oom_kill.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. * Copyright (C) 2010 Google, Inc.
  8. * Rewritten by David Rientjes
  9. *
  10. * The routines in this file are used to kill a process when
  11. * we're seriously out of memory. This gets called from __alloc_pages()
  12. * in mm/page_alloc.c when we really run out of memory.
  13. *
  14. * Since we won't call these routines often (on a well-configured
  15. * machine) this file will double as a 'coding guide' and a signpost
  16. * for newbie kernel hackers. It features several pointers to major
  17. * kernel subsystems and hints as to where to find out what things do.
  18. */
  19. #include <linux/oom.h>
  20. #include <linux/mm.h>
  21. #include <linux/err.h>
  22. #include <linux/gfp.h>
  23. #include <linux/sched.h>
  24. #include <linux/swap.h>
  25. #include <linux/timex.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/cpuset.h>
  28. #include <linux/export.h>
  29. #include <linux/notifier.h>
  30. #include <linux/memcontrol.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/security.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/freezer.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/ratelimit.h>
  37. #include <linux/kthread.h>
  38. #include <linux/init.h>
  39. #include <linux/mmu_notifier.h>
  40. #include <asm/tlb.h>
  41. #include "internal.h"
  42. #define CREATE_TRACE_POINTS
  43. #include <trace/events/oom.h>
  44. int sysctl_panic_on_oom;
  45. int sysctl_oom_kill_allocating_task;
  46. int sysctl_oom_dump_tasks = 1;
  47. DEFINE_MUTEX(oom_lock);
  48. #ifdef CONFIG_NUMA
  49. /**
  50. * has_intersects_mems_allowed() - check task eligiblity for kill
  51. * @start: task struct of which task to consider
  52. * @mask: nodemask passed to page allocator for mempolicy ooms
  53. *
  54. * Task eligibility is determined by whether or not a candidate task, @tsk,
  55. * shares the same mempolicy nodes as current if it is bound by such a policy
  56. * and whether or not it has the same set of allowed cpuset nodes.
  57. */
  58. static bool has_intersects_mems_allowed(struct task_struct *start,
  59. const nodemask_t *mask)
  60. {
  61. struct task_struct *tsk;
  62. bool ret = false;
  63. rcu_read_lock();
  64. for_each_thread(start, tsk) {
  65. if (mask) {
  66. /*
  67. * If this is a mempolicy constrained oom, tsk's
  68. * cpuset is irrelevant. Only return true if its
  69. * mempolicy intersects current, otherwise it may be
  70. * needlessly killed.
  71. */
  72. ret = mempolicy_nodemask_intersects(tsk, mask);
  73. } else {
  74. /*
  75. * This is not a mempolicy constrained oom, so only
  76. * check the mems of tsk's cpuset.
  77. */
  78. ret = cpuset_mems_allowed_intersects(current, tsk);
  79. }
  80. if (ret)
  81. break;
  82. }
  83. rcu_read_unlock();
  84. return ret;
  85. }
  86. #else
  87. static bool has_intersects_mems_allowed(struct task_struct *tsk,
  88. const nodemask_t *mask)
  89. {
  90. return true;
  91. }
  92. #endif /* CONFIG_NUMA */
  93. /*
  94. * The process p may have detached its own ->mm while exiting or through
  95. * use_mm(), but one or more of its subthreads may still have a valid
  96. * pointer. Return p, or any of its subthreads with a valid ->mm, with
  97. * task_lock() held.
  98. */
  99. struct task_struct *find_lock_task_mm(struct task_struct *p)
  100. {
  101. struct task_struct *t;
  102. rcu_read_lock();
  103. for_each_thread(p, t) {
  104. task_lock(t);
  105. if (likely(t->mm))
  106. goto found;
  107. task_unlock(t);
  108. }
  109. t = NULL;
  110. found:
  111. rcu_read_unlock();
  112. return t;
  113. }
  114. /*
  115. * order == -1 means the oom kill is required by sysrq, otherwise only
  116. * for display purposes.
  117. */
  118. static inline bool is_sysrq_oom(struct oom_control *oc)
  119. {
  120. return oc->order == -1;
  121. }
  122. static inline bool is_memcg_oom(struct oom_control *oc)
  123. {
  124. return oc->memcg != NULL;
  125. }
  126. /* return true if the task is not adequate as candidate victim task. */
  127. static bool oom_unkillable_task(struct task_struct *p,
  128. struct mem_cgroup *memcg, const nodemask_t *nodemask)
  129. {
  130. if (is_global_init(p))
  131. return true;
  132. if (p->flags & PF_KTHREAD)
  133. return true;
  134. /* When mem_cgroup_out_of_memory() and p is not member of the group */
  135. if (memcg && !task_in_mem_cgroup(p, memcg))
  136. return true;
  137. /* p may not have freeable memory in nodemask */
  138. if (!has_intersects_mems_allowed(p, nodemask))
  139. return true;
  140. return false;
  141. }
  142. /**
  143. * oom_badness - heuristic function to determine which candidate task to kill
  144. * @p: task struct of which task we should calculate
  145. * @totalpages: total present RAM allowed for page allocation
  146. *
  147. * The heuristic for determining which task to kill is made to be as simple and
  148. * predictable as possible. The goal is to return the highest value for the
  149. * task consuming the most memory to avoid subsequent oom failures.
  150. */
  151. unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
  152. const nodemask_t *nodemask, unsigned long totalpages)
  153. {
  154. long points;
  155. long adj;
  156. if (oom_unkillable_task(p, memcg, nodemask))
  157. return 0;
  158. p = find_lock_task_mm(p);
  159. if (!p)
  160. return 0;
  161. /*
  162. * Do not even consider tasks which are explicitly marked oom
  163. * unkillable or have been already oom reaped or the are in
  164. * the middle of vfork
  165. */
  166. adj = (long)p->signal->oom_score_adj;
  167. if (adj == OOM_SCORE_ADJ_MIN ||
  168. test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
  169. in_vfork(p)) {
  170. task_unlock(p);
  171. return 0;
  172. }
  173. /*
  174. * The baseline for the badness score is the proportion of RAM that each
  175. * task's rss, pagetable and swap space use.
  176. */
  177. points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
  178. atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
  179. task_unlock(p);
  180. /*
  181. * Root processes get 3% bonus, just like the __vm_enough_memory()
  182. * implementation used by LSMs.
  183. */
  184. if (has_capability_noaudit(p, CAP_SYS_ADMIN))
  185. points -= (points * 3) / 100;
  186. /* Normalize to oom_score_adj units */
  187. adj *= totalpages / 1000;
  188. points += adj;
  189. /*
  190. * Never return 0 for an eligible task regardless of the root bonus and
  191. * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
  192. */
  193. return points > 0 ? points : 1;
  194. }
  195. enum oom_constraint {
  196. CONSTRAINT_NONE,
  197. CONSTRAINT_CPUSET,
  198. CONSTRAINT_MEMORY_POLICY,
  199. CONSTRAINT_MEMCG,
  200. };
  201. /*
  202. * Determine the type of allocation constraint.
  203. */
  204. static enum oom_constraint constrained_alloc(struct oom_control *oc)
  205. {
  206. struct zone *zone;
  207. struct zoneref *z;
  208. enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
  209. bool cpuset_limited = false;
  210. int nid;
  211. if (is_memcg_oom(oc)) {
  212. oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
  213. return CONSTRAINT_MEMCG;
  214. }
  215. /* Default to all available memory */
  216. oc->totalpages = totalram_pages + total_swap_pages;
  217. if (!IS_ENABLED(CONFIG_NUMA))
  218. return CONSTRAINT_NONE;
  219. if (!oc->zonelist)
  220. return CONSTRAINT_NONE;
  221. /*
  222. * Reach here only when __GFP_NOFAIL is used. So, we should avoid
  223. * to kill current.We have to random task kill in this case.
  224. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
  225. */
  226. if (oc->gfp_mask & __GFP_THISNODE)
  227. return CONSTRAINT_NONE;
  228. /*
  229. * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
  230. * the page allocator means a mempolicy is in effect. Cpuset policy
  231. * is enforced in get_page_from_freelist().
  232. */
  233. if (oc->nodemask &&
  234. !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
  235. oc->totalpages = total_swap_pages;
  236. for_each_node_mask(nid, *oc->nodemask)
  237. oc->totalpages += node_spanned_pages(nid);
  238. return CONSTRAINT_MEMORY_POLICY;
  239. }
  240. /* Check this allocation failure is caused by cpuset's wall function */
  241. for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
  242. high_zoneidx, oc->nodemask)
  243. if (!cpuset_zone_allowed(zone, oc->gfp_mask))
  244. cpuset_limited = true;
  245. if (cpuset_limited) {
  246. oc->totalpages = total_swap_pages;
  247. for_each_node_mask(nid, cpuset_current_mems_allowed)
  248. oc->totalpages += node_spanned_pages(nid);
  249. return CONSTRAINT_CPUSET;
  250. }
  251. return CONSTRAINT_NONE;
  252. }
  253. static int oom_evaluate_task(struct task_struct *task, void *arg)
  254. {
  255. struct oom_control *oc = arg;
  256. unsigned long points;
  257. if (oom_unkillable_task(task, NULL, oc->nodemask))
  258. goto next;
  259. /*
  260. * This task already has access to memory reserves and is being killed.
  261. * Don't allow any other task to have access to the reserves unless
  262. * the task has MMF_OOM_SKIP because chances that it would release
  263. * any memory is quite low.
  264. */
  265. if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
  266. if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
  267. goto next;
  268. goto abort;
  269. }
  270. /*
  271. * If task is allocating a lot of memory and has been marked to be
  272. * killed first if it triggers an oom, then select it.
  273. */
  274. if (oom_task_origin(task)) {
  275. points = ULONG_MAX;
  276. goto select;
  277. }
  278. points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
  279. if (!points || points < oc->chosen_points)
  280. goto next;
  281. /* Prefer thread group leaders for display purposes */
  282. if (points == oc->chosen_points && thread_group_leader(oc->chosen))
  283. goto next;
  284. select:
  285. if (oc->chosen)
  286. put_task_struct(oc->chosen);
  287. get_task_struct(task);
  288. oc->chosen = task;
  289. oc->chosen_points = points;
  290. next:
  291. return 0;
  292. abort:
  293. if (oc->chosen)
  294. put_task_struct(oc->chosen);
  295. oc->chosen = (void *)-1UL;
  296. return 1;
  297. }
  298. /*
  299. * Simple selection loop. We choose the process with the highest number of
  300. * 'points'. In case scan was aborted, oc->chosen is set to -1.
  301. */
  302. static void select_bad_process(struct oom_control *oc)
  303. {
  304. if (is_memcg_oom(oc))
  305. mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
  306. else {
  307. struct task_struct *p;
  308. rcu_read_lock();
  309. for_each_process(p)
  310. if (oom_evaluate_task(p, oc))
  311. break;
  312. rcu_read_unlock();
  313. }
  314. oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
  315. }
  316. /**
  317. * dump_tasks - dump current memory state of all system tasks
  318. * @memcg: current's memory controller, if constrained
  319. * @nodemask: nodemask passed to page allocator for mempolicy ooms
  320. *
  321. * Dumps the current memory state of all eligible tasks. Tasks not in the same
  322. * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
  323. * are not shown.
  324. * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
  325. * swapents, oom_score_adj value, and name.
  326. */
  327. static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
  328. {
  329. struct task_struct *p;
  330. struct task_struct *task;
  331. pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
  332. rcu_read_lock();
  333. for_each_process(p) {
  334. if (oom_unkillable_task(p, memcg, nodemask))
  335. continue;
  336. task = find_lock_task_mm(p);
  337. if (!task) {
  338. /*
  339. * This is a kthread or all of p's threads have already
  340. * detached their mm's. There's no need to report
  341. * them; they can't be oom killed anyway.
  342. */
  343. continue;
  344. }
  345. pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
  346. task->pid, from_kuid(&init_user_ns, task_uid(task)),
  347. task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
  348. atomic_long_read(&task->mm->nr_ptes),
  349. mm_nr_pmds(task->mm),
  350. get_mm_counter(task->mm, MM_SWAPENTS),
  351. task->signal->oom_score_adj, task->comm);
  352. task_unlock(task);
  353. }
  354. rcu_read_unlock();
  355. }
  356. static void dump_header(struct oom_control *oc, struct task_struct *p)
  357. {
  358. nodemask_t *nm = (oc->nodemask) ? oc->nodemask : &cpuset_current_mems_allowed;
  359. pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
  360. current->comm, oc->gfp_mask, &oc->gfp_mask,
  361. nodemask_pr_args(nm), oc->order,
  362. current->signal->oom_score_adj);
  363. if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
  364. pr_warn("COMPACTION is disabled!!!\n");
  365. cpuset_print_current_mems_allowed();
  366. dump_stack();
  367. if (oc->memcg)
  368. mem_cgroup_print_oom_info(oc->memcg, p);
  369. else
  370. show_mem(SHOW_MEM_FILTER_NODES);
  371. if (sysctl_oom_dump_tasks)
  372. dump_tasks(oc->memcg, oc->nodemask);
  373. }
  374. /*
  375. * Number of OOM victims in flight
  376. */
  377. static atomic_t oom_victims = ATOMIC_INIT(0);
  378. static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
  379. static bool oom_killer_disabled __read_mostly;
  380. #define K(x) ((x) << (PAGE_SHIFT-10))
  381. /*
  382. * task->mm can be NULL if the task is the exited group leader. So to
  383. * determine whether the task is using a particular mm, we examine all the
  384. * task's threads: if one of those is using this mm then this task was also
  385. * using it.
  386. */
  387. bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
  388. {
  389. struct task_struct *t;
  390. for_each_thread(p, t) {
  391. struct mm_struct *t_mm = READ_ONCE(t->mm);
  392. if (t_mm)
  393. return t_mm == mm;
  394. }
  395. return false;
  396. }
  397. #ifdef CONFIG_MMU
  398. /*
  399. * OOM Reaper kernel thread which tries to reap the memory used by the OOM
  400. * victim (if that is possible) to help the OOM killer to move on.
  401. */
  402. static struct task_struct *oom_reaper_th;
  403. static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
  404. static struct task_struct *oom_reaper_list;
  405. static DEFINE_SPINLOCK(oom_reaper_lock);
  406. static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
  407. {
  408. struct mmu_gather tlb;
  409. struct vm_area_struct *vma;
  410. struct zap_details details = {.check_swap_entries = true,
  411. .ignore_dirty = true};
  412. bool ret = true;
  413. /*
  414. * We have to make sure to not race with the victim exit path
  415. * and cause premature new oom victim selection:
  416. * __oom_reap_task_mm exit_mm
  417. * mmget_not_zero
  418. * mmput
  419. * atomic_dec_and_test
  420. * exit_oom_victim
  421. * [...]
  422. * out_of_memory
  423. * select_bad_process
  424. * # no TIF_MEMDIE task selects new victim
  425. * unmap_page_range # frees some memory
  426. */
  427. mutex_lock(&oom_lock);
  428. if (!down_read_trylock(&mm->mmap_sem)) {
  429. ret = false;
  430. goto unlock_oom;
  431. }
  432. /*
  433. * If the mm has notifiers then we would need to invalidate them around
  434. * unmap_page_range and that is risky because notifiers can sleep and
  435. * what they do is basically undeterministic. So let's have a short
  436. * sleep to give the oom victim some more time.
  437. * TODO: we really want to get rid of this ugly hack and make sure that
  438. * notifiers cannot block for unbounded amount of time and add
  439. * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
  440. */
  441. if (mm_has_notifiers(mm)) {
  442. up_read(&mm->mmap_sem);
  443. schedule_timeout_idle(HZ);
  444. goto unlock_oom;
  445. }
  446. /*
  447. * increase mm_users only after we know we will reap something so
  448. * that the mmput_async is called only when we have reaped something
  449. * and delayed __mmput doesn't matter that much
  450. */
  451. if (!mmget_not_zero(mm)) {
  452. up_read(&mm->mmap_sem);
  453. goto unlock_oom;
  454. }
  455. /*
  456. * Tell all users of get_user/copy_from_user etc... that the content
  457. * is no longer stable. No barriers really needed because unmapping
  458. * should imply barriers already and the reader would hit a page fault
  459. * if it stumbled over a reaped memory.
  460. */
  461. set_bit(MMF_UNSTABLE, &mm->flags);
  462. for (vma = mm->mmap ; vma; vma = vma->vm_next) {
  463. if (is_vm_hugetlb_page(vma))
  464. continue;
  465. /*
  466. * mlocked VMAs require explicit munlocking before unmap.
  467. * Let's keep it simple here and skip such VMAs.
  468. */
  469. if (vma->vm_flags & VM_LOCKED)
  470. continue;
  471. /*
  472. * Only anonymous pages have a good chance to be dropped
  473. * without additional steps which we cannot afford as we
  474. * are OOM already.
  475. *
  476. * We do not even care about fs backed pages because all
  477. * which are reclaimable have already been reclaimed and
  478. * we do not want to block exit_mmap by keeping mm ref
  479. * count elevated without a good reason.
  480. */
  481. if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
  482. tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end);
  483. unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
  484. &details);
  485. tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end);
  486. }
  487. }
  488. pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  489. task_pid_nr(tsk), tsk->comm,
  490. K(get_mm_counter(mm, MM_ANONPAGES)),
  491. K(get_mm_counter(mm, MM_FILEPAGES)),
  492. K(get_mm_counter(mm, MM_SHMEMPAGES)));
  493. up_read(&mm->mmap_sem);
  494. /*
  495. * Drop our reference but make sure the mmput slow path is called from a
  496. * different context because we shouldn't risk we get stuck there and
  497. * put the oom_reaper out of the way.
  498. */
  499. mmput_async(mm);
  500. unlock_oom:
  501. mutex_unlock(&oom_lock);
  502. return ret;
  503. }
  504. #define MAX_OOM_REAP_RETRIES 10
  505. static void oom_reap_task(struct task_struct *tsk)
  506. {
  507. int attempts = 0;
  508. struct mm_struct *mm = tsk->signal->oom_mm;
  509. /* Retry the down_read_trylock(mmap_sem) a few times */
  510. while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
  511. schedule_timeout_idle(HZ/10);
  512. if (attempts <= MAX_OOM_REAP_RETRIES)
  513. goto done;
  514. pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
  515. task_pid_nr(tsk), tsk->comm);
  516. debug_show_all_locks();
  517. done:
  518. tsk->oom_reaper_list = NULL;
  519. /*
  520. * Hide this mm from OOM killer because it has been either reaped or
  521. * somebody can't call up_write(mmap_sem).
  522. */
  523. set_bit(MMF_OOM_SKIP, &mm->flags);
  524. /* Drop a reference taken by wake_oom_reaper */
  525. put_task_struct(tsk);
  526. }
  527. static int oom_reaper(void *unused)
  528. {
  529. while (true) {
  530. struct task_struct *tsk = NULL;
  531. wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
  532. spin_lock(&oom_reaper_lock);
  533. if (oom_reaper_list != NULL) {
  534. tsk = oom_reaper_list;
  535. oom_reaper_list = tsk->oom_reaper_list;
  536. }
  537. spin_unlock(&oom_reaper_lock);
  538. if (tsk)
  539. oom_reap_task(tsk);
  540. }
  541. return 0;
  542. }
  543. static void wake_oom_reaper(struct task_struct *tsk)
  544. {
  545. if (!oom_reaper_th)
  546. return;
  547. /* tsk is already queued? */
  548. if (tsk == oom_reaper_list || tsk->oom_reaper_list)
  549. return;
  550. get_task_struct(tsk);
  551. spin_lock(&oom_reaper_lock);
  552. tsk->oom_reaper_list = oom_reaper_list;
  553. oom_reaper_list = tsk;
  554. spin_unlock(&oom_reaper_lock);
  555. wake_up(&oom_reaper_wait);
  556. }
  557. static int __init oom_init(void)
  558. {
  559. oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
  560. if (IS_ERR(oom_reaper_th)) {
  561. pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
  562. PTR_ERR(oom_reaper_th));
  563. oom_reaper_th = NULL;
  564. }
  565. return 0;
  566. }
  567. subsys_initcall(oom_init)
  568. #else
  569. static inline void wake_oom_reaper(struct task_struct *tsk)
  570. {
  571. }
  572. #endif /* CONFIG_MMU */
  573. /**
  574. * mark_oom_victim - mark the given task as OOM victim
  575. * @tsk: task to mark
  576. *
  577. * Has to be called with oom_lock held and never after
  578. * oom has been disabled already.
  579. *
  580. * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
  581. * under task_lock or operate on the current).
  582. */
  583. static void mark_oom_victim(struct task_struct *tsk)
  584. {
  585. struct mm_struct *mm = tsk->mm;
  586. WARN_ON(oom_killer_disabled);
  587. /* OOM killer might race with memcg OOM */
  588. if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
  589. return;
  590. /* oom_mm is bound to the signal struct life time. */
  591. if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
  592. atomic_inc(&tsk->signal->oom_mm->mm_count);
  593. /*
  594. * Make sure that the task is woken up from uninterruptible sleep
  595. * if it is frozen because OOM killer wouldn't be able to free
  596. * any memory and livelock. freezing_slow_path will tell the freezer
  597. * that TIF_MEMDIE tasks should be ignored.
  598. */
  599. __thaw_task(tsk);
  600. atomic_inc(&oom_victims);
  601. }
  602. /**
  603. * exit_oom_victim - note the exit of an OOM victim
  604. */
  605. void exit_oom_victim(void)
  606. {
  607. clear_thread_flag(TIF_MEMDIE);
  608. if (!atomic_dec_return(&oom_victims))
  609. wake_up_all(&oom_victims_wait);
  610. }
  611. /**
  612. * oom_killer_enable - enable OOM killer
  613. */
  614. void oom_killer_enable(void)
  615. {
  616. oom_killer_disabled = false;
  617. }
  618. /**
  619. * oom_killer_disable - disable OOM killer
  620. * @timeout: maximum timeout to wait for oom victims in jiffies
  621. *
  622. * Forces all page allocations to fail rather than trigger OOM killer.
  623. * Will block and wait until all OOM victims are killed or the given
  624. * timeout expires.
  625. *
  626. * The function cannot be called when there are runnable user tasks because
  627. * the userspace would see unexpected allocation failures as a result. Any
  628. * new usage of this function should be consulted with MM people.
  629. *
  630. * Returns true if successful and false if the OOM killer cannot be
  631. * disabled.
  632. */
  633. bool oom_killer_disable(signed long timeout)
  634. {
  635. signed long ret;
  636. /*
  637. * Make sure to not race with an ongoing OOM killer. Check that the
  638. * current is not killed (possibly due to sharing the victim's memory).
  639. */
  640. if (mutex_lock_killable(&oom_lock))
  641. return false;
  642. oom_killer_disabled = true;
  643. mutex_unlock(&oom_lock);
  644. ret = wait_event_interruptible_timeout(oom_victims_wait,
  645. !atomic_read(&oom_victims), timeout);
  646. if (ret <= 0) {
  647. oom_killer_enable();
  648. return false;
  649. }
  650. return true;
  651. }
  652. static inline bool __task_will_free_mem(struct task_struct *task)
  653. {
  654. struct signal_struct *sig = task->signal;
  655. /*
  656. * A coredumping process may sleep for an extended period in exit_mm(),
  657. * so the oom killer cannot assume that the process will promptly exit
  658. * and release memory.
  659. */
  660. if (sig->flags & SIGNAL_GROUP_COREDUMP)
  661. return false;
  662. if (sig->flags & SIGNAL_GROUP_EXIT)
  663. return true;
  664. if (thread_group_empty(task) && (task->flags & PF_EXITING))
  665. return true;
  666. return false;
  667. }
  668. /*
  669. * Checks whether the given task is dying or exiting and likely to
  670. * release its address space. This means that all threads and processes
  671. * sharing the same mm have to be killed or exiting.
  672. * Caller has to make sure that task->mm is stable (hold task_lock or
  673. * it operates on the current).
  674. */
  675. static bool task_will_free_mem(struct task_struct *task)
  676. {
  677. struct mm_struct *mm = task->mm;
  678. struct task_struct *p;
  679. bool ret = true;
  680. /*
  681. * Skip tasks without mm because it might have passed its exit_mm and
  682. * exit_oom_victim. oom_reaper could have rescued that but do not rely
  683. * on that for now. We can consider find_lock_task_mm in future.
  684. */
  685. if (!mm)
  686. return false;
  687. if (!__task_will_free_mem(task))
  688. return false;
  689. /*
  690. * This task has already been drained by the oom reaper so there are
  691. * only small chances it will free some more
  692. */
  693. if (test_bit(MMF_OOM_SKIP, &mm->flags))
  694. return false;
  695. if (atomic_read(&mm->mm_users) <= 1)
  696. return true;
  697. /*
  698. * Make sure that all tasks which share the mm with the given tasks
  699. * are dying as well to make sure that a) nobody pins its mm and
  700. * b) the task is also reapable by the oom reaper.
  701. */
  702. rcu_read_lock();
  703. for_each_process(p) {
  704. if (!process_shares_mm(p, mm))
  705. continue;
  706. if (same_thread_group(task, p))
  707. continue;
  708. ret = __task_will_free_mem(p);
  709. if (!ret)
  710. break;
  711. }
  712. rcu_read_unlock();
  713. return ret;
  714. }
  715. static void oom_kill_process(struct oom_control *oc, const char *message)
  716. {
  717. struct task_struct *p = oc->chosen;
  718. unsigned int points = oc->chosen_points;
  719. struct task_struct *victim = p;
  720. struct task_struct *child;
  721. struct task_struct *t;
  722. struct mm_struct *mm;
  723. unsigned int victim_points = 0;
  724. static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  725. DEFAULT_RATELIMIT_BURST);
  726. bool can_oom_reap = true;
  727. /*
  728. * If the task is already exiting, don't alarm the sysadmin or kill
  729. * its children or threads, just set TIF_MEMDIE so it can die quickly
  730. */
  731. task_lock(p);
  732. if (task_will_free_mem(p)) {
  733. mark_oom_victim(p);
  734. wake_oom_reaper(p);
  735. task_unlock(p);
  736. put_task_struct(p);
  737. return;
  738. }
  739. task_unlock(p);
  740. if (__ratelimit(&oom_rs))
  741. dump_header(oc, p);
  742. pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
  743. message, task_pid_nr(p), p->comm, points);
  744. /*
  745. * If any of p's children has a different mm and is eligible for kill,
  746. * the one with the highest oom_badness() score is sacrificed for its
  747. * parent. This attempts to lose the minimal amount of work done while
  748. * still freeing memory.
  749. */
  750. read_lock(&tasklist_lock);
  751. for_each_thread(p, t) {
  752. list_for_each_entry(child, &t->children, sibling) {
  753. unsigned int child_points;
  754. if (process_shares_mm(child, p->mm))
  755. continue;
  756. /*
  757. * oom_badness() returns 0 if the thread is unkillable
  758. */
  759. child_points = oom_badness(child,
  760. oc->memcg, oc->nodemask, oc->totalpages);
  761. if (child_points > victim_points) {
  762. put_task_struct(victim);
  763. victim = child;
  764. victim_points = child_points;
  765. get_task_struct(victim);
  766. }
  767. }
  768. }
  769. read_unlock(&tasklist_lock);
  770. p = find_lock_task_mm(victim);
  771. if (!p) {
  772. put_task_struct(victim);
  773. return;
  774. } else if (victim != p) {
  775. get_task_struct(p);
  776. put_task_struct(victim);
  777. victim = p;
  778. }
  779. /* Get a reference to safely compare mm after task_unlock(victim) */
  780. mm = victim->mm;
  781. atomic_inc(&mm->mm_count);
  782. /*
  783. * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
  784. * the OOM victim from depleting the memory reserves from the user
  785. * space under its control.
  786. */
  787. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
  788. mark_oom_victim(victim);
  789. pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  790. task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
  791. K(get_mm_counter(victim->mm, MM_ANONPAