return x;
- }
- static inline int oo_order(struct kmem_cache_order_objects x)
- {
- return x.x >> OO_SHIFT;
- }
- static inline int oo_objects(struct kmem_cache_order_objects x)
- {
- return x.x & OO_MASK;
- }
- /*
- * Per slab locking using the pagelock
- */
- static __always_inline void slab_lock(struct page *page)
- {
- VM_BUG_ON_PAGE(PageTail(page), page);
- bit_spin_lock(PG_locked, &page->flags);
- }
- static __always_inline void slab_unlock(struct page *page)
- {
- VM_BUG_ON_PAGE(PageTail(page), page);
- __bit_spin_unlock(PG_locked, &page->flags);
- }
- static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
- {
- struct page tmp;
- tmp.counters = counters_new;
- /*
- * page->counters can cover frozen/inuse/objects as well
- * as page->_refcount. If we assign to ->counters directly
- * we run the risk of losing updates to page->_refcount, so
- * be careful and only assign to the fields we need.
- */
- page->frozen = tmp.frozen;
- page->inuse = tmp.inuse;
- page->objects = tmp.objects;
- }
- /* Interrupts must be disabled (for the fallback code to work right) */
- static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new,
- const char *n)
- {
- VM_BUG_ON(!irqs_disabled());
- #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
- defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
- if (s->flags & __CMPXCHG_DOUBLE) {
- if (cmpxchg_double(&page->freelist, &page->counters,
- freelist_old, counters_old,
- freelist_new, counters_new))
- return true;
- } else
- #endif
- {
- slab_lock(page);
- if (page->freelist == freelist_old &&
- page->counters == counters_old) {
- page->freelist = freelist_new;
- set_page_slub_counters(page, counters_new);
- slab_unlock(page);
- return true;
- }
- slab_unlock(page);
- }
- cpu_relax();
- stat(s, CMPXCHG_DOUBLE_FAIL);
- #ifdef SLUB_DEBUG_CMPXCHG
- pr_info("%s %s: cmpxchg double redo ", n, s->name);
- #endif
- return false;
- }
- static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new,
- const char *n)
- {
- #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
- defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
- if (s->flags & __CMPXCHG_DOUBLE) {
- if (cmpxchg_double(&page->freelist, &page->counters,
- freelist_old, counters_old,
- freelist_new, counters_new))
- return true;
- } else
- #endif
- {
- unsigned long flags;
- local_irq_save(flags);
- slab_lock(page);
- if (page->freelist == freelist_old &&
- page->counters == counters_old) {
- page->freelist = freelist_new;
- set_page_slub_counters(page, counters_new);
- slab_unlock(page);
- local_irq_restore(flags);
- return true;
- }
- slab_unlock(page);
- local_irq_restore(flags);
- }
- cpu_relax();
- stat(s, CMPXCHG_DOUBLE_FAIL);
- #ifdef SLUB_DEBUG_CMPXCHG
- pr_info("%s %s: cmpxchg double redo ", n, s->name);
- #endif
- return false;
- }
- #ifdef CONFIG_SLUB_DEBUG
- /*
- * Determine a map of object in use on a page.
- *
- * Node listlock must be held to guarantee that the page does
- * not vanish from under us.
- */
- static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
- {
- void *p;
- void *addr = page_address(page);
- for (p = page->freelist; p; p = get_freepointer(s, p))
- set_bit(slab_index(p, s, addr), map);
- }
- static inline int size_from_object(struct kmem_cache *s)
- {
- if (s->flags & SLAB_RED_ZONE)
- return s->size - s->red_left_pad;
- return s->size;
- }
- static inline void *restore_red_left(struct kmem_cache *s, void *p)
- {
- if (s->flags & SLAB_RED_ZONE)
- p -= s->red_left_pad;
- return p;
- }
- /*
- * Debug settings:
- */
- #if defined(CONFIG_SLUB_DEBUG_ON)
- static int slub_debug = DEBUG_DEFAULT_FLAGS;
- #else
- static int slub_debug;
- #endif
- static char *slub_debug_slabs;
- static int disable_higher_order_debug;
- /*
- * slub is about to manipulate internal object metadata. This memory lies
- * outside the range of the allocated object, so accessing it would normally
- * be reported by kasan as a bounds error. metadata_access_enable() is used
- * to tell kasan that these accesses are OK.
- */
- static inline void metadata_access_enable(void)
- {
- kasan_disable_current();
- }
- static inline void metadata_access_disable(void)
- {
- kasan_enable_current();
- }
- /*
- * Object debugging
- */
- /* Verify that a pointer has an address that is valid within a slab page */
- static inline int check_valid_pointer(struct kmem_cache *s,
- struct page *page, void *object)
- {
- void *base;
- if (!object)
- return 1;
- base = page_address(page);
- object = restore_red_left(s, object);
- if (object < base || object >= base + page->objects * s->size ||
- (object - base) % s->size) {
- return 0;
- }
- return 1;
- }
- static void print_section(char *level, char *text, u8 *addr,
- unsigned int length)
- {
- metadata_access_enable();
- print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
- length, 1);
- metadata_access_disable();
- }
- static struct track *get_track(struct kmem_cache *s, void *object,
- enum track_item alloc)
- {
- struct track *p;
- if (s->offset)
- p = object + s->offset + sizeof(void *);
- else
- p = object + s->inuse;
- return p + alloc;
- }
- static void set_track(struct kmem_cache *s, void *object,
- enum track_item alloc, unsigned long addr)
- {
- struct track *p = get_track(s, object, alloc);
- if (addr) {
- #ifdef CONFIG_STACKTRACE
- struct stack_trace trace;
- int i;
- trace.nr_entries = 0;
- trace.max_entries = TRACK_ADDRS_COUNT;
- trace.entries = p->addrs;
- trace.skip = 3;
- metadata_access_enable();
- save_stack_trace(&trace);
- metadata_access_disable();
- /* See rant in lockdep.c */
- if (trace.nr_entries != 0 &&
- trace.entries[trace.nr_entries - 1] == ULONG_MAX)
- trace.nr_entries--;
- for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
- p->addrs[i] = 0;
- #endif
- p->addr = addr;
- p->cpu = smp_processor_id();
- p->pid = current->pid;
- p->when = jiffies;
- } else
- memset(p, 0, sizeof(struct track));
- }
- static void init_tracking(struct kmem_cache *s, void *object)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- set_track(s, object, TRACK_FREE, 0UL);
- set_track(s, object, TRACK_ALLOC, 0UL);
- }
- static void print_track(const char *s, struct track *t)
- {
- if (!t->addr)
- return;
- pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
- s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
- #ifdef CONFIG_STACKTRACE
- {
- int i;
- for (i = 0; i < TRACK_ADDRS_COUNT; i++)
- if (t->addrs[i])
- pr_err("\t%pS\n", (void *)t->addrs[i]);
- else
- break;
- }
- #endif
- }
- static void print_tracking(struct kmem_cache *s, void *object)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- print_track("Allocated", get_track(s, object, TRACK_ALLOC));
- print_track("Freed", get_track(s, object, TRACK_FREE));
- }
- static void print_page_info(struct page *page)
- {
- pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
- page, page->objects, page->inuse, page->freelist, page->flags);
- }
- static void slab_bug(struct kmem_cache *s, char *fmt, ...)
- {
- struct va_format vaf;
- va_list args;
- va_start(args, fmt);
- vaf.fmt = fmt;
- vaf.va = &args;
- pr_err("=============================================================================\n");
- pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
- pr_err("-----------------------------------------------------------------------------\n\n");
- add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
- va_end(args);
- }
- static void slab_fix(struct kmem_cache *s, char *fmt, ...)
- {
- struct va_format vaf;
- va_list args;
- va_start(args, fmt);
- vaf.fmt = fmt;
- vaf.va = &args;
- pr_err("FIX %s: %pV\n", s->name, &vaf);
- va_end(args);
- }
- static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
- {
- unsigned int off; /* Offset of last byte */
- u8 *addr = page_address(page);
- print_tracking(s, p);
- print_page_info(page);
- pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
- p, p - addr, get_freepointer(s, p));
- if (s->flags & SLAB_RED_ZONE)
- print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
- s->red_left_pad);
- else if (p > addr + 16)
- print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
- print_section(KERN_ERR, "Object ", p,
- min_t(unsigned long, s->object_size, PAGE_SIZE));
- if (s->flags & SLAB_RED_ZONE)
- print_section(KERN_ERR, "Redzone ", p + s->object_size,
- s->inuse - s->object_size);
- if (s->offset)
- off = s->offset + sizeof(void *);
- else
- off = s->inuse;
- if (s->flags & SLAB_STORE_USER)
- off += 2 * sizeof(struct track);
- off += kasan_metadata_size(s);
- if (off != size_from_object(s))
- /* Beginning of the filler is the free pointer */
- print_section(KERN_ERR, "Padding ", p + off,
- size_from_object(s) - off);
- dump_stack();
- }
- void object_err(struct kmem_cache *s, struct page *page,
- u8 *object, char *reason)
- {
- slab_bug(s, "%s", reason);
- print_trailer(s, page, object);
- }
- static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
- const char *fmt, ...)
- {
- va_list args;
- char buf[100];
- va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
- va_end(args);
- slab_bug(s, "%s", buf);
- print_page_info(page);
- dump_stack();
- }
- static void init_object(struct kmem_cache *s, void *object, u8 val)
- {
- u8 *p = object;
- if (s->flags & SLAB_RED_ZONE)
- memset(p - s->red_left_pad, val, s->red_left_pad);
- if (s->flags & __OBJECT_POISON) {
- memset(p, POISON_FREE, s->object_size - 1);
- p[s->object_size - 1] = POISON_END;
- }
- if (s->flags & SLAB_RED_ZONE)
- memset(p + s->object_size, val, s->inuse - s->object_size);
- }
- static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
- void *from, void *to)
- {
- slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
- memset(from, data, to - from);
- }
- static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
- u8 *object, char *what,
- u8 *start, unsigned int value, unsigned int bytes)
- {
- u8 *fault;
- u8 *end;
- metadata_access_enable();
- fault = memchr_inv(start, value, bytes);
- metadata_access_disable();
- if (!fault)
- return 1;
- end = start + bytes;
- while (end > fault && end[-1] == value)
- end--;
- slab_bug(s, "%s overwritten", what);
- pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
- fault, end - 1, fault[0], value);
- print_trailer(s, page, object);
- restore_bytes(s, what, value, fault, end);
- return 0;
- }
- /*
- * Object layout:
- *
- * object address
- * Bytes of the object to be managed.
- * If the freepointer may overlay the object then the free
- * pointer is the first word of the object.
- *
- * Poisoning uses 0x6b (POISON_FREE) and the last byte is
- * 0xa5 (POISON_END)
- *
- * object + s->object_size
- * Padding to reach word boundary. This is also used for Redzoning.
- * Padding is extended by another word if Redzoning is enabled and
- * object_size == inuse.
- *
- * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
- * 0xcc (RED_ACTIVE) for objects in use.
- *
- * object + s->inuse
- * Meta data starts here.
- *
- * A. Free pointer (if we cannot overwrite object on free)
- * B. Tracking data for SLAB_STORE_USER
- * C. Padding to reach required alignment boundary or at mininum
- * one word if debugging is on to be able to detect writes
- * before the word boundary.
- *
- * Padding is done using 0x5a (POISON_INUSE)
- *
- * object + s->size
- * Nothing is used beyond s->size.
- *
- * If slabcaches are merged then the object_size and inuse boundaries are mostly
- * ignored. And therefore no slab options that rely on these boundaries
- * may be used with merged slabcaches.
- */
- static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
- {
- unsigned long off = s->inuse; /* The end of info */
- if (s->offset)
- /* Freepointer is placed after the object. */
- off += sizeof(void *);
- if (s->flags & SLAB_STORE_USER)
- /* We also have user information there */
- off += 2 * sizeof(struct track);
- off += kasan_metadata_size(s);
- if (size_from_object(s) == off)
- return 1;
- return check_bytes_and_report(s, page, p, "Object padding",
- p + off, POISON_INUSE, size_from_object(s) - off);
- }
- /* Check the pad bytes at the end of a slab page */
- static int slab_pad_check(struct kmem_cache *s, struct page *page)
- {
- u8 *start;
- u8 *fault;
- u8 *end;
- int length;
- int remainder;
- if (!(s->flags & SLAB_POISON))
- return 1;
- start = page_address(page);
- length = (PAGE_SIZE << compound_order(page)) - s->reserved;
- end = start + length;
- remainder = length % s->size;
- if (!remainder)
- return 1;
- metadata_access_enable();
- fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
- metadata_access_disable();
- if (!fault)
- return 1;
- while (end > fault && end[-1] == POISON_INUSE)
- end--;
- slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
- print_section(KERN_ERR, "Padding ", end - remainder, remainder);
- restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
- return 0;
- }
- static int check_object(struct kmem_cache *s, struct page *page,
- void *object, u8 val)
- {
- u8 *p = object;
- u8 *endobject = object + s->object_size;
- if (s->flags & SLAB_RED_ZONE) {
- if (!check_bytes_and_report(s, page, object, "Redzone",
- object - s->red_left_pad, val, s->red_left_pad))
- return 0;
- if (!check_bytes_and_report(s, page, object, "Redzone",
- endobject, val, s->inuse - s->object_size))
- return 0;
- } else {
- if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
- check_bytes_and_report(s, page, p, "Alignment padding",
- endobject, POISON_INUSE,
- s->inuse - s->object_size);
- }
- }
- if (s->flags & SLAB_POISON) {
- if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
- (!check_bytes_and_report(s, page, p, "Poison", p,
- POISON_FREE, s->object_size - 1) ||
- !check_bytes_and_report(s, page, p, "Poison",
- p + s->object_size - 1, POISON_END, 1)))
- return 0;
- /*
- * check_pad_bytes cleans up on its own.
- */
- check_pad_bytes(s, page, p);
- }
- if (!s->offset && val == SLUB_RED_ACTIVE)
- /*
- * Object and freepointer overlap. Cannot check
- * freepointer while object is allocated.
- */
- return 1;
- /* Check free pointer validity */
- if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
- object_err(s, page, p, "Freepointer corrupt");
- /*
- * No choice but to zap it and thus lose the remainder
- * of the free objects in this slab. May cause
- * another error because the object count is now wrong.
- */
- set_freepointer(s, p, NULL);
- return 0;
- }
- return 1;
- }
- static int check_slab(struct kmem_cache *s, struct page *page)
- {
- int maxobj;
- VM_BUG_ON(!irqs_disabled());
- if (!PageSlab(page)) {
- slab_err(s, page, "Not a valid slab page");
- return 0;
- }
- maxobj = order_objects(compound_order(page), s->size, s->reserved);
- if (page->objects > maxobj) {
- slab_err(s, page, "objects %u > max %u",
- page->objects, maxobj);
- return 0;
- }
- if (page->inuse > page->objects) {
- slab_err(s, page, "inuse %u > max %u",
- page->inuse, page->objects);
- return 0;
- }
- /* Slab_pad_check fixes things up after itself */
- slab_pad_check(s, page);
- return 1;
- }
- /*
- * Determine if a certain object on a page is on the freelist. Must hold the
- * slab lock to guarantee that the chains are in a consistent state.
- */
- static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
- {
- int nr = 0;
- void *fp;
- void *object = NULL;
- int max_objects;
- fp = page->freelist;
- while (fp && nr <= page->objects) {
- if (fp == search)
- return 1;
- if (!check_valid_pointer(s, page, fp)) {
- if (object) {
- object_err(s, page, object,
- "Freechain corrupt");
- set_freepointer(s, object, NULL);
- } else {
- slab_err(s, page, "Freepointer corrupt");
- page->freelist = NULL;
- page->inuse = page->objects;
- slab_fix(s, "Freelist cleared");
- return 0;
- }
- break;
- }
- object = fp;
- fp = get_freepointer(s, object);
- nr++;
- }
- max_objects = order_objects(compound_order(page), s->size, s->reserved);
- if (max_objects > MAX_OBJS_PER_PAGE)
- max_objects = MAX_OBJS_PER_PAGE;
- if (page->objects != max_objects) {
- slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
- page->objects, max_objects);
- page->objects = max_objects;
- slab_fix(s, "Number of objects adjusted.");
- }
- if (page->inuse != page->objects - nr) {
- slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
- page->inuse, page->objects - nr);
- page->inuse = page->objects - nr;
- slab_fix(s, "Object count adjusted.");
- }
- return search == NULL;
- }
- static void trace(struct kmem_cache *s, struct page *page, void *object,
- int alloc)
- {
- if (s->flags & SLAB_TRACE) {
- pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
- s->name,
- alloc ? "alloc" : "free",
- object, page->inuse,
- page->freelist);
- if (!alloc)
- print_section(KERN_INFO, "Object ", (void *)object,
- s->object_size);
- dump_stack();
- }
- }
- /*
- * Tracking of fully allocated slabs for debugging purposes.
- */
- static void add_full(struct kmem_cache *s,
- struct kmem_cache_node *n, struct page *page)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- lockdep_assert_held(&n->list_lock);
- list_add(&page->lru, &n->full);
- }
- static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- lockdep_assert_held(&n->list_lock);
- list_del(&page->lru);
- }
- /* Tracking of the number of slabs for debugging purposes */
- static inline unsigned long slabs_node(struct kmem_cache *s, int node)
- {
- struct kmem_cache_node *n = get_node(s, node);
- return atomic_long_read(&n->nr_slabs);
- }
- static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
- {
- return atomic_long_read(&n->nr_slabs);
- }
- static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
- {
- struct kmem_cache_node *n = get_node(s, node);
- /*
- * May be called early in order to allocate a slab for the
- * kmem_cache_node structure. Solve the chicken-egg
- * dilemma by deferring the increment of the count during
- * bootstrap (see early_kmem_cache_node_alloc).
- */
- if (likely(n)) {
- atomic_long_inc(&n->nr_slabs);
- atomic_long_add(objects, &n->total_objects);
- }
- }
- static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
- {
- struct kmem_cache_node *n = get_node(s, node);
- atomic_long_dec(&n->nr_slabs);
- atomic_long_sub(objects, &n->total_objects);
- }
- /* Object debug checks for alloc/free paths */
- static void setup_object_debug(struct kmem_cache *s, struct page *page,
- void *object)
- {
- if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
- return;
- init_object(s, object, SLUB_RED_INACTIVE);
- init_tracking(s, object);
- }
- static inline int alloc_consistency_checks(struct kmem_cache *s,
- struct page *page,
- void *object, unsigned long addr)
- {
- if (!check_slab(s, page))
- return 0;
- if (!check_valid_pointer(s, page, object)) {
- object_err(s, page, object, "Freelist Pointer check fails");
- return 0;
- }
- if (!check_object(s, page, object, SLUB_RED_INACTIVE))
- return 0;
- return 1;
- }
- static noinline int alloc_debug_processing(struct kmem_cache *s,
- struct page *page,
- void *object, unsigned long addr)
- {
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- if (!alloc_consistency_checks(s, page, object, addr))
- goto bad;
- }
- /* Success perform special debug activities for allocs */
- if (s->flags & SLAB_STORE_USER)
- set_track(s, object, TRACK_ALLOC, addr);
- trace(s, page, object, 1);
- init_object(s, object, SLUB_RED_ACTIVE);
- return 1;
- bad:
- if (PageSlab(page)) {
- /*
- * If this is a slab page then lets do the best we can
- * to avoid issues in the future. Marking all objects
- * as used avoids touching the remaining objects.
- */
- slab_fix(s, "Marking all objects used");
- page->inuse = page->objects;
- page->freelist = NULL;
- }
- return 0;
- }
- static inline int free_consistency_checks(struct kmem_cache *s,
- struct page *page, void *object, unsigned long addr)
- {
- if (!check_valid_pointer(s, page, object)) {
- slab_err(s, page, "Invalid object pointer 0x%p", object);
- return 0;
- }
- if (on_freelist(s, page, object)) {
- object_err(s, page, object, "Object already free");
- return 0;
- }
- if (!check_object(s, page, object, SLUB_RED_ACTIVE))
- return 0;
- if (unlikely(s != page->slab_cache)) {
- if (!PageSlab(page)) {
- slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
- object);
- } else if (!page->slab_cache) {
- pr_err("SLUB <none>: no slab for object 0x%p.\n",
- object);
- dump_stack();
- } else
- object_err(s, page, object,
- "page slab pointer corrupt.");
- return 0;
- }
- return 1;
- }
- /* Supports checking bulk free of a constructed freelist */
- static noinline int free_debug_processing(
- struct kmem_cache *s, struct page *page,
- void *head, void *tail, int bulk_cnt,
- unsigned long addr)
- {
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- void *object = head;
- int cnt = 0;
- unsigned long uninitialized_var(flags);
- int ret = 0;
- spin_lock_irqsave(&n->list_lock, flags);
- slab_lock(page);
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- if (!check_slab(s, page))
- goto out;
- }
- next_object:
- cnt++;
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- if (!free_consistency_checks(s, page, object, addr))
- goto out;
- }
- if (s->flags & SLAB_STORE_USER)
- set_track(s, object, TRACK_FREE, addr);
- trace(s, page, object, 0);
- /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
- init_object(s, object, SLUB_RED_INACTIVE);
- /* Reached end of constructed freelist yet? */
- if (object != tail) {
- object = get_freepointer(s, object);
- goto next_object;
- }
- ret = 1;
- out:
- if (cnt != bulk_cnt)
- slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
- bulk_cnt, cnt);
- slab_unlock(page);
- spin_unlock_irqrestore(&n->list_lock, flags);
- if (!ret)
- slab_fix(s, "Object at 0x%p not freed", object);
- return ret;
- }
- static int __init setup_slub_debug(char *str)
- {
- slub_debug = DEBUG_DEFAULT_FLAGS;
- if (*str++ != '=' || !*str)
- /*
- * No options specified. Switch on full debugging.
- */
- goto out;
- if (*str == ',')
- /*
- * No options but restriction on slabs. This means full
- * debugging for slabs matching a pattern.
- */
- goto check_slabs;
- slub_debug = 0;
- if (*str == '-')
- /*
- * Switch off all debugging measures.
- */
- goto out;
- /*
- * Determine which debug features should be switched on
- */
- for (; *str && *str != ','; str++) {
- switch (tolower(*str)) {
- case 'f':
- slub_debug |= SLAB_CONSISTENCY_CHECKS;
- break;
- case 'z':
- slub_debug |= SLAB_RED_ZONE;
- break;
- case 'p':
- slub_debug |= SLAB_POISON;
- break;
- case 'u':
- slub_debug |= SLAB_STORE_USER;
- break;
- case 't':
- slub_debug |= SLAB_TRACE;
- break;
- case 'a':
- slub_debug |= SLAB_FAILSLAB;
- break;
- case 'o':
- /*
- * Avoid enabling debugging on caches if its minimum
- * order would increase as a result.
- */
- disable_higher_order_debug = 1;
- break;
- default:
- pr_err("slub_debug option '%c' unknown. skipped\n",
- *str);
- }
- }
- check_slabs:
- if (*str == ',')
- slub_debug_slabs = str + 1;
- out:
- return 1;
- }
- __setup("slub_debug", setup_slub_debug);
- unsigned long kmem_cache_flags(unsigned long object_size,
- unsigned long flags, const char *name,
- void (*ctor)(void *))
- {
- /*
- * Enable debugging if selected on the kernel commandline.
- */
- if (slub_debug && (!slub_debug_slabs || (name &&
- !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
- flags |= slub_debug;
- return flags;
- }
- #else /* !CONFIG_SLUB_DEBUG */
- static inline void setup_object_debug(struct kmem_cache *s,
- struct page *page, void *object) {}
- static inline int alloc_debug_processing(struct kmem_cache *s,
- struct page *page, void *object, unsigned long addr) { return 0; }
- static inline int free_debug_processing(
- struct kmem_cache *s, struct page *page,
- void *head, void *tail, int bulk_cnt,
- unsigned long addr) { return 0; }
- static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
- { return 1; }
- static inline int check_object(struct kmem_cache *s, struct page *page,
- void *object, u8 val) { return 1; }
- static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
- struct page *page) {}
- static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
- struct page *page) {}
- unsigned long kmem_cache_flags(unsigned long object_size,
- unsigned long flags, const char *name,
- void (*ctor)(void *))
- {
- return flags;
- }
- #define slub_debug 0
- #define disable_higher_order_debug 0
- static inline unsigned long slabs_node(struct kmem_cache *s, int node)
- { return 0; }
- static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
- { return 0; }
- static inline void inc_slabs_node(struct kmem_cache *s, int node,
- int objects) {}
- static inline void dec_slabs_node(struct kmem_cache *s, int node,
- int objects) {}
- #endif /* CONFIG_SLUB_DEBUG */
- /*
- * Hooks for other subsystems that check memory allocations. In a typical
- * production configuration these hooks all should produce no code at all.
- */
- static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
- {
- kmemleak_alloc(ptr, size, 1, flags);
- kasan_kmalloc_large(ptr, size, flags);
- }
- static inline void kfree_hook(const void *x)
- {
- kmemleak_free(x);
- kasan_kfree_large(x);
- }
- static inline void *slab_free_hook(struct kmem_cache *s, void *x)
- {
- void *freeptr;
- kmemleak_free_recursive(x, s->flags);
- /*
- * Trouble is that we may no longer disable interrupts in the fast path
- * So in order to make the debug calls that expect irqs to be
- * disabled we need to disable interrupts temporarily.
- */
- #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
- {
- unsigned long flags;
- local_irq_save(flags);
- kmemcheck_slab_free(s, x, s->object_size);
- debug_check_no_locks_freed(x, s->object_size);
- local_irq_restore(flags);
- }
- #endif
- if (!(s->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(x, s->object_size);
- freeptr = get_freepointer(s, x);
- /*
- * kasan_slab_free() may put x into memory quarantine, delaying its
- * reuse. In this case the object's freelist pointer is changed.
- */
- kasan_slab_free(s, x);
- return freeptr;
- }
- static inline void slab_free_freelist_hook(struct kmem_cache *s,
- void *head, void *tail)
- {
- /*
- * Compiler cannot detect this function can be removed if slab_free_hook()
- * evaluates to nothing. Thus, catch all relevant config debug options here.
- */
- #if defined(CONFIG_KMEMCHECK) || \
- defined(CONFIG_LOCKDEP) || \
- defined(CONFIG_DEBUG_KMEMLEAK) || \
- defined(CONFIG_DEBUG_OBJECTS_FREE) || \
- defined(CONFIG_KASAN)
- void *object = head;
- void *tail_obj = tail ? : head;
- void *freeptr;
- do {
- freeptr = slab_free_hook(s, object);
- } while ((object != tail_obj) && (object = freeptr));
- #endif
- }
- static void setup_object(struct kmem_cache *s, struct page *page,
- void *object)
- {
- setup_object_debug(s, page, object);
- kasan_init_slab_obj(s, object);
- if (unlikely(s->ctor)) {
- kasan_unpoison_object_data(s, object);
- s->ctor(object);
- kasan_poison_object_data(s, object);
- }
- }
- /*
- * Slab allocation and freeing
- */
- static inline struct page *alloc_slab_page(struct kmem_cache *s,
- gfp_t flags, int node, struct kmem_cache_order_objects oo)
- {
- struct page *page;
- int order = oo_order(oo);
- flags |= __GFP_NOTRACK;
- if (node == NUMA_NO_NODE)
- page = alloc_pages(flags, order);
- else
- page = __alloc_pages_node(node, flags, order);
- if (page && memcg_charge_slab(page, flags, order, s)) {
- __free_pages(page, order);
- page = NULL;
- }
- return page;
- }
- #ifdef CONFIG_SLAB_FREELIST_RANDOM
- /* Pre-initialize the random sequence cache */
- static int init_cache_random_seq(struct kmem_cache *s)
- {
- int err;
- unsigned long i, count = oo_objects(s->oo);
- /* Bailout if already initialised */
- if (s->random_seq)
- return 0;
- err = cache_random_seq_create(s, count, GFP_KERNEL);
- if (err) {
- pr_err("SLUB: Unable to initialize free list for %s\n",
- s->name);
- return err;
- }
- /* Transform to an offset on the set of pages */
- if (s->random_seq) {
- for (i = 0; i < count; i++)
- s->random_seq[i] *= s->size;
- }
- return 0;
- }
- /* Initialize each random sequence freelist per cache */
- static void __init init_freelist_randomization(void)
- {
- struct kmem_cache *s;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list)
- init_cache_random_seq(s);
- mutex_unlock(&slab_mutex);
- }
- /* Get the next entry on the pre-computed freelist randomized */
- static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
- unsigned long *pos, void *start,
- unsigned long page_limit,
- unsigned long freelist_count)
- {
- unsigned int idx;
- /*
- * If the target page allocation failed, the number of objects on the
- * page might be smaller than the usual size defined by the cache.
- */
- do {
- idx = s->random_seq[*pos];
- *pos += 1;
- if (*pos >= freelist_count)
- *pos = 0;
- } while (unlikely(idx >= page_limit));
- return (char *)start + idx;
- }
- /* Shuffle the single linked freelist based on a random pre-computed sequence */
- static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
- {
- void *start;
- void *cur;
- void *next;
- unsigned long idx, pos, page_limit, freelist_count;
- if (page->objects < 2 || !s->random_seq)
- return false;
- freelist_count = oo_objects(s->oo);
- pos = get_random_int() % freelist_count;
- page_limit = page->objects * s->size;
- start = fixup_red_left(s, page_address(page));
- /* First entry is used as the base of the freelist */
- cur = next_freelist_entry(s, page, &pos, start, page_limit,
- freelist_count);
- page->freelist = cur;
- for (idx = 1; idx < page->objects; idx++) {
- setup_object(s, page, cur);
- next = next_freelist_entry(s, page, &pos, start, page_limit,
- freelist_count);
- set_freepointer(s, cur, next);
- cur = next;
- }
- setup_object(s, page, cur);
- set_freepointer(s, cur, NULL);
- return true;
- }
- #else
- static inline int init_cache_random_seq(struct kmem_cache *s)
- {
- return 0;
- }
- static inline void init_freelist_randomization(void) { }
- static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
- {
- return false;
- }
- #endif /* CONFIG_SLAB_FREELIST_RANDOM */
- static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
- {
- struct page *page;
- struct kmem_cache_order_objects oo = s->oo;
- gfp_t alloc_gfp;
- void *start, *p;
- int idx, order;
- bool shuffle;
- flags &= gfp_allowed_mask;
- if (gfpflags_allow_blocking(flags))
- local_irq_enable();
- flags |= s->allocflags;
- /*
- * Let the initial higher-order allocation fail under memory pressure
- * so we fall-back to the minimum order allocation.
- */
- alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
- if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
- alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
- page = alloc_slab_page(s, alloc_gfp, node, oo);
- if (unlikely(!page)) {
- oo = s->min;
- alloc_gfp = flags;
- /*
- * Allocation may have failed due to fragmentation.
- * Try a lower order alloc if possible
- */
- page = alloc_slab_page(s, alloc_gfp, node, oo);
- if (unlikely(!page))
- goto out;
- stat(s, ORDER_FALLBACK);
- }
- if (kmemcheck_enabled &&
- !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
- int pages = 1 << oo_order(oo);
- kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
- /*
- * Objects from caches that have a constructor don't get
- * cleared when they're allocated, so we need to do it here.
- */
- if (s->ctor)
- kmemcheck_mark_uninitialized_pages(page, pages);
- else
- kmemcheck_mark_unallocated_pages(page, pages);
- }
- page->objects = oo_objects(oo);
- order = compound_order(page);
- page->slab_cache = s;
- __SetPageSlab(page);
- if (page_is_pfmemalloc(page))
- SetPageSlabPfmemalloc(page);
- start = page_address(page);
- if (unlikely(s->flags & SLAB_POISON))
- memset(start, POISON_INUSE, PAGE_SIZE << order);
- kasan_poison_slab(page);
- shuffle = shuffle_freelist(s, page);
- if (!shuffle) {
- for_each_object_idx(p, idx, s, start, page->objects) {
- setup_object(s, page, p);
- if (likely(idx < page->objects))
- set_freepointer(s, p, p + s->size);
- else
- set_freepointer(s, p, NULL);
- }
- page->freelist = fixup_red_left(s, start);
- }
- page->inuse = page->objects;
- page->frozen = 1;
- out:
- if (gfpflags_allow_blocking(flags))
- local_irq_disable();
- if (!page)
- return NULL;
- mod_zone_page_state(page_zone(page),
- (s->flags & SLAB_RECLAIM_ACCOUNT) ?
- NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
- 1 << oo_order(oo));
- inc_slabs_node(s, page_to_nid(page), page->objects);
- return page;
- }
- static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
- {
- if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
- gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
- flags &= ~GFP_SLAB_BUG_MASK;
- pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
- invalid_mask, &invalid_mask, flags, &flags);
- }
- return allocate_slab(s,
- flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
- }
- static void __free_slab(struct kmem_cache *s, struct page *page)
- {
- int order = compound_order(page);
- int pages = 1 << order;
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- void *p;
- slab_pad_check(s, page);
- for_each_object(p, s, page_address(page),
- page->objects)
- check_object(s, page, p, SLUB_RED_INACTIVE);
- }
- kmemcheck_free_shadow(page, compound_order(page));
- mod_zone_page_state(page_zone(page),
- (s->flags & SLAB_RECLAIM_ACCOUNT) ?
- NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
- -pages);
- __ClearPageSlabPfmemalloc(page);
- __ClearPageSlab(page);
- page_mapcount_reset(page);
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += pages;
- memcg_uncharge_slab(page, order, s);
- __free_pages(page, order);
- }
- #define need_reserve_slab_rcu \
- (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
- static void rcu_free_slab(struct rcu_head *h)
- {
- struct page *page;
- if (need_reserve_slab_rcu)
- page = virt_to_head_page(h);
- else
- page = container_of((struct list_head *)h, struct page, lru);
- __free_slab(page->slab_cache, page);
- }
- static void free_slab(struct kmem_cache *s, struct page *page)
- {
- if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
- struct rcu_head *head;
- if (need_reserve_slab_rcu) {
- int order = compound_order(page);
- int offset = (PAGE_SIZE << order) - s->reserved;
- VM_BUG_ON(s->reserved != sizeof(*head));
- head = page_address(page) + offset;
- } else {
- head = &page->rcu_head;
- }
- call_rcu(head, rcu_free_slab);
- } else
- __free_slab(s, page);
- }
- static void discard_slab(struct kmem_cache *s, struct page *page)
- {
- dec_slabs_node(s, page_to_nid(page), page->objects);
- free_slab(s, page);
- }
- /*
- * Management of partially allocated slabs.
- */
- static inline void
- __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
- {
- n->nr_partial++;
- if (tail == DEACTIVATE_TO_TAIL)
- list_add_tail(&page->lru, &n->partial);
- else
- list_add(&page->lru, &n->partial);
- }
- static inline void add_partial(struct kmem_cache_node *n,
- struct page *page, int tail)
- {
- lockdep_assert_held(&n->list_lock);
- __add_partial(n, page, tail);
- }
- static inline void remove_partial(struct kmem_cache_node *n,
- struct page *page)
- {
- lockdep_assert_held(&n->list_lock);
- list_del(&page->lru);
- n->nr_partial--;
- }
- /*
- * Remove slab from the partial list, freeze it and
- * return the pointer to the freelist.
- *
- * Returns a list of objects or NULL if it fails.
- */
- static inline void *acquire_slab(struct kmem_cache *s,
- struct kmem_cache_node *n, struct page *page,
- int mode, int *objects)
- {
- void *freelist;
- unsigned long counters;
- struct page new;
- lockdep_assert_held(&n->list_lock);
- /*
- * Zap the freelist and set the frozen bit.
- * The old freelist is the list of objects for the
- * per cpu allocation list.
- */
- freelist = page->freelist;
- counters = page->counters;
- new.counters = counters;
- *objects = new.objects - new.inuse;
- if (mode) {
- new.inuse = page->objects;
- new.freelist = NULL;
- } else {
- new.freelist = freelist;
- }
- VM_BUG_ON(new.frozen);
- new.frozen = 1;
- if (!__cmpxchg_double_slab(s, page,
- freelist, counters,
- new.freelist, new.counters,
- "acquire_slab"))
- return NULL;
- remove_partial(n, page);
- WARN_ON(!freelist);
- return freelist;
- }
- static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
- static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
- /*
- * Try to allocate a partial slab from a specific node.
- */
- static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
- struct kmem_cache_cpu *c, gfp_t flags)
- {
- struct page *page, *page2;
- void *object = NULL;
- int available = 0;
- int objects;
- /*
- * Racy check. If we mistakenly see no partial slabs then we
- * just allocate an empty slab. If we mistakenly try to get a
- * partial slab and there is none available then get_partials()
- * will return NULL.
- */
- if (!n || !n->nr_partial)
- return NULL;
- spin_lock(&n->list_lock);
- list_for_each_entry_safe(page, page2, &n->partial, lru) {
- void *t;
- if (!pfmemalloc_match(page, flags))
- continue;
- t = acquire_slab(s, n, page, object == NULL, &objects);
- if (!t)
- break;
- available += objects;
- if (!object) {
- c->page = page;
- stat(s, ALLOC_FROM_PARTIAL);
- object = t;
- } else {
- put_cpu_partial(s, page, 0);
- stat(s, CPU_PARTIAL_NODE);
- }
- if (!kmem_cache_has_cpu_partial(s)
- || available > s->cpu_partial / 2)
- break;
- }
- spin_unlock(&n->list_lock);
- return object;
- }
- /*
- * Get a page from somewhere. Search in increasing NUMA distances.
- */
- static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
- struct kmem_cache_cpu *c)
- {
- #ifdef CONFIG_NUMA
- struct zonelist *zonelist;
- struct zoneref *z;
- struct zone *zone;
- enum zone_type high_zoneidx = gfp_zone(flags);
- void *object;
- unsigned int cpuset_mems_cookie;
- /*
- * The defrag ratio allows a configuration of the tradeoffs between
- * inter node defragmentation and node local allocations. A lower
- * defrag_ratio increases the tendency to do local allocations
- * instead of attempting to obtain partial slabs from other nodes.
- *
- * If the defrag_ratio is set to 0 then kmalloc() always
- * returns node local objects. If the ratio is higher then kmalloc()
- * may return off node objects because partial slabs are obtained
- * from other nodes and filled up.
- *
- * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
- * (which makes defrag_ratio = 1000) then every (well almost)
- * allocation will first attempt to defrag slab caches on other nodes.
- * This means scanning over all nodes to look for partial slabs which
- * may be expensive if we do it every time we are trying to find a slab
- * with available objects.
- */
- if (!s->remote_node_defrag_ratio ||
- get_cycles() % 1024 > s->remote_node_defrag_ratio)
- return NULL;
- do {
- cpuset_mems_cookie = read_mems_allowed_begin();
- zonelist = node_zonelist(mempolicy_slab_node(), flags);
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
- struct kmem_cache_node *n;
- n = get_node(s, zone_to_nid(zone));
- if (n && cpuset_zone_allowed(zone, flags) &&
- n->nr_partial > s->min_partial) {
- object = get_partial_node(s, n, c, flags);
- if (object) {
- /*
- * Don't check read_mems_allowed_retry()
- * here - if mems_allowed was updated in
- * parallel, that was a harmless race
- * between allocation and the cpuset
- * update
- */
- return object;
- }
- }
- }
- } while (read_mems_allowed_retry(cpuset_mems_cookie));
- #endif
- return NULL;
- }
- /*
- * Get a partial page, lock it and return it.
- */
- static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
- struct kmem_cache_cpu *c)
- {
- void *object;
- int searchnode = node;
- if (node == NUMA_NO_NODE)
- searchnode = numa_mem_id();
- else if (!node_present_pages(node))
- searchnode = node_to_mem_node(node);
- object = get_partial_node(s, get_node(s, searchnode), c, flags);
- if (object || node != NUMA_NO_NODE)
- return object;
- return get_any_partial(s, flags, c);
- }
- #ifdef CONFIG_PREEMPT
- /*
- * Calculate the next globally unique transaction for disambiguiation
- * during cmpxchg. The transactions start with the cpu number and are then
- * incremented by CONFIG_NR_CPUS.
- */
- #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
- #else
- /*
- * No preemption supported therefore also no need to check for
- * different cpus.
- */
- #define TID_STEP 1
- #endif
- static inline unsigned long next_tid(unsigned long tid)
- {
- return tid + TID_STEP;
- }
- static inline unsigned int tid_to_cpu(unsigned long tid)
- {
- return tid % TID_STEP;
- }
- static inline unsigned long tid_to_event(unsigned long tid)
- {
- return tid / TID_STEP;
- }
- static inline unsigned int init_tid(int cpu)
- {
- return cpu;
- }
- static inline void note_cmpxchg_failure(const char *n,
- const struct kmem_cache *s, unsigned long tid)
- {
- #ifdef SLUB_DEBUG_CMPXCHG
- unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
- pr_info("%s %s: cmpxchg redo ", n, s->name);
- #ifdef CONFIG_PREEMPT
- if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
- pr_warn("due to cpu change %d -> %d\n",
- tid_to_cpu(tid), tid_to_cpu(actual_tid));
- else
- #endif
- if (tid_to_event(tid) != tid_to_event(actual_tid))
- pr_warn("due to cpu running other code. Event %ld->%ld\n",
- tid_to_event(tid), tid_to_event(actual_tid));
- else
- pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
- actual_tid, tid, next_tid(tid));
- #endif
- stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
- }
- static void init_kmem_cache_cpus(struct kmem_cache *s)
- {
- int cpu;
- for_each_possible_cpu(cpu)
- per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
- }
- /*
- * Remove the cpu slab
- */
- static void deactivate_slab(struct kmem_cache *s, struct page *page,
- void *freelist)
- {
- enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- int lock = 0;
- enum slab_modes l = M_NONE, m = M_NONE;
- void *nextfree;
- int tail = DEACTIVATE_TO_HEAD;
- struct page new;
- struct page old;
- if (page->freelist) {
- stat(s, DEACTIVATE_REMOTE_FREES);
- tail = DEACTIVATE_TO_TAIL;
- }
- /*
- * Stage one: Free all available per cpu objects back
- * to the page freelist while it is still frozen. Leave the
- * last one.
- *
- * There is no need to take the list->lock because the page
- * is still frozen.
- */
- while (freelist && (nextfree = get_freepointer(s, freelist))) {
- void *prior;
- unsigned long counters;
- do {
- prior = page->freelist;
- counters = page->counters;
- set_freepointer(s, freelist, prior);
- new.counters = counters;
- new.inuse--;
- VM_BUG_ON(!new.frozen);
- } while (!__cmpxchg_double_slab(s, page,
- prior, counters,
- freelist, new.counters,
- "drain percpu freelist"));
- freelist = nextfree;
- }
- /*
- * Stage two: Ensure that the page is unfrozen while the
- * list presence reflects the actual number of objects
- * during unfreeze.
- *
- * We setup the list membership and then perform a cmpxchg
- * with the count. If there is a mismatch then the page
- * is not unfrozen but the page is on the wrong list.
- *
- * Then we restart the process which may have to remove
- * the page from the list that we just put it on again
- * because the number of objects in the slab may have
- * changed.
- */
- redo:
- old.freelist = page->freelist;
- old.counters = page->counters;
- VM_BUG_ON(!old.frozen);
- /* Determine target state of the slab */
- new.counters = old.counters;
- if (freelist) {
- new.inuse--;
- set_freepointer(s, freelist, old.freelist);
- new.freelist = freelist;
- } else
- new.freelist = old.freelist;
- new.frozen = 0;
- if (!new.inuse && n->nr_partial >= s->min_partial)
- m = M_FREE;
- else if (new.freelist) {
- m = M_PARTIAL;
- if (!lock) {
- lock = 1;
- /*
- * Taking the spinlock removes the possiblity
- * that acquire_slab() will see a slab page that
- * is frozen
- */
- spin_lock(&n->list_lock);
- }
- } else {
- m = M_FULL;
- if (kmem_cache_debug(s) && !lock) {
- lock = 1;
- /*
- * This also ensures that the scanning of full
- * slabs from diagnostic functions will not see
- * any frozen slabs.
- */
- spin_lock(&n->list_lock);
- }
- }
- if (l != m) {
- if (l == M_PARTIAL)
- remove_partial(n, page);
- else if (l == M_FULL)
- remove_full(s, n, page);
- if (m == M_PARTIAL) {
- add_partial(n, page, tail);
- stat(s, tail);
- } else if (m == M_FULL) {
- stat(s, DEACTIVATE_FULL);
- add_full(s, n, page);
- }
- }
- l = m;
- if (!__cmpxchg_double_slab(s, page,
- old.freelist, old.counters,
- new.freelist, new.counters,
- "unfreezing slab"))
- goto redo;
- if (lock)
- spin_unlock(&n->list_lock);
- if (m == M_FREE) {
- stat(s, DEACTIVATE_EMPTY);
- discard_slab(s, page);
- stat(s, FREE_SLAB);
- }
- }
- /*
- * Unfreeze all the cpu partial slabs.
- *
- * This function must be called with interrupts disabled
- * for the cpu using c (or some other guarantee must be there
- * to guarantee no concurrent accesses).
- */
- static void unfreeze_partials(struct kmem_cache *s,
- struct kmem_cache_cpu *c)
- {
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- struct kmem_cache_node *n = NULL, *n2 = NULL;
- struct page *page, *discard_page = NULL;
- while ((page = c->partial)) {
- struct page new;
- struct page old;
- c->partial = page->next;
- n2 = get_node(s, page_to_nid(page));
- if (n != n2) {
- if (n)
- spin_unlock(&n->list_lock);
- n = n2;
- spin_lock(&n->list_lock);
- }
- do {
- old.freelist = page->freelist;
- old.counters = page->counters;
- VM_BUG_ON(!old.frozen);
- new.counters = old.counters;
- new.freelist = old.freelist;
- new.frozen = 0;
- } while (!__cmpxchg_double_slab(s, page,
- old.freelist, old.counters,
- new.freelist, new.counters,
- "unfreezing slab"));
- if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
- page->next = discard_page;
- discard_page = page;
- } else {
- add_partial(n, page, DEACTIVATE_TO_TAIL);
- stat(s, FREE_ADD_PARTIAL);
- }
- }
- if (n)
- spin_unlock(&n->list_lock);
- while (discard_page) {
- page = discard_page;
- discard_page = discard_page->next;
- stat(s, DEACTIVATE_EMPTY);
- discard_slab(s, page);
- stat(s, FREE_SLAB);
- }
- #endif
- }
- /*
- * Put a page that was just frozen (in __slab_free) into a partial page
- * slot if available. This is done without interrupts disabled and without
- * preemption disabled. The cmpxchg is racy and may put the partial page
- * onto a random cpus partial slot.
- *
- * If we did not find a slot then simply move all the partials to the
- * per node partial list.
- */
- static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
- {
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- struct page *oldpage;
- int pages;
- int pobjects;
- preempt_disable();
- do {
- pages = 0;
- pobjects = 0;
- oldpage = this_cpu_read(s->cpu_slab->partial);
- if (oldpage) {
- pobjects = oldpage->pobjects;
- pages = oldpage->pages;
- if (drain && pobjects > s->cpu_partial) {
- unsigned long flags;
- /*
- * partial array is full. Move the existing
- * set to the per node partial list.
- */
- local_irq_save(flags);
- unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
- local_irq_restore(flags);
- oldpage = NULL;
- pobjects = 0;
- pages = 0;
- stat(s, CPU_PARTIAL_DRAIN);
- }
- }
- pages++;
- pobjects += page->objects - page->inuse;
- page->pages = pages;
- page->pobjects = pobjects;
- page->next = oldpage;
- } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
- != oldpage);
- if (unlikely(!s->cpu_partial)) {
- unsigned long flags;
- local_irq_save(flags);
- unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
- local_irq_restore(flags);
- }
- preempt_enable();
- #endif
- }
- static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
- {
- stat(s, CPUSLAB_FLUSH);
- deactivate_slab(s, c->page, c->freelist);
- c->tid = next_tid(c->tid);
- c->page = NULL;
- c->freelist = NULL;
- }
- /*
- * Flush cpu slab.
- *
- * Called from IPI handler with interrupts disabled.
- */
- static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
- {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
- if (likely(c)) {
- if (c->page)
- flush_slab(s, c);
- unfreeze_partials(s, c);
- }
- }
- static void flush_cpu_slab(void *d)
- {
- struct kmem_cache *s = d;
- __flush_cpu_slab(s, smp_processor_id());
- }
- static bool has_cpu_slab(int cpu, void *info)
- {
- struct kmem_cache *s = info;
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
- return c->page || c->partial;
- }
- static void flush_all(struct kmem_cache *s)
- {
- on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
- }
- /*
- * Use the cpu notifier to insure that the cpu slabs are flushed when
- * necessary.
- */
- static int slub_cpu_dead(unsigned int cpu)
- {
- struct kmem_cache *s;
- unsigned long flags;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- local_irq_save(flags);
- __flush_cpu_slab(s, cpu);
- local_irq_restore(flags);
- }
- mutex_unlock(&slab_mutex);
- return 0;
- }
- /*
- * Check if the objects in a per cpu structure fit numa
- * locality expectations.
- */
- static inline int node_match(struct page *page, int node)
- {
- #ifdef CONFIG_NUMA
- if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
- return 0;
- #endif
- return 1;
- }
- #ifdef CONFIG_SLUB_DEBUG
- static int count_free(struct page *page)
- {
- return page->objects - page->inuse;
- }
- static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
- {
- return atomic_long_read(&n->total_objects);
- }
- #endif /* CONFIG_SLUB_DEBUG */
- #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
- static unsigned long count_partial(struct kmem_cache_node *n,
- int (*get_count)(struct page *))
- {
- unsigned long flags;
- unsigned long x = 0;
- struct page *page;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru)
- x += get_count(page);
- spin_unlock_irqrestore(&n->list_lock, flags);
- return x;
- }
- #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
- static noinline void
- slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
- {
- #ifdef CONFIG_SLUB_DEBUG
- static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
- DEFAULT_RATELIMIT_BURST);
- int node;
- struct kmem_cache_node *n;
- if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
- return;
- pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
- nid, gfpflags, &gfpflags);
- pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
- s->name, s->object_size, s->size, oo_order(s->oo),
- oo_order(s->min));
- if (oo_order(s->min) > get_order(s->object_size))
- pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
- s->name);
- for_each_kmem_cache_node(s, node, n) {
- unsigned long nr_slabs;
- unsigned long nr_objs;
- unsigned long nr_free;
- nr_free = count_partial(n, count_free);
- nr_slabs = node_nr_slabs(n);
- nr_objs = node_nr_objs(n);
- pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
- node, nr_slabs, nr_objs, nr_free);
- }
- #endif
- }
- static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
- int node, struct kmem_cache_cpu **pc)
- {
- void *freelist;
- struct kmem_cache_cpu *c = *pc;
- struct page *page;
- freelist = get_partial(s, flags, node, c);
- if (freelist)
- return freelist;
- page = new_slab(s, flags, node);
- if (page) {
- c = raw_cpu_ptr(s->cpu_slab);
- if (c->page)
- flush_slab(s, c);
- /*
- * No other reference to the page yet so we can
- * muck around with it freely without cmpxchg
- */
- freelist = page->freelist;
- page->freelist = NULL;
- stat(s, ALLOC_SLAB);
- c->page = page;
- *pc = c;
- } else
- freelist = NULL;
- return freelist;
- }
- static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
- {
- if (unlikely(PageSlabPfmemalloc(page)))
- return gfp_pfmemalloc_allowed(gfpflags);
- return true;
- }
- /*
- * Check the page->freelist of a page and either transfer the freelist to the
- * per cpu freelist or deactivate the page.
- *
- * The page is still frozen if the return value is not NULL.
- *
- * If this function returns NULL then the page has been unfrozen.
- *
- * This function must be called with interrupt disabled.
- */
- static inline void *get_freelist(struct kmem_cache *s, struct page *page)
- {
- struct page new;
- unsigned long counters;
- void *freelist;
- do {
- freelist = page->freelist;
- counters = page->counters;
- new.counters = counters;
- VM_BUG_ON(!new.frozen);
- new.inuse = page->objects;
- new.frozen = freelist != NULL;
- } while (!__cmpxchg_double_slab(s, page,
- freelist, counters,
- NULL, new.counters,
- "get_freelist"));
- return freelist;
- }
- /*
- * Slow path. The lockless freelist is empty or we need to perform
- * debugging duties.
- *
- * Processing is still very fast if new objects have been freed to the
- * regular freelist. In that case we simply take over the regular freelist
- * as the lockless freelist and zap the regular freelist.
- *
- * If that is not working then we fall back to the partial lists. We take the
- * first element of the freelist as the object to allocate now and move the
- * rest of the freelist to the lockless freelist.
- *
- * And if we were unable to get a new slab from the partial slab lists then
- * we need to allocate a new slab. This is the slowest path since it involves
- * a call to the page allocator and the setup of a new slab.
- *
- * Version of __slab_alloc to use when we know that interrupts are
- * already disabled (which is the case for bulk allocation).
- */
- static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
- unsigned long addr, struct kmem_cache_cpu *c)
- {
- void *freelist;
- struct page *page;
- page = c->page;
- if (!page)
- goto new_slab;
- redo:
- if (unlikely(!node_match(page, node))) {
- int searchnode = node;
- if (node != NUMA_NO_NODE && !node_present_pages(node))
- searchnode = node_to_mem_node(node);
- if (unlikely(!node_match(page, searchnode))) {
- stat(s, ALLOC_NODE_MISMATCH);
- deactivate_slab(s, page, c->freelist);
- c->page = NULL;
- c->freelist = NULL;
- goto new_slab;
- }
- }
- /*
- * By rights, we should be searching for a slab page that was
- * PFMEMALLOC but right now, we are losing the pfmemalloc
- * information when the page leaves the per-cpu allocator
- */
- if (unlikely(!pfmemalloc_match(page, gfpflags))) {
- deactivate_slab(s, page, c->freelist);
- c->page = NULL;
- c->freelist = NULL;
- goto new_slab;
- }
- /* must check again c->freelist in case of cpu migration or IRQ */
- freelist = c->freelist;
- if (freelist)
- goto load_freelist;
- freelist = get_freelist(s, page);
- if (!freelist) {
- c->page = NULL;
- stat(s, DEACTIVATE_BYPASS);
- goto new_slab;
- }
- stat(s, ALLOC_REFILL);
- load_freelist:
- /*
- * freelist is pointing to the list of objects to be used.
- * page is pointing to the page from which the objects are obtained.
- * That page must be frozen for per cpu allocations to work.
- */
- VM_BUG_ON(!c->page->frozen);
- c->freelist = get_freepointer(s, freelist);
- c->tid = next_tid(c->tid);
- return freelist;
- new_slab:
- if (c->partial) {
- page = c->page = c->partial;
- c->partial = page->next;
- stat(s, CPU_PARTIAL_ALLOC);
- c->freelist = NULL;
- goto redo;
- }
- freelist = new_slab_objects(s, gfpflags, node, &c);
- if (unlikely(!freelist)) {
- slab_out_of_memory(s, gfpflags, node);
- return NULL;
- }
- page = c->page;
- if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
- goto load_freelist;
- /* Only entered in the debug case */
- if (kmem_cache_debug(s) &&
- !alloc_debug_processing(s, page, freelist, addr))
- goto new_slab; /* Slab failed checks. Next slab needed */
- deactivate_slab(s, page, get_freepointer(s, freelist));
- c->page = NULL;
- c->freelist = NULL;
- return freelist;
- }
- /*
- * Another one that disabled interrupt and compensates for possible
- * cpu changes by refetching the per cpu area pointer.
- */
- static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
- unsigned long addr, struct kmem_cache_cpu *c)
- {
- void *p;
- unsigned long flags;
- local_irq_save(flags);
- #ifdef CONFIG_PREEMPT
- /*
- * We may have been preempted and rescheduled on a different
- * cpu before disabling interrupts. Need to reload cpu area
- * pointer.
- */
- c = this_cpu_ptr(s->cpu_slab);
- #endif
- p = ___slab_alloc(s, gfpflags, node, addr, c);
- local_irq_restore(flags);
- return p;
- }
- /*
- * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
- * have the fastpath folded into their functions. So no function call
- * overhead for requests that can be satisfied on the fastpath.
- *
- * The fastpath works by first checking if the lockless freelist can be used.
- * If not then __slab_alloc is called for slow processing.
- *
- * Otherwise we can simply pick the next object from the lockless free list.
- */
- static __always_inline void *slab_alloc_node(struct kmem_cache *s,
- gfp_t gfpflags, int node, unsigned long addr)
- {
- void *object;
- struct kmem_cache_cpu *c;
- struct page *page;
- unsigned long tid;
- s = slab_pre_alloc_hook(s, gfpflags);
- if (!s)
- return NULL;
- redo:
- /*
- * Must read kmem_cache cpu data via this cpu ptr. Preemption is
- * enabled. We may switch back and forth between cpus while
- * reading from one cpu area. That does not matter as long
- * as we end up on the original cpu again when doing the cmpxchg.
- *
- * We should guarantee that tid and kmem_cache are retrieved on
- * the same cpu. It could be different if CONFIG_PREEMPT so we need
- * to check if it is matched or not.
- */
- do {
- tid = this_cpu_read(s->cpu_slab->tid);
- c = raw_cpu_ptr(s->cpu_slab);
- } while (IS_ENABLED(CONFIG_PREEMPT) &&
- unlikely(tid != READ_ONCE(c->tid)));
- /*
- * Irqless object alloc/free algorithm used here depends on sequence
- * of fetching cpu_slab's data. tid should be fetched before anything
- * on c to guarantee that object and page associated with previous tid
- * won't be used with current tid. If we fetch tid first, object and
- * page could be one associated with next tid and our alloc/free
- * request will be failed. In this case, we will retry. So, no problem.
- */
- barrier();
- /*
- * The transaction ids are globally unique per cpu and per operation on
- * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
- * occurs on the right processor and that there was no operation on the
- * linked list in between.
- */
- object = c->freelist;
- page = c->page;
- if (unlikely(!object || !node_match(page, node))) {
- object = __slab_alloc(s, gfpflags, node, addr, c);
- stat(s, ALLOC_SLOWPATH);
- } else {
- void *next_object = get_freepointer_safe(s, object);
- /*
- * The cmpxchg will only match if there was no additional
- * operation and if we are on the right processor.
- *
- * The cmpxchg does the following atomically (without lock
- * semantics!)
- * 1. Relocate first pointer to the current per cpu area.
- * 2. Verify that tid and freelist have not been changed
- * 3. If they were not changed replace tid and freelist
- *
- * Since this is without lock semantics the protection is only
- * against code executing on this cpu *not* from access by
- * other cpus.
- */
- if (unlikely(!this_cpu_cmpxchg_double(
- s->cpu_slab->freelist, s->cpu_slab->tid,
- object, tid,
- next_object, next_tid(tid)))) {
- note_cmpxchg_failure("slab_alloc", s, tid);
- goto redo;
- }
- prefetch_freepointer(s, next_object);
- stat(s, ALLOC_FASTPATH);
- }
- if (unlikely(gfpflags & __GFP_ZERO) && object)
- memset(object, 0, s->object_size);
- slab_post_alloc_hook(s, gfpflags, 1, &object);
- return object;
- }
- static __always_inline void *slab_alloc(struct kmem_cache *s,
- gfp_t gfpflags, unsigned long addr)
- {
- return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
- }
- void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
- {
- void *ret = slab_alloc(s, gfpflags, _RET_IP_);
- trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
- s->size, gfpflags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc);
- #ifdef CONFIG_TRACING
- void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
- {
- void *ret = slab_alloc(s, gfpflags, _RET_IP_);
- trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
- kasan_kmalloc(s, ret, size, gfpflags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_trace);
- #endif
- #ifdef CONFIG_NUMA
- void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
- {
- void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
- trace_kmem_cache_alloc_node(_RET_IP_, ret,
- s->object_size, s->size, gfpflags, node);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node);
- #ifdef CONFIG_TRACING
- void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
- gfp_t gfpflags,
- int node, size_t size)
- {
- void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
- trace_kmalloc_node(_RET_IP_, ret,
- size, s->size, gfpflags, node);
- kasan_kmalloc(s, ret, size, gfpflags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
- #endif
- #endif
- /*
- * Slow path handling. This may still be called frequently since objects
- * have a longer lifetime than the cpu slabs in most processing loads.
- *
- * So we still attempt to reduce cache line usage. Just take the slab
- * lock and free the item. If there is no additional partial page
- * handling required then we can return immediately.
- */
- static void __slab_free(struct kmem_cache *s, struct page *page,
- void *head, void *tail, int cnt,
- unsigned long addr)
- {
- void *prior;
- int was_frozen;
- struct page new;
- unsigned long counters;
- struct kmem_cache_node *n = NULL;
- unsigned long uninitialized_var(flags);
- stat(s, FREE_SLOWPATH);
- if (kmem_cache_debug(s) &&
- !free_debug_processing(s, page, head, tail, cnt, addr))
- return;
- do {
- if (unlikely(n)) {
- spin_unlock_irqrestore(&n->list_lock, flags);
- n = NULL;
- }
- prior = page->freelist;
- counters = page->counters;
- set_freepointer(s, tail, prior);
- new.counters = counters;
- was_frozen = new.frozen;
- new.inuse -= cnt;
- if ((!new.inuse || !prior) && !was_frozen) {
- if (kmem_cache_has_cpu_partial(s) && !prior) {
- /*
- * Slab was on no list before and will be
- * partially empty
- * We can defer the list move and instead
- * freeze it.
- */
- new.frozen = 1;
- } else { /* Needs to be taken off a list */
- n = get_node(s, page_to_nid(page));
- /*
- * Speculatively acquire the list_lock.
- * If the cmpxchg does not succeed then we may
- * drop the list_lock without any processing.
- *
- * Otherwise the list_lock will synchronize with
- * other processors updating the list of slabs.
- */
- spin_lock_irqsave(&n->list_lock, flags);
- }
- }
- } while (!cmpxchg_double_slab(s, page,
- prior, counters,
- head, new.counters,
- "__slab_free"));
- if (likely(!n)) {
- /*
- * If we just froze the page then put it onto the
- * per cpu partial list.
- */
- if (new.frozen && !was_frozen) {
- put_cpu_partial(s, page, 1);
- stat(s, CPU_PARTIAL_FREE);
- }
- /*
- * The list lock was not taken therefore no list
- * activity can be necessary.
- */
- if (was_frozen)
- stat(s, FREE_FROZEN);
- return;
- }
- if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
- goto slab_empty;
- /*
- * Objects left in the slab. If it was not on the partial list before
- * then add it.
- */
- if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
- if (kmem_cache_debug(s))
- remove_full(s, n, page);
- add_partial(n, page, DEACTIVATE_TO_TAIL);
- stat(s, FREE_ADD_PARTIAL);
- }
- spin_unlock_irqrestore(&n->list_lock, flags);
- return;
- slab_empty:
- if (prior) {
- /*
- * Slab on the partial list.
- */
- remove_partial(n, page);
- stat(s, FREE_REMOVE_PARTIAL);
- } else {
- /* Slab must be on the full list */
- remove_full(s, n, page);
- }
- spin_unlock_irqrestore(&n->list_lock, flags);
- stat(s, FREE_SLAB);
- discard_slab(s, page);
- }
- /*
- * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
- * can perform fastpath freeing without additional function calls.
- *
- * The fastpath is only possible if we are freeing to the current cpu slab
- * of this processor. This typically the case if we have just allocated
- * the item before.
- *
- * If fastpath is not possible then fall back to __slab_free where we deal
- * with all sorts of special processing.
- *
- * Bulk free of a freelist with several objects (all pointing to the
- * same page) possible by specifying head and tail ptr, plus objects
- * count (cnt). Bulk free indicated by tail pointer being set.
- */
- static __always_inline void do_slab_free(struct kmem_cache *s,
- struct page *page, void *head, void *tail,
- int cnt, unsigned long addr)
- {
- void *tail_obj = tail ? : head;
- struct kmem_cache_cpu *c;
- unsigned long tid;
- redo:
- /*
- * Determine the currently cpus per cpu slab.
- * The cpu may change afterward. However that does not matter since
- * data is retrieved via this pointer. If we are on the same cpu
- * during the cmpxchg then the free will succeed.
- */
- do {
- tid = this_cpu_read(s->cpu_slab->tid);
- c = raw_cpu_ptr(s->cpu_slab);
- } while (IS_ENABLED(CONFIG_PREEMPT) &&
- unlikely(tid != READ_ONCE(c->tid)));
- /* Same with comment on barrier() in slab_alloc_node() */
- barrier();
- if (likely(page == c->page)) {
- set_freepointer(s, tail_obj, c->freelist);
- if (unlikely(!this_cpu_cmpxchg_double(
- s->cpu_slab->freelist, s->cpu_slab->tid,
- c->freelist, tid,
- head, next_tid(tid)))) {
- note_cmpxchg_failure("slab_free", s, tid);
- goto redo;
- }
- stat(s, FREE_FASTPATH);
- } else
- __slab_free(s, page, head, tail_obj, cnt, addr);
- }
- static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
- void *head, void *tail, int cnt,
- unsigned long addr)
- {
- slab_free_freelist_hook(s, head, tail);
- /*
- * slab_free_freelist_hook() could have put the items into quarantine.
- * If so, no need to free them.
- */
- if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
- return;
- do_slab_free(s, page, head, tail, cnt, addr);
- }
- #ifdef CONFIG_KASAN
- void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
- {
- do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
- }
- #endif
- void kmem_cache_free(struct kmem_cache *s, void *x)
- {
- s = cache_from_obj(s, x);
- if (!s)
- return;
- slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
- trace_kmem_cache_free(_RET_IP_, x);
- }
- EXPORT_SYMBOL(kmem_cache_free);
- struct detached_freelist {
- struct page *page;
- void *tail;
- void *freelist;
- int cnt;
- struct kmem_cache *s;
- };
- /*
- * This function progressively scans the array with free objects (with
- * a limited look ahead) and extract objects belonging to the same
- * page. It builds a detached freelist directly within the given
- * page/objects. This can happen without any need for
- * synchronization, because the objects are owned by running process.
- * The freelist is build up as a single linked list in the objects.
- * The idea is, that this detached freelist can then be bulk
- * transferred to the real freelist(s), but only requiring a single
- * synchronization primitive. Look ahead in the array is limited due
- * to performance reasons.
- */
- static inline
- int build_detached_freelist(struct kmem_cache *s, size_t size,
- void **p, struct detached_freelist *df)
- {
- size_t first_skipped_index = 0;
- int lookahead = 3;
- void *object;
- struct page *page;
- /* Always re-init detached_freelist */
- df->page = NULL;
- do {
- object = p[--size];
- /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
- } while (!object && size);
- if (!object)
- return 0;
- page = virt_to_head_page(object);
- if (!s) {
- /* Handle kalloc'ed objects */
- if (unlikely(!PageSlab(page))) {
- BUG_ON(!PageCompound(page));
- kfree_hook(object);
- __free_pages(page, compound_order(page));
- p[size] = NULL; /* mark object processed */
- return size;
- }
- /* Derive kmem_cache from object */
- df->s = page->slab_cache;
- } else {
- df->s = cache_from_obj(s, object); /* Support for memcg */
- }
- /* Start new detached freelist */
- df->page = page;
- set_freepointer(df->s, object, NULL);
- df->tail = object;
- df->freelist = object;
- p[size] = NULL; /* mark object processed */
- df->cnt = 1;
- while (size) {
- object = p[--size];
- if (!object)
- continue; /* Skip processed objects */
- /* df->page is always set at this point */
- if (df->page == virt_to_head_page(object)) {
- /* Opportunity build freelist */
- set_freepointer(df->s, object, df->freelist);
- df->freelist = object;
- df->cnt++;
- p[size] = NULL; /* mark object processed */
- continue;
- }
- /* Limit look ahead search */
- if (!--lookahead)
- break;
- if (!first_skipped_index)
- first_skipped_index = size + 1;
- }
- return first_skipped_index;
- }
- /* Note that interrupts must be enabled when calling this function. */
- void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
- {
- if (WARN_ON(!size))
- return;
- do {
- struct detached_freelist df;
- size = build_detached_freelist(s, size, p, &df);
- if (unlikely(!df.page))
- continue;
- slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
- } while (likely(size));
- }
- EXPORT_SYMBOL(kmem_cache_free_bulk);
- /* Note that interrupts must be enabled when calling this function. */
- int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
- void **p)
- {
- struct kmem_cache_cpu *c;
- int i;
- /* memcg and kmem_cache debug support */
- s = slab_pre_alloc_hook(s, flags);
- if (unlikely(!s))
- return false;
- /*
- * Drain objects in the per cpu slab, while disabling local
- * IRQs, which protects against PREEMPT and interrupts
- * handlers invoking normal fastpath.
- */
- local_irq_disable();
- c = this_cpu_ptr(s->cpu_slab);
- for (i = 0; i < size; i++) {
- void *object = c->freelist;
- if (unlikely(!object)) {
- /*
- * Invoking slow path likely have side-effect
- * of re-populating per CPU c->freelist
- */
- p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
- _RET_IP_, c);
- if (unlikely(!p[i]))
- goto error;
- c = this_cpu_ptr(s->cpu_slab);
- continue; /* goto for-loop */
- }
- c->freelist = get_freepointer(s, object);
- p[i] = object;
- }
- c->tid = next_tid(c->tid);
- local_irq_enable();
- /* Clear memory outside IRQ disabled fastpath loop */
- if (unlikely(flags & __GFP_ZERO)) {
- int j;
- for (j = 0; j < i; j++)
- memset(p[j], 0, s->object_size);
- }
- /* memcg and kmem_cache debug support */
- slab_post_alloc_hook(s, flags, size, p);
- return i;
- error:
- local_irq_enable();
- slab_post_alloc_hook(s, flags, i, p);
- __kmem_cache_free_bulk(s, i, p);
- return 0;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_bulk);
- /*
- * Object placement in a slab is made very easy because we always start at
- * offset 0. If we tune the size of the object to the alignment then we can
- * get the required alignment by putting one properly sized object after
- * another.
- *
- * Notice that the allocation order determines the sizes of the per cpu
- * caches. Each processor has always one slab available for allocations.
- * Increasing the allocation order reduces the number of times that slabs
- * must be moved on and off the partial lists and is therefore a factor in
- * locking overhead.
- */
- /*
- * Mininum / Maximum order of slab pages. This influences locking overhead
- * and slab fragmentation. A higher order reduces the number of partial slabs
- * and increases the number of allocations possible without having to
- * take the list_lock.
- */
- static int slub_min_order;
- static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
- static int slub_min_objects;
- /*
- * Calculate the order of allocation given an slab object size.
- *
- * The order of allocation has significant impact on performance and other
- * system components. Generally order 0 allocations should be preferred since
- * order 0 does not cause fragmentation in the page allocator. Larger objects
- * be problematic to put into order 0 slabs because there may be too much
- * unused space left. We go to a higher order if more than 1/16th of the slab
- * would be wasted.
- *
- * In order to reach satisfactory performance we must ensure that a minimum
- * number of objects is in one slab. Otherwise we may generate too much
- * activity on the partial lists which requires taking the list_lock. This is
- * less a concern for large slabs though which are rarely used.
- *
- * slub_max_order specifies the order where we begin to stop considering the
- * number of objects in a slab as critical. If we reach slub_max_order then
- * we try to keep the page order as low as possible. So we accept more waste
- * of space in favor of a small page order.
- *
- * Higher order allocations also allow the placement of more objects in a
- * slab and thereby reduce object handling overhead. If the user has
- * requested a higher mininum order then we start with that one instead of
- * the smallest order which will fit the object.
- */
- static inline int slab_order(int size, int min_objects,
- int max_order, int fract_leftover, int reserved)
- {
- int order;
- int rem;
- int min_order = slub_min_order;
- if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
- return get_order(size * MAX_OBJS_PER_PAGE) - 1;
- for (order = max(min_order, get_order(min_objects * size + reserved));
- order <= max_order; order++) {
- unsigned long slab_size = PAGE_SIZE << order;
- rem = (slab_size - reserved) % size;
- if (rem <= slab_size / fract_leftover)
- break;
- }
- return order;
- }
- static inline int calculate_order(int size, int reserved)
- {
- int order;
- int min_objects;
- int fraction;
- int max_objects;
- /*
- * Attempt to find best configuration for a slab. This
- * works by first attempting to generate a layout with
- * the best configuration and backing off gradually.
- *
- * First we increase the acceptable waste in a slab. Then
- * we reduce the minimum objects required in a slab.
- */
- min_objects = slub_min_objects;
- if (!min_objects)
- min_objects = 4 * (fls(nr_cpu_ids) + 1);
- max_objects = order_objects(slub_max_order, size, reserved);
- min_objects = min(min_objects, max_objects);
- while (min_objects > 1) {
- fraction = 16;
- while (fraction >= 4) {
- order = slab_order(size, min_objects,
- slub_max_order, fraction, reserved);
- if (order <= slub_max_order)
- return order;
- fraction /= 2;
- }
- min_objects--;
- }
- /*
- * We were unable to place multiple objects in a slab. Now
- * lets see if we can place a single object there.
- */
- order = slab_order(size, 1, slub_max_order, 1, reserved);
- if (order <= slub_max_order)
- return order;
- /*
- * Doh this slab cannot be placed using slub_max_order.
- */
- order = slab_order(size, 1, MAX_ORDER, 1, reserved);
- if (order < MAX_ORDER)
- return order;
- return -ENOSYS;
- }
- static void
- init_kmem_cache_node(struct kmem_cache_node *n)
- {
- n->nr_partial = 0;
- spin_lock_init(&n->list_lock);
- INIT_LIST_HEAD(&n->partial);
- #ifdef CONFIG_SLUB_DEBUG
- atomic_long_set(&n->nr_slabs, 0);
- atomic_long_set(&n->total_objects, 0);
- INIT_LIST_HEAD(&n->full);
- #endif
- }
- static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
- {
- BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
- KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
- /*
- * Must align to double word boundary for the double cmpxchg
- * instructions to work; see __pcpu_double_call_return_bool().
- */
- s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
- 2 * sizeof(void *));
- if (!s->cpu_slab)
- return 0;
- init_kmem_cache_cpus(s);
- return 1;
- }
- static struct kmem_cache *kmem_cache_node;
- /*
- * No kmalloc_node yet so do it by hand. We know that this is the first
- * slab on the node for this slabcache. There are no concurrent accesses
- * possible.
- *
- * Note that this function only works on the kmem_cache_node
- * when allocating for the kmem_cache_node. This is used for bootstrapping
- * memory on a fresh node that has no slab structures yet.
- */
- static void early_kmem_cache_node_alloc(int node)
- {
- struct page *page;
- struct kmem_cache_node *n;
- BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
- page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
- BUG_ON(!page);
- if (page_to_nid(page) != node) {
- pr_err("SLUB: Unable to allocate memory from node %d\n", node);
- pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
- }
- n = page->freelist;
- BUG_ON(!n);
- page->freelist = get_freepointer(kmem_cache_node, n);
- page->inuse = 1;
- page->frozen = 0;
- kmem_cache_node->node[node] = n;
- #ifdef CONFIG_SLUB_DEBUG
- init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
- init_tracking(kmem_cache_node, n);
- #endif
- kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
- GFP_KERNEL);
- init_kmem_cache_node(n);
- inc_slabs_node(kmem_cache_node, node, page->objects);
- /*
- * No locks need to be taken here as it has just been
- * initialized and there is no concurrent access.
- */
- __add_partial(n, page, DEACTIVATE_TO_HEAD);
- }
- static void free_kmem_cache_nodes(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- kmem_cache_free(kmem_cache_node, n);
- s->node[node] = NULL;
- }
- }
- void __kmem_cache_release(struct kmem_cache *s)
- {
- cache_random_seq_destroy(s);
- free_percpu(s->cpu_slab);
- free_kmem_cache_nodes(s);
- }
- static int init_kmem_cache_nodes(struct kmem_cache *s)
- {
- int node;
- for_each_node_state(node, N_NORMAL_MEMORY) {
- struct kmem_cache_node *n;
- if (slab_state == DOWN) {
- early_kmem_cache_node_alloc(node);
- continue;
- }
- n = kmem_cache_alloc_node(kmem_cache_node,
- GFP_KERNEL, node);
- if (!n) {
- free_kmem_cache_nodes(s);
- return 0;
- }
- s->node[node] = n;
- init_kmem_cache_node(n);
- }
- return 1;
- }
- static void set_min_partial(struct kmem_cache *s, unsigned long min)
- {
- if (min < MIN_PARTIAL)
- min = MIN_PARTIAL;
- else if (min > MAX_PARTIAL)
- min = MAX_PARTIAL;
- s->min_partial = min;
- }
- /*
- * calculate_sizes() determines the order and the distribution of data within
- * a slab object.
- */
- static int calculate_sizes(struct kmem_cache *s, int forced_order)
- {
- unsigned long flags = s->flags;
- size_t size = s->object_size;
- int order;
- /*
- * Round up object size to the next word boundary. We can only
- * place the free pointer at word boundaries and this determines
- * the possible location of the free pointer.
- */
- size = ALIGN(size, sizeof(void *));
- #ifdef CONFIG_SLUB_DEBUG
- /*
- * Determine if we can poison the object itself. If the user of
- * the slab may touch the object after free or before allocation
- * then we should never poison the object itself.
- */
- if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
- !s->ctor)
- s->flags |= __OBJECT_POISON;
- else
- s->flags &= ~__OBJECT_POISON;
- /*
- * If we are Redzoning then check if there is some space between the
- * end of the object and the free pointer. If not then add an
- * additional word to have some bytes to store Redzone information.
- */
- if ((flags & SLAB_RED_ZONE) && size == s->object_size)
- size += sizeof(void *);
- #endif
- /*
- * With that we have determined the number of bytes in actual use
- * by the object. This is the potential offset to the free pointer.
- */
- s->inuse = size;
- if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
- s->ctor)) {
- /*
- * Relocate free pointer after the object if it is not
- * permitted to overwrite the first word of the object on
- * kmem_cache_free.
- *
- * This is the case if we do RCU, have a constructor or
- * destructor or are poisoning the objects.
- */
- s->offset = size;
- size += sizeof(void *);
- }
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SLAB_STORE_USER)
- /*
- * Need to store information about allocs and frees after
- * the object.
- */
- size += 2 * sizeof(struct track);
- #endif
- kasan_cache_create(s, &size, &s->flags);
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SLAB_RED_ZONE) {
- /*
- * Add some empty padding so that we can catch
- * overwrites from earlier objects rather than let
- * tracking information or the free pointer be
- * corrupted if a user writes before the start
- * of the object.
- */
- size += sizeof(void *);
- s->red_left_pad = sizeof(void *);
- s->red_left_pad = ALIGN(s->red_left_pad, s->align);
- size += s->red_left_pad;
- }
- #endif
- /*
- * SLUB stores one object immediately after another beginning from
- * offset 0. In order to align the objects we have to simply size
- * each object to conform to the alignment.
- */
- size = ALIGN(size, s->align);
- s->size = size;
- if (forced_order >= 0)
- order = forced_order;
- else
- order = calculate_order(size, s->reserved);
- if (order < 0)
- return 0;
- s->allocflags = 0;
- if (order)
- s->allocflags |= __GFP_COMP;
- if (s->flags & SLAB_CACHE_DMA)
- s->allocflags |= GFP_DMA;
- if (s->flags & SLAB_RECLAIM_ACCOUNT)
- s->allocflags |= __GFP_RECLAIMABLE;
- /*
- * Determine the number of objects per slab
- */
- s->oo = oo_make(order, size, s->reserved);
- s->min = oo_make(get_order(size), size, s->reserved);
- if (oo_objects(s->oo) > oo_objects(s->max))
- s->max = s->oo;
- return !!oo_objects(s->oo);
- }
- static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
- {
- s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
- s->reserved = 0;
- if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
- s->reserved = sizeof(struct rcu_head);
- if (!calculate_sizes(s, -1))
- goto error;
- if (disable_higher_order_debug) {
- /*
- * Disable debugging flags that store metadata if the min slab
- * order increased.
- */
- if (get_order(s->size) > get_order(s->object_size)) {
- s->flags &= ~DEBUG_METADATA_FLAGS;
- s->offset = 0;
- if (!calculate_sizes(s, -1))
- goto error;
- }
- }
- #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
- defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
- if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
- /* Enable fast mode */
- s->flags |= __CMPXCHG_DOUBLE;
- #endif
- /*
- * The larger the object size is, the more pages we want on the partial
- * list to avoid pounding the page allocator excessively.
- */
- set_min_partial(s, ilog2(s->size) / 2);
- /*
- * cpu_partial determined the maximum number of objects kept in the
- * per cpu partial lists of a processor.
- *
- * Per cpu partial lists mainly contain slabs that just have one
- * object freed. If they are used for allocation then they can be
- * filled up again with minimal effort. The slab will never hit the
- * per node partial lists and therefore no locking will be required.
- *
- * This setting also determines
- *
- * A) The number of objects from per cpu partial slabs dumped to the
- * per node list when we reach the limit.
- * B) The number of objects in cpu partial slabs to extract from the
- * per node list when we run out of per cpu objects. We only fetch
- * 50% to keep some capacity around for frees.
- */
- if (!kmem_cache_has_cpu_partial(s))
- s->cpu_partial = 0;
- else if (s->size >= PAGE_SIZE)
- s->cpu_partial = 2;
- else if (s->size >= 1024)
- s->cpu_partial = 6;
- else if (s->size >= 256)
- s->cpu_partial = 13;
- else
- s->cpu_partial = 30;
- #ifdef CONFIG_NUMA
- s->remote_node_defrag_ratio = 1000;
- #endif
- /* Initialize the pre-computed randomized freelist if slab is up */
- if (slab_state >= UP) {
- if (init_cache_random_seq(s))
- goto error;
- }
- if (!init_kmem_cache_nodes(s))
- goto error;
- if (alloc_kmem_cache_cpus(s))
- return 0;
- free_kmem_cache_nodes(s);
- error:
- if (flags & SLAB_PANIC)
- panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
- s->name, (unsigned long)s->size, s->size,
- oo_order(s->oo), s->offset, flags);
- return -EINVAL;
- }
- static void list_slab_objects(struct kmem_cache *s, struct page *page,
- const char *text)
- {
- #ifdef CONFIG_SLUB_DEBUG
- void *addr = page_address(page);
- void *p;
- unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
- sizeof(long), GFP_ATOMIC);
- if (!map)
- return;
- slab_err(s, page, text, s->name);
- slab_lock(page);
- get_map(s, page, map);
- for_each_object(p, s, addr, page->objects) {
- if (!test_bit(slab_index(p, s, addr), map)) {
- pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
- print_tracking(s, p);
- }
- }
- slab_unlock(page);
- kfree(map);
- #endif
- }
- /*
- * Attempt to free all partial slabs on a node.
- * This is called from __kmem_cache_shutdown(). We must take list_lock
- * because sysfs file might still access partial list after the shutdowning.
- */
- static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
- {
- LIST_HEAD(discard);
- struct page *page, *h;
- BUG_ON(irqs_disabled());
- spin_lock_irq(&n->list_lock);
- list_for_each_entry_safe(page, h, &n->partial, lru) {
- if (!page->inuse) {
- remove_partial(n, page);
- list_add(&page->lru, &discard);
- } else {
- list_slab_objects(s, page,
- "Objects remaining in %s on __kmem_cache_shutdown()");
- }
- }
- spin_unlock_irq(&n->list_lock);
- list_for_each_entry_safe(page, h, &discard, lru)
- discard_slab(s, page);
- }
- /*
- * Release all resources used by a slab cache.
- */
- int __kmem_cache_shutdown(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- flush_all(s);
- /* Attempt to free all objects */
- for_each_kmem_cache_node(s, node, n) {
- free_partial(s, n);
- if (n->nr_partial || slabs_node(s, node))
- return 1;
- }
- return 0;
- }
- /********************************************************************
- * Kmalloc subsystem
- *******************************************************************/
- static int __init setup_slub_min_order(char *str)
- {
- get_option(&str, &slub_min_order);
- return 1;
- }
- __setup("slub_min_order=", setup_slub_min_order);
- static int __init setup_slub_max_order(char *str)
- {
- get_option(&str, &slub_max_order);
- slub_max_order = min(slub_max_order, MAX_ORDER - 1);
- return 1;
- }
- __setup("slub_max_order=", setup_slub_max_order);
- static int __init setup_slub_min_objects(char *str)
- {
- get_option(&str, &slub_min_objects);
- return 1;
- }
- __setup("slub_min_objects=", setup_slub_min_objects);
- void *__kmalloc(size_t size, gfp_t flags)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
- return kmalloc_large(size, flags);
- s = kmalloc_slab(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
- ret = slab_alloc(s, flags, _RET_IP_);
- trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
- kasan_kmalloc(s, ret, size, flags);
- return ret;
- }
- EXPORT_SYMBOL(__kmalloc);
- #ifdef CONFIG_NUMA
- static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
- {
- struct page *page;
- void *ptr = NULL;
- flags |= __GFP_COMP | __GFP_NOTRACK;
- page = alloc_pages_node(node, flags, get_order(size));
- if (page)
- ptr = page_address(page);
- kmalloc_large_node_hook(ptr, size, flags);
- return ptr;
- }
- void *__kmalloc_node(size_t size, gfp_t flags, int node)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
- ret = kmalloc_large_node(size, flags, node);
- trace_kmalloc_node(_RET_IP_, ret,
- size, PAGE_SIZE << get_order(size),
- flags, node);
- return ret;
- }
- s = kmalloc_slab(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
- ret = slab_alloc_node(s, flags, node, _RET_IP_);
- trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
- kasan_kmalloc(s, ret, size, flags);
- return ret;
- }
- EXPORT_SYMBOL(__kmalloc_node);
- #endif
- #ifdef CONFIG_HARDENED_USERCOPY
- /*
- * Rejects objects that are incorrectly sized.
- *
- * Returns NULL if check passes, otherwise const char * to name of cache
- * to indicate an error.
- */
- const char *__check_heap_object(const void *ptr, unsigned long n,
- struct page *page)
- {
- struct kmem_cache *s;
- unsigned long offset;
- size_t object_size;
- /* Find object and usable object size. */
- s = page->slab_cache;
- object_size = slab_ksize(s);
- /* Reject impossible pointers. */
- if (ptr < page_address(page))
- return s->name;
- /* Find offset within object. */
- offset = (ptr - page_address(page)) % s->size;
- /* Adjust for redzone and reject if within the redzone. */
- if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
- if (offset < s->red_left_pad)
- return s->name;
- offset -= s->red_left_pad;
- }
- /* Allow address range falling entirely within object size. */
- if (offset <= object_size && n <= object_size - offset)
- return NULL;
- return s->name;
- }
- #endif /* CONFIG_HARDENED_USERCOPY */
- static size_t __ksize(const void *object)
- {
- struct page *page;
- if (unlikely(object == ZERO_SIZE_PTR))
- return 0;
- page = virt_to_head_page(object);
- if (unlikely(!PageSlab(page))) {
- WARN_ON(!PageCompound(page));
- return PAGE_SIZE << compound_order(page);
- }
- return slab_ksize(page->slab_cache);
- }
- size_t ksize(const void *object)
- {
- size_t size = __ksize(object);
- /* We assume that ksize callers could use whole allocated area,
- * so we need to unpoison this area.
- */
- kasan_unpoison_shadow(object, size);
- return size;
- }
- EXPORT_SYMBOL(ksize);
- void kfree(const void *x)
- {
- struct page *page;
- void *object = (void *)x;
- trace_kfree(_RET_IP_, x);
- if (unlikely(ZERO_OR_NULL_PTR(x)))
- return;
- page = virt_to_head_page(x);
- if (unlikely(!PageSlab(page))) {
- BUG_ON(!PageCompound(page));
- kfree_hook(x);
- __free_pages(page, compound_order(page));
- return;
- }
- slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
- }
- EXPORT_SYMBOL(kfree);
- #define SHRINK_PROMOTE_MAX 32
- /*
- * kmem_cache_shrink discards empty slabs and promotes the slabs filled
- * up most to the head of the partial lists. New allocations will then
- * fill those up and thus they can be removed from the partial lists.
- *
- * The slabs with the least items are placed last. This results in them
- * being allocated from last increasing the chance that the last objects
- * are freed in them.
- */
- int __kmem_cache_shrink(struct kmem_cache *s)
- {
- int node;
- int i;
- struct kmem_cache_node *n;
- struct page *page;
- struct page *t;
- struct list_head discard;
- struct list_head promote[SHRINK_PROMOTE_MAX];
- unsigned long flags;
- int ret = 0;
- flush_all(s);
- for_each_kmem_cache_node(s, node, n) {
- INIT_LIST_HEAD(&discard);
- for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
- INIT_LIST_HEAD(promote + i);
- spin_lock_irqsave(&n->list_lock, flags);
- /*
- * Build lists of slabs to discard or promote.
- *
- * Note that concurrent frees may occur while we hold the
- * list_lock. page->inuse here is the upper limit.
- */
- list_for_each_entry_safe(page, t, &n->partial, lru) {
- int free = page->objects - page->inuse;
- /* Do not reread page->inuse */
- barrier();
- /* We do not keep full slabs on the list */
- BUG_ON(free <= 0);
- if (free == page->objects) {
- list_move(&page->lru, &discard);
- n->nr_partial--;
- } else if (free <= SHRINK_PROMOTE_MAX)
- list_move(&page->lru, promote + free - 1);
- }
- /*
- * Promote the slabs filled up most to the head of the
- * partial list.
- */
- for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
- list_splice(promote + i, &n->partial);
- spin_unlock_irqrestore(&n->list_lock, flags);
- /* Release empty slabs */
- list_for_each_entry_safe(page, t, &discard, lru)
- discard_slab(s, page);
- if (slabs_node(s, node))
- ret = 1;
- }
- return ret;
- }
- static int slab_mem_going_offline_callback(void *arg)
- {
- struct kmem_cache *s;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list)
- __kmem_cache_shrink(s);
- mutex_unlock(&slab_mutex);
- return 0;
- }
- static void slab_mem_offline_callback(void *arg)
- {
- struct kmem_cache_node *n;
- struct kmem_cache *s;
- struct memory_notify *marg = arg;
- int offline_node;
- offline_node = marg->status_change_nid_normal;
- /*
- * If the node still has available memory. we need kmem_cache_node
- * for it yet.
- */
- if (offline_node < 0)
- return;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- n = get_node(s, offline_node);
- if (n) {
- /*
- * if n->nr_slabs > 0, slabs still exist on the node
- * that is going down. We were unable to free them,
- * and offline_pages() function shouldn't call this
- * callback. So, we must fail.
- */
- BUG_ON(slabs_node(s, offline_node));
- s->node[offline_node] = NULL;
- kmem_cache_free(kmem_cache_node, n);
- }
- }
- mutex_unlock(&slab_mutex);
- }
- static int slab_mem_going_online_callback(void *arg)
- {
- struct kmem_cache_node *n;
- struct kmem_cache *s;
- struct memory_notify *marg = arg;
- int nid = marg->status_change_nid_normal;
- int ret = 0;
- /*
- * If the node's memory is already available, then kmem_cache_node is
- * already created. Nothing to do.
- */
- if (nid < 0)
- return 0;
- /*
- * We are bringing a node online. No memory is available yet. We must
- * allocate a kmem_cache_node structure in order to bring the node
- * online.
- */
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- /*
- * XXX: kmem_cache_alloc_node will fallback to other nodes
- * since memory is not yet available from the node that
- * is brought up.
- */
- n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
- if (!n) {
- ret = -ENOMEM;
- goto out;
- }
- init_kmem_cache_node(n);
- s->node[nid] = n;
- }
- out:
- mutex_unlock(&slab_mutex);
- return ret;
- }
- static int slab_memory_callback(struct notifier_block *self,
- unsigned long action, void *arg)
- {
- int ret = 0;
- switch (action) {
- case MEM_GOING_ONLINE:
- ret = slab_mem_going_online_callback(arg);
- break;
- case MEM_GOING_OFFLINE:
- ret = slab_mem_going_offline_callback(arg);
- break;
- case MEM_OFFLINE:
- case MEM_CANCEL_ONLINE:
- slab_mem_offline_callback(arg);
- break;
- case MEM_ONLINE:
- case MEM_CANCEL_OFFLINE:
- break;
- }
- if (ret)
- ret = notifier_from_errno(ret);
- else
- ret = NOTIFY_OK;
- return ret;
- }
- static struct notifier_block slab_memory_callback_nb = {
- .notifier_call = slab_memory_callback,
- .priority = SLAB_CALLBACK_PRI,
- };
- /********************************************************************
- * Basic setup of slabs
- *******************************************************************/
- /*
- * Used for early kmem_cache structures that were allocated using
- * the page allocator. Allocate them properly then fix up the pointers
- * that may be pointing to the wrong kmem_cache structure.
- */
- static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
- {
- int node;
- struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
- struct kmem_cache_node *n;
- memcpy(s, static_cache, kmem_cache->object_size);
- /*
- * This runs very early, and only the boot processor is supposed to be
- * up. Even if it weren't true, IRQs are not up so we couldn't fire
- * IPIs around.
- */
- __flush_cpu_slab(s, smp_processor_id());
- for_each_kmem_cache_node(s, node, n) {
- struct page *p;
- list_for_each_entry(p, &n->partial, lru)
- p->slab_cache = s;
- #ifdef CONFIG_SLUB_DEBUG
- list_for_each_entry(p, &n->full, lru)
- p->slab_cache = s;
- #endif
- }
- slab_init_memcg_params(s);
- list_add(&s->list, &slab_caches);
- return s;
- }
- void __init kmem_cache_init(void)
- {
- static __initdata struct kmem_cache boot_kmem_cache,
- boot_kmem_cache_node;
- if (debug_guardpage_minorder())
- slub_max_order = 0;
- kmem_cache_node = &boot_kmem_cache_node;
- kmem_cache = &boot_kmem_cache;
- create_boot_cache(kmem_cache_node, "kmem_cache_node",
- sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
- register_hotmemory_notifier(&slab_memory_callback_nb);
- /* Able to allocate the per node structures */
- slab_state = PARTIAL;
- create_boot_cache(kmem_cache, "kmem_cache",
- offsetof(struct kmem_cache, node) +
- nr_node_ids * sizeof(struct kmem_cache_node *),
- SLAB_HWCACHE_ALIGN);
- kmem_cache = bootstrap(&boot_kmem_cache);
- /*
- * Allocate kmem_cache_node properly from the kmem_cache slab.
- * kmem_cache_node is separately allocated so no need to
- * update any list pointers.
- */
- kmem_cache_node = bootstrap(&boot_kmem_cache_node);
- /* Now we can use the kmem_cache to allocate kmalloc slabs */
- setup_kmalloc_cache_index_table();
- create_kmalloc_caches(0);
- /* Setup random freelists for each cache */
- init_freelist_randomization();
- cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
- slub_cpu_dead);
- pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
- cache_line_size(),
- slub_min_order, slub_max_order, slub_min_objects,
- nr_cpu_ids, nr_node_ids);
- }
- void __init kmem_cache_init_late(void)
- {
- }
- struct kmem_cache *
- __kmem_cache_alias(const char *name, size_t size, size_t align,
- unsigned long flags, void (*ctor)(void *))
- {
- struct kmem_cache *s, *c;
- s = find_mergeable(size, align, flags, name, ctor);
- if (s) {
- s->refcount++;
- /*
- * Adjust the object sizes so that we clear
- * the complete object on kzalloc.
- */
- s->object_size = max(s->object_size, (int)size);
- s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
- for_each_memcg_cache(c, s) {
- c->object_size = s->object_size;
- c->inuse = max_t(int, c->inuse,
- ALIGN(size, sizeof(void *)));
- }
- if (sysfs_slab_alias(s, name)) {
- s->refcount--;
- s = NULL;
- }
- }
- return s;
- }
- int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
- {
- int err;
- err = kmem_cache_open(s, flags);
- if (err)
- return err;
- /* Mutex is not taken during early boot */
- if (slab_state <= UP)
- return 0;
- memcg_propagate_slab_attrs(s);
- err = sysfs_slab_add(s);
- if (err)
- __kmem_cache_release(s);
- return err;
- }
- void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
- return kmalloc_large(size, gfpflags);
- s = kmalloc_slab(size, gfpflags);
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
- ret = slab_alloc(s, gfpflags, caller);
- /* Honor the call site pointer we received. */
- trace_kmalloc(caller, ret, size, s->size, gfpflags);
- return ret;
- }
- #ifdef CONFIG_NUMA
- void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
- int node, unsigned long caller)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
- ret = kmalloc_large_node(size, gfpflags, node);
- trace_kmalloc_node(caller, ret,
- size, PAGE_SIZE << get_order(size),
- gfpflags, node);
- return ret;
- }
- s = kmalloc_slab(size, gfpflags);
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
- ret = slab_alloc_node(s, gfpflags, node, caller);
- /* Honor the call site pointer we received. */
- trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
- return ret;
- }
- #endif
- #ifdef CONFIG_SYSFS
- static int count_inuse(struct page *page)
- {
- return page->inuse;
- }
- static int count_total(struct page *page)
- {
- return page->objects;
- }
- #endif
- #ifdef CONFIG_SLUB_DEBUG
- static int validate_slab(struct kmem_cache *s, struct page *page,
- unsigned long *map)
- {
- void *p;
- void *addr = page_address(page);
- if (!check_slab(s, page) ||
- !on_freelist(s, page, NULL))
- return 0;
- /* Now we know that a valid freelist exists */
- bitmap_zero(map, page->objects);
- get_map(s, page, map);
- for_each_object(p, s, addr, page->objects) {
- if (test_bit(slab_index(p, s, addr), map))
- if (!check_object(s, page, p, SLUB_RED_INACTIVE))
- return 0;
- }
- for_each_object(p, s, addr, page->objects)
- if (!test_bit(slab_index(p, s, addr), map))
- if (!check_object(s, page, p, SLUB_RED_ACTIVE))
- return 0;
- return 1;
- }
- static void validate_slab_slab(struct kmem_cache *s, struct page *page,
- unsigned long *map)
- {
- slab_lock(page);
- validate_slab(s, page, map);
- slab_unlock(page);
- }
- static int validate_slab_node(struct kmem_cache *s,
- struct kmem_cache_node *n, unsigned long *map)
- {
- unsigned long count = 0;
- struct page *page;
- unsigned long flags;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru) {
- validate_slab_slab(s, page, map);
- count++;
- }
- if (count != n->nr_partial)
- pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
- s->name, count, n->nr_partial);
- if (!(s->flags & SLAB_STORE_USER))
- goto out;
- list_for_each_entry(page, &n->full, lru) {
- validate_slab_slab(s, page, map);
- count++;
- }
- if (count != atomic_long_read(&n->nr_slabs))
- pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
- s->name, count, atomic_long_read(&n->nr_slabs));
- out:
- spin_unlock_irqrestore(&n->list_lock, flags);
- return count;
- }
- static long validate_slab_cache(struct kmem_cache *s)
- {
- int node;
- unsigned long count = 0;
- unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
- sizeof(unsigned long), GFP_KERNEL);
- struct kmem_cache_node *n;
- if (!map)
- return -ENOMEM;
- flush_all(s);
- for_each_kmem_cache_node(s, node, n)
- count += validate_slab_node(s, n, map);
- kfree(map);
- return count;
- }
- /*
- * Generate lists of code addresses where slabcache objects are allocated
- * and freed.
- */
- struct location {
- unsigned long count;
- unsigned long addr;
- long long sum_time;
- long min_time;
- long max_time;
- long min_pid;
- long max_pid;
- DECLARE_BITMAP(cpus, NR_CPUS);
- nodemask_t nodes;
- };
- struct loc_track {
- unsigned long max;
- unsigned long count;
- struct location *loc;
- };
- static void free_loc_track(struct loc_track *t)
- {
- if (t->max)
- free_pages((unsigned long)t->loc,
- get_order(sizeof(struct location) * t->max));
- }
- static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
- {
- struct location *l;
- int order;
- order = get_order(sizeof(struct location) * max);
- l = (void *)__get_free_pages(flags, order);
- if (!l)
- return 0;
- if (t->count) {
- memcpy(l, t->loc, sizeof(struct location) * t->count);
- free_loc_track(t);
- }
- t->max = max;
- t->loc = l;
- return 1;
- }
- static int add_location(struct loc_track *t, struct kmem_cache *s,
- const struct track *track)
- {
- long start, end, pos;
- struct location *l;
- unsigned long caddr;
- unsigned long age = jiffies - track->when;
- start = -1;
- end = t->count;
- for ( ; ; ) {
- pos = start + (end - start + 1) / 2;
- /*
- * There is nothing at "end". If we end up there
- * we need to add something to before end.
- */
- if (pos == end)
- break;
- caddr = t->loc[pos].addr;
- if (track->addr == caddr) {
- l = &t->loc[pos];
- l->count++;
- if (track->when) {
- l->sum_time += age;
- if (age < l->min_time)
- l->min_time = age;
- if (age > l->max_time)
- l->max_time = age;
- if (track->pid < l->min_pid)
- l->min_pid = track->pid;
- if (track->pid > l->max_pid)
- l->max_pid = track->pid;
- cpumask_set_cpu(track->cpu,
- to_cpumask(l->cpus));
- }
- node_set(page_to_nid(virt_to_page(track)), l->nodes);
- return 1;
- }
- if (track->addr < caddr)
- end = pos;
- else
- start = pos;
- }
- /*
- * Not found. Insert new tracking element.
- */
- if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
- return 0;
- l = t->loc + pos;
- if (pos < t->count)
- memmove(l + 1, l,
- (t->count - pos) * sizeof(struct location));
- t->count++;
- l->count = 1;
- l->addr = track->addr;
- l->sum_time = age;
- l->min_time = age;
- l->max_time = age;
- l->min_pid = track->pid;
- l->max_pid = track->pid;
- cpumask_clear(to_cpumask(l->cpus));
- cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
- nodes_clear(l->nodes);
- node_set(page_to_nid(virt_to_page(track)), l->nodes);
- return 1;
- }
- static void process_slab(struct loc_track *t, struct kmem_cache *s,
- struct page *page, enum track_item alloc,
- unsigned long *map)
- {
- void *addr = page_address(page);
- void *p;
- bitmap_zero(map, page->objects);
- get_map(s, page, map);
- for_each_object(p, s, addr, page->objects)
- if (!test_bit(slab_index(p, s, addr), map))
- add_location(t, s, get_track(s, p, alloc));
- }
- static int list_locations(struct kmem_cache *s, char *buf,
- enum track_item alloc)
- {
- int len = 0;
- unsigned long i;
- struct loc_track t = { 0, 0, NULL };
- int node;
- unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
- sizeof(unsigned long), GFP_KERNEL);
- struct kmem_cache_node *n;
- if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
- GFP_TEMPORARY)) {
- kfree(map);
- return sprintf(buf, "Out of memory\n");
- }
- /* Push back cpu slabs */
- flush_all(s);
- for_each_kmem_cache_node(s, node, n) {
- unsigned long flags;
- struct page *page;
- if (!atomic_long_read(&n->nr_slabs))
- continue;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru)
- process_slab(&t, s, page, alloc, map);
- list_for_each_entry(page, &n->full, lru)
- process_slab(&t, s, page, alloc, map);
- spin_unlock_irqrestore(&n->list_lock, flags);
- }
- for (i = 0; i < t.count; i++) {
- struct location *l = &t.loc[i];
- if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
- break;
- len += sprintf(buf + len, "%7ld ", l->count);
- if (l->addr)
- len += sprintf(buf + len, "%pS", (void *)l->addr);
- else
- len += sprintf(buf + len, "<not-available>");
- if (l->sum_time != l->min_time) {
- len += sprintf(buf + len, " age=%ld/%ld/%ld",
- l->min_time,
- (long)div_u64(l->sum_time, l->count),
- l->max_time);
- } else
- len += sprintf(buf + len, " age=%ld",
- l->min_time);
- if (l->min_pid != l->max_pid)
- len += sprintf(buf + len, " pid=%ld-%ld",
- l->min_pid, l->max_pid);
- else
- len += sprintf(buf + len, " pid=%ld",
- l->min_pid);
- if (num_online_cpus() > 1 &&
- !cpumask_empty(to_cpumask(l->cpus)) &&
- len < PAGE_SIZE - 60)
- len += scnprintf(buf + len, PAGE_SIZE - len - 50,
- " cpus=%*pbl",
- cpumask_pr_args(to_cpumask(l->cpus)));
- if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
- len < PAGE_SIZE - 60)
- len += scnprintf(buf + len, PAGE_SIZE - len - 50,
- " nodes=%*pbl",
- nodemask_pr_args(&l->nodes));
- len += sprintf(buf + len, "\n");
- }
- free_loc_track(&t);
- kfree(map);
- if (!t.count)
- len += sprintf(buf, "No data\n");
- return len;
- }
- #endif
- #ifdef SLUB_RESILIENCY_TEST
- static void __init resiliency_test(void)
- {
- u8 *p;
- BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
- pr_err("SLUB resiliency testing\n");
- pr_err("-----------------------\n");
- pr_err("A. Corruption after allocation\n");
- p = kzalloc(16, GFP_KERNEL);
- p[16] = 0x12;
- pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
- p + 16);
- validate_slab_cache(kmalloc_caches[4]);
- /* Hmmm... The next two are dangerous */
- p = kzalloc(32, GFP_KERNEL);
- p[32 + sizeof(void *)] = 0x34;
- pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
- p);
- pr_err("If allocated object is overwritten then not detectable\n\n");
- validate_slab_cache(kmalloc_caches[5]);
- p = kzalloc(64, GFP_KERNEL);
- p += 64 + (get_cycles() & 0xff) * sizeof(void *);
- *p = 0x56;
- pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
- p);
- pr_err("If allocated object is overwritten then not detectable\n\n");
- validate_slab_cache(kmalloc_caches[6]);
- pr_err("\nB. Corruption after free\n");
- p = kzalloc(128, GFP_KERNEL);
- kfree(p);
- *p = 0x78;
- pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches[7]);
- p = kzalloc(256, GFP_KERNEL);
- kfree(p);
- p[50] = 0x9a;
- pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches[8]);
- p = kzalloc(512, GFP_KERNEL);
- kfree(p);
- p[512] = 0xab;
- pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches[9]);
- }
- #else
- #ifdef CONFIG_SYSFS
- static void resiliency_test(void) {};
- #endif
- #endif
- #ifdef CONFIG_SYSFS
- enum slab_stat_type {
- SL_ALL, /* All slabs */
- SL_PARTIAL, /* Only partially allocated slabs */
- SL_CPU, /* Only slabs used for cpu caches */
- SL_OBJECTS, /* Determine allocated objects not slabs */
- SL_TOTAL /* Determine object capacity not slabs */
- };
- #define SO_ALL (1 << SL_ALL)
- #define SO_PARTIAL (1 << SL_PARTIAL)
- #define SO_CPU (1 << SL_CPU)
- #define SO_OBJECTS (1 << SL_OBJECTS)
- #define SO_TOTAL (1 << SL_TOTAL)
- static ssize_t show_slab_objects(struct kmem_cache *s,
- char *buf, unsigned long flags)
- {
- unsigned long total = 0;
- int node;
- int x;
- unsigned long *nodes;
- nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
- if (!nodes)
- return -ENOMEM;
- if (flags & SO_CPU) {
- int cpu;
- for_each_possible_cpu(cpu) {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
- cpu);
- int node;
- struct page *page;
- page = READ_ONCE(c->page);
- if (!page)
- continue;
- node = page_to_nid(page);
- if (flags & SO_TOTAL)
- x = page->objects;
- else if (flags & SO_OBJECTS)
- x = page->inuse;
- else
- x = 1;
- total += x;
- nodes[node] += x;
- page = READ_ONCE(c->partial);
- if (page) {
- node = page_to_nid(page);
- if (flags & SO_TOTAL)
- WARN_ON_ONCE(1);
- else if (flags & SO_OBJECTS)
- WARN_ON_ONCE(1);
- else
- x = page->pages;
- total += x;
- nodes[node] += x;
- }
- }
- }
- get_online_mems();
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SO_ALL) {
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- if (flags & SO_TOTAL)
- x = atomic_long_read(&n->total_objects);
- else if (flags & SO_OBJECTS)
- x = atomic_long_read(&n->total_objects) -
- count_partial(n, count_free);
- else
- x = atomic_long_read(&n->nr_slabs);
- total += x;
- nodes[node] += x;
- }
- } else
- #endif
- if (flags & SO_PARTIAL) {
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- if (flags & SO_TOTAL)
- x = count_partial(n, count_total);
- else if (flags & SO_OBJECTS)
- x = count_partial(n, count_inuse);
- else
- x = n->nr_partial;
- total += x;
- nodes[node] += x;
- }
- }
- x = sprintf(buf, "%lu", total);
- #ifdef CONFIG_NUMA
- for (node = 0; node < nr_node_ids; node++)
- if (nodes[node])
- x += sprintf(buf + x, " N%d=%lu",
- node, nodes[node]);
- #endif
- put_online_mems();
- kfree(nodes);
- return x + sprintf(buf + x, "\n");
- }
- #ifdef CONFIG_SLUB_DEBUG
- static int any_slab_objects(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n)
- if (atomic_long_read(&n->total_objects))
- return 1;
- return 0;
- }
- #endif
- #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
- #define to_slab(n) container_of(n, struct kmem_cache, kobj)
- struct slab_attribute {
- struct attribute attr;
- ssize_t (*show)(struct kmem_cache *s, char *buf);
- ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
- };
- #define SLAB_ATTR_RO(_name) \
- static struct slab_attribute _name##_attr = \
- __ATTR(_name, 0400, _name##_show, NULL)
- #define SLAB_ATTR(_name) \
- static struct slab_attribute _name##_attr = \
- __ATTR(_name, 0600, _name##_show, _name##_store)
- static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->size);
- }
- SLAB_ATTR_RO(slab_size);
- static ssize_t align_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->align);
- }
- SLAB_ATTR_RO(align);
- static ssize_t object_size_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->object_size);
- }
- SLAB_ATTR_RO(object_size);
- static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", oo_objects(s->oo));
- }
- SLAB_ATTR_RO(objs_per_slab);
- static ssize_t order_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- unsigned long order;
- int err;
- err = kstrtoul(buf, 10, &order);
- if (err)
- return err;
- if (order > slub_max_order || order < slub_min_order)
- return -EINVAL;
- calculate_sizes(s, order);
- return length;
- }
- static ssize_t order_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", oo_order(s->oo));
- }
- SLAB_ATTR(order);
- static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%lu\n", s->min_partial);
- }
- static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- unsigned long min;
- int err;
- err = kstrtoul(buf, 10, &min);
- if (err)
- return err;
- set_min_partial(s, min);
- return length;
- }
- SLAB_ATTR(min_partial);
- static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%u\n", s->cpu_partial);
- }
- static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- unsigned long objects;
- int err;
- err = kstrtoul(buf, 10, &objects);
- if (err)
- return err;
- if (objects && !kmem_cache_has_cpu_partial(s))
- return -EINVAL;
- s->cpu_partial = objects;
- flush_all(s);
- return length;
- }
- SLAB_ATTR(cpu_partial);
- static ssize_t ctor_show(struct kmem_cache *s, char *buf)
- {
- if (!s->ctor)
- return 0;
- return sprintf(buf, "%pS\n", s->ctor);
- }
- SLAB_ATTR_RO(ctor);
- static ssize_t aliases_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
- }
- SLAB_ATTR_RO(aliases);
- static ssize_t partial_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_PARTIAL);
- }
- SLAB_ATTR_RO(partial);
- static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_CPU);
- }
- SLAB_ATTR_RO(cpu_slabs);
- static ssize_t objects_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
- }
- SLAB_ATTR_RO(objects);
- static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
- }
- SLAB_ATTR_RO(objects_partial);
- static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
- {
- int objects = 0;
- int pages = 0;
- int cpu;
- int len;
- for_each_online_cpu(cpu) {
- struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
- if (page) {
- pages += page->pages;
- objects += page->pobjects;
- }
- }
- len = sprintf(buf, "%d(%d)", objects, pages);
- #ifdef CONFIG_SMP
- for_each_online_cpu(cpu) {
- struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
- if (page && len < PAGE_SIZE - 20)
- len += sprintf(buf + len, " C%d=%d(%d)", cpu,
- page->pobjects, page->pages);
- }
- #endif
- return len + sprintf(buf + len, "\n");
- }
- SLAB_ATTR_RO(slabs_cpu_partial);
- static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
- }
- static ssize_t reclaim_account_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- s->flags &= ~SLAB_RECLAIM_ACCOUNT;
- if (buf[0] == '1')
- s->flags |= SLAB_RECLAIM_ACCOUNT;
- return length;
- }
- SLAB_ATTR(reclaim_account);
- static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
- }
- SLAB_ATTR_RO(hwcache_align);
- #ifdef CONFIG_ZONE_DMA
- static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
- }
- SLAB_ATTR_RO(cache_dma);
- #endif
- static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
- }
- SLAB_ATTR_RO(destroy_by_rcu);
- static ssize_t reserved_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->reserved);
- }
- SLAB_ATTR_RO(reserved);
- #ifdef CONFIG_SLUB_DEBUG
- static ssize_t slabs_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_ALL);
- }
- SLAB_ATTR_RO(slabs);
- static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
- }
- SLAB_ATTR_RO(total_objects);
- static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
- }
- static ssize_t sanity_checks_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- s->flags &= ~SLAB_CONSISTENCY_CHECKS;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_CONSISTENCY_CHECKS;
- }
- return length;
- }
- SLAB_ATTR(sanity_checks);
- static ssize_t trace_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
- }
- static ssize_t trace_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- /*
- * Tracing a merged cache is going to give confusing results
- * as well as cause other issues like converting a mergeable
- * cache into an umergeable one.
- */
- if (s->refcount > 1)
- return -EINVAL;
- s->flags &= ~SLAB_TRACE;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_TRACE;
- }
- return length;
- }
- SLAB_ATTR(trace);
- static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
- }
- static ssize_t red_zone_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (any_slab_objects(s))
- return -EBUSY;
- s->flags &= ~SLAB_RED_ZONE;
- if (buf[0] == '1') {
- s->flags |= SLAB_RED_ZONE;
- }
- calculate_sizes(s, -1);
- return length;
- }
- SLAB_ATTR(red_zone);
- static ssize_t poison_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
- }
- static ssize_t poison_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (any_slab_objects(s))
- return -EBUSY;
- s->flags &= ~SLAB_POISON;
- if (buf[0] == '1') {
- s->flags |= SLAB_POISON;
- }
- calculate_sizes(s, -1);
- return length;
- }
- SLAB_ATTR(poison);
- static ssize_t store_user_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
- }
- static ssize_t store_user_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (any_slab_objects(s))
- return -EBUSY;
- s->flags &= ~SLAB_STORE_USER;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_STORE_USER;
- }
- calculate_sizes(s, -1);
- return length;
- }
- SLAB_ATTR(store_user);
- static ssize_t validate_show(struct kmem_cache *s, char *buf)
- {
- return 0;
- }
- static ssize_t validate_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- int ret = -EINVAL;
- if (buf[0] == '1') {
- ret = validate_slab_cache(s);
- if (ret >= 0)
- ret = length;
- }
- return ret;
- }
- SLAB_ATTR(validate);
- static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return -ENOSYS;
- return list_locations(s, buf, TRACK_ALLOC);
- }
- SLAB_ATTR_RO(alloc_calls);
- static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return -ENOSYS;
- return list_locations(s, buf, TRACK_FREE);
- }
- SLAB_ATTR_RO(free_calls);
- #endif /* CONFIG_SLUB_DEBUG */
- #ifdef CONFIG_FAILSLAB
- static ssize_t failslab_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
- }
- static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- if (s->refcount > 1)
- return -EINVAL;
- s->flags &= ~SLAB_FAILSLAB;
- if (buf[0] == '1')
- s->flags |= SLAB_FAILSLAB;
- return length;
- }
- SLAB_ATTR(failslab);
- #endif
- static ssize_t shrink_show(struct kmem_cache *s, char *buf)
- {
- return 0;
- }
- static ssize_t shrink_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (buf[0] == '1')
- kmem_cache_shrink(s);
- else
- return -EINVAL;
- return length;
- }
- SLAB_ATTR(shrink);
- #ifdef CONFIG_NUMA
- static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
- }
- static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- unsigned long ratio;
- int err;
- err = kstrtoul(buf, 10, &ratio);
- if (err)
- return err;
- if (ratio <= 100)
- s->remote_node_defrag_ratio = ratio * 10;
- return length;
- }
- SLAB_ATTR(remote_node_defrag_ratio);
- #endif
- #ifdef CONFIG_SLUB_STATS
- static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
- {
- unsigned long sum = 0;
- int cpu;
- int len;
- int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
- if (!data)
- return -ENOMEM;
- for_each_online_cpu(cpu) {
- unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
- data[cpu] = x;
- sum += x;
- }
- len = sprintf(buf, "%lu", sum);
- #ifdef CONFIG_SMP
- for_each_online_cpu(cpu) {
- if (data[cpu] && len < PAGE_SIZE - 20)
- len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
- }
- #endif
- kfree(data);
- return len + sprintf(buf + len, "\n");
- }
- static void clear_stat(struct kmem_cache *s, enum stat_item si)
- {
- int cpu;
- for_each_online_cpu(cpu)
- per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
- }
- #define STAT_ATTR(si, text) \
- static ssize_t text##_show(struct kmem_cache *s, char *buf) \
- { \
- return show_stat(s, buf, si); \
- } \
- static ssize_t text##_store(struct kmem_cache *s, \
- const char *buf, size_t length) \
- { \
- if (buf[0] != '0') \
- return -EINVAL; \
- clear_stat(s, si); \
- return length; \
- } \
- SLAB_ATTR(text); \
- STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
- STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
- STAT_ATTR(FREE_FASTPATH, free_fastpath);
- STAT_ATTR(FREE_SLOWPATH, free_slowpath);
- STAT_ATTR(FREE_FROZEN, free_frozen);
- STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
- STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
- STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
- STAT_ATTR(ALLOC_SLAB, alloc_slab);
- STAT_ATTR(ALLOC_REFILL, alloc_refill);
- STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
- STAT_ATTR(FREE_SLAB, free_slab);
- STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
- STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
- STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
- STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
- STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
- STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
- STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
- STAT_ATTR(ORDER_FALLBACK, order_fallback);
- STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
- STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
- STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
- STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
- STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
- STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
- #endif
- static struct attribute *slab_attrs[] = {
- &slab_size_attr.attr,
- &object_size_attr.attr,
- &objs_per_slab_attr.attr,
- &order_attr.attr,
- &min_partial_attr.attr,
- &cpu_partial_attr.attr,
- &objects_attr.attr,
- &objects_partial_attr.attr,
- &partial_attr.attr,
- &cpu_slabs_attr.attr,
- &ctor_attr.attr,
- &aliases_attr.attr,
- &align_attr.attr,
- &hwcache_align_attr.attr,
- &reclaim_account_attr.attr,
- &destroy_by_rcu_attr.attr,
- &shrink_attr.attr,
- &reserved_attr.attr,
- &slabs_cpu_partial_attr.attr,
- #ifdef CONFIG_SLUB_DEBUG
- &total_objects_attr.attr,
- &slabs_attr.attr,
- &sanity_checks_attr.attr,
- &trace_attr.attr,
- &red_zone_attr.attr,
- &poison_attr.attr,
- &store_user_attr.attr,
- &validate_attr.attr,
- &alloc_calls_attr.attr,
- &free_calls_attr.attr,
- #endif
- #ifdef CONFIG_ZONE_DMA
- &cache_dma_attr.attr,
- #endif
- #ifdef CONFIG_NUMA
- &remote_node_defrag_ratio_attr.attr,
- #endif
- #ifdef CONFIG_SLUB_STATS
- &alloc_fastpath_attr.attr,
- &alloc_slowpath_attr.attr,
- &free_fastpath_attr.attr,
- &free_slowpath_attr.attr,
- &free_frozen_attr.attr,
- &free_add_partial_attr.attr,
- &free_remove_partial_attr.attr,
- &alloc_from_partial_attr.attr,
- &alloc_slab_attr.attr,
- &alloc_refill_attr.attr,
- &alloc_node_mismatch_attr.attr,
- &free_slab_attr.attr,
- &cpuslab_flush_attr.attr,
- &deactivate_full_attr.attr,
- &deactivate_empty_attr.attr,
- &deactivate_to_head_attr.attr,
- &deactivate_to_tail_attr.attr,
- &deactivate_remote_frees_attr.attr,
- &deactivate_bypass_attr.attr,
- &order_fallback_attr.attr,
- &cmpxchg_double_fail_attr.attr,
- &cmpxchg_double_cpu_fail_attr.attr,
- &cpu_partial_alloc_attr.attr,
- &cpu_partial_free_attr.attr,
- &cpu_partial_node_attr.attr,
- &cpu_partial_drain_attr.attr,
- #endif
- #ifdef CONFIG_FAILSLAB
- &failslab_attr.attr,
- #endif
- NULL
- };
- static struct attribute_group slab_attr_group = {
- .attrs = slab_attrs,
- };
- static ssize_t slab_attr_show(struct kobject *kobj,
- struct attribute *attr,
- char *buf)
- {
- struct slab_attribute *attribute;
- struct kmem_cache *s;
- int err;
- attribute = to_slab_attr(attr);
- s = to_slab(kobj);
- if (!attribute->show)
- return -EIO;
- err = attribute->show(s, buf);
- return err;
- }
- static ssize_t slab_attr_store(struct kobject *kobj,
- struct attribute *attr,
- const char *buf, size_t len)
- {
- struct slab_attribute *attribute;
- struct kmem_cache *s;
- int err;
- attribute = to_slab_attr(attr);
- s = to_slab(kobj);
- if (!attribute->store)
- return -EIO;
- err = attribute->store(s, buf, len);
- #ifdef CONFIG_MEMCG
- if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
- struct kmem_cache *c;
- mutex_lock(&slab_mutex);
- if (s->max_attr_size < len)
- s->max_attr_size = len;
- /*
- * This is a best effort propagation, so this function's return
- * value will be determined by the parent cache only. This is
- * basically because not all attributes will have a well
- * defined semantics for rollbacks - most of the actions will
- * have permanent effects.
- *
- * Returning the error value of any of the children that fail
- * is not 100 % defined, in the sense that users seeing the
- * error code won't be able to know anything about the state of
- * the cache.
- *
- * Only returning the error code for the parent cache at least
- * has well defined semantics. The cache being written to
- * directly either failed or succeeded, in which case we loop
- * through the descendants with best-effort propagation.
- */
- for_each_memcg_cache(c, s)
- attribute->store(c, buf, len);
- mutex_unlock(&slab_mutex);
- }
- #endif
- return err;
- }
- static void memcg_propagate_slab_attrs(struct kmem_cache *s)
- {
- #ifdef CONFIG_MEMCG
- int i;
- char *buffer = NULL;
- struct kmem_cache *root_cache;
- if (is_root_cache(s))
- return;
- root_cache = s->memcg_params.root_cache;
- /*
- * This mean this cache had no attribute written. Therefore, no point
- * in copying default values around
- */
- if (!root_cache->max_attr_size)
- return;
- for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
- char mbuf[64];
- char *buf;
- struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
- ssize_t len;
- if (!attr || !attr->store || !attr->show)
- continue;
- /*
- * It is really bad that we have to allocate here, so we will
- * do it only as a fallback. If we actually allocate, though,
- * we can just use the allocated buffer until the end.
- *
- * Most of the slub attributes will tend to be very small in
- * size, but sysfs allows buffers up to a page, so they can
- * theoretically happen.
- */
- if (buffer)
- buf = buffer;
- else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
- buf = mbuf;
- else {
- buffer = (char *) get_zeroed_page(GFP_KERNEL);
- if (WARN_ON(!buffer))
- continue;
- buf = buffer;
- }
- len = attr->show(root_cache, buf);
- if (len > 0)
- attr->store(s, buf, len);
- }
- if (buffer)
- free_page((unsigned long)buffer);
- #endif
- }
- static void kmem_cache_release(struct kobject *k)
- {
- slab_kmem_cache_release(to_slab(k));
- }
- static const struct sysfs_ops slab_sysfs_ops = {
- .show = slab_attr_show,
- .store = slab_attr_store,
- };
- static struct kobj_type slab_ktype = {
- .sysfs_ops = &slab_sysfs_ops,
- .release = kmem_cache_release,
- };
- static int uevent_filter(struct kset *kset, struct kobject *kobj)
- {
- struct kobj_type *ktype = get_ktype(kobj);
- if (ktype == &slab_ktype)
- return 1;
- return 0;
- }
- static const struct kset_uevent_ops slab_uevent_ops = {
- .filter = uevent_filter,
- };
- static struct kset *slab_kset;
- static inline struct kset *cache_kset(struct kmem_cache *s)
- {
- #ifdef CONFIG_MEMCG
- if (!is_root_cache(s))
- return s->memcg_params.root_cache->memcg_kset;
- #endif
- return slab_kset;
- }
- #define ID_STR_LENGTH 64
- /* Create a unique string id for a slab cache:
- *
- * Format :[flags-]size
- */
- static char *create_unique_id(struct kmem_cache *s)
- {
- char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
- char *p = name;
- BUG_ON(!name);
- *p++ = ':';
- /*
- * First flags affecting slabcache operations. We will only
- * get here for aliasable slabs so we do not need to support
- * too many flags. The flags here must cover all flags that
- * are matched during merging to guarantee that the id is
- * unique.
- */
- if (s->flags & SLAB_CACHE_DMA)
- *p++ = 'd';
- if (s->flags & SLAB_RECLAIM_ACCOUNT)
- *p++ = 'a';
- if (s->flags & SLAB_CONSISTENCY_CHECKS)
- *p++ = 'F';
- if (!(s->flags & SLAB_NOTRACK))
- *p++ = 't';
- if (s->flags & SLAB_ACCOUNT)
- *p++ = 'A';
- if (p != name + 1)
- *p++ = '-';
- p += sprintf(p, "%07d", s->size);
- BUG_ON(p > name + ID_STR_LENGTH - 1);
- return name;
- }
- static int sysfs_slab_add(struct kmem_cache *s)
- {
- int err;
- const char *name;
- int unmergeable = slab_unmergeable(s);
- if (unmergeable) {
- /*
- * Slabcache can never be merged so we can use the name proper.
- * This is typically the case for debug situations. In that
- * case we can catch duplicate names easily.
- */
- sysfs_remove_link(&slab_kset->kobj, s->name);
- name = s->name;
- } else {
- /*
- * Create a unique name for the slab as a target
- * for the symlinks.
- */
- name = create_unique_id(s);
- }
- s->kobj.kset = cache_kset(s);
- err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
- if (err)
- goto out;
- err = sysfs_create_group(&s->kobj, &slab_attr_group);
- if (err)
- goto out_del_kobj;
- #ifdef CONFIG_MEMCG
- if (is_root_cache(s)) {
- s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
- if (!s->memcg_kset) {
- err = -ENOMEM;
- goto out_del_kobj;
- }
- }
- #endif
- kobject_uevent(&s->kobj, KOBJ_ADD);
- if (!unmergeable) {
- /* Setup first alias */
- sysfs_slab_alias(s, s->name);
- }
- out:
- if (!unmergeable)
- kfree(name);
- return err;
- out_del_kobj:
- kobject_del(&s->kobj);
- goto out;
- }
- void sysfs_slab_remove(struct kmem_cache *s)
- {
- if (slab_state < FULL)
- /*
- * Sysfs has not been setup yet so no need to remove the
- * cache from sysfs.
- */
- return;
- #ifdef CONFIG_MEMCG
- kset_unregister(s->memcg_kset);
- #endif
- kobject_uevent(&s->kobj, KOBJ_REMOVE);
- kobject_del(&s->kobj);
- kobject_put(&s->kobj);
- }
- /*
- * Need to buffer aliases during bootup until sysfs becomes
- * available lest we lose that information.
- */
- struct saved_alias {
- struct kmem_cache *s;
- const char *name;
- struct saved_alias *next;
- };
- static struct saved_alias *alias_list;
- static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
- {
- struct saved_alias *al;
- if (slab_state == FULL) {
- /*
- * If we have a leftover link then remove it.
- */
- sysfs_remove_link(&slab_kset->kobj, name);
- return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
- }
- al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
- if (!al)
- return -ENOMEM;
- al->s = s;
- al->name = name;
- al->next = alias_list;
- alias_list = al;
- return 0;
- }
- static int __init slab_sysfs_init(void)
- {
- struct kmem_cache *s;
- int err;
- mutex_lock(&slab_mutex);
- slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
- if (!slab_kset) {
- mutex_unlock(&slab_mutex);
- pr_err("Cannot register slab subsystem.\n");
- return -ENOSYS;
- }
- slab_state = FULL;
- list_for_each_entry(s, &slab_caches, list) {
- err = sysfs_slab_add(s);
- if (err)
- pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
- s->name);
- }
- while (alias_list) {
- struct saved_alias *al = alias_list;
- alias_list = alias_list->next;
- err = sysfs_slab_alias(al->s, al->name);
- if (err)
- pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
- al->name);
- kfree(al);
- }
- mutex_unlock(&slab_mutex);
- resiliency_test();
- return 0;
- }
- __initcall(slab_sysfs_init);
- #endif /* CONFIG_SYSFS */
- /*
- * The /proc/slabinfo ABI
- */
- #ifdef CONFIG_SLABINFO
- void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
- {
- unsigned long nr_slabs = 0;
- unsigned long nr_objs = 0;
- unsigned long nr_free = 0;
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- nr_slabs += node_nr_slabs(n);
- nr_objs += node_nr_objs(n);
- nr_free += count_partial(n, count_free);
- }
- sinfo->active_objs = nr_objs - nr_free;
- sinfo->num_objs = nr_objs;
- sinfo->active_slabs = nr_slabs;
- sinfo->num_slabs = nr_slabs;
- sinfo->objects_per_slab = oo_objects(s->oo);
- sinfo->cache_order = oo_order(s->oo);
- }
- void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
- {
- }
- ssize_t slabinfo_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
- {
- return -EIO;
- }
- #endif /* CONFIG_SLABINFO */
|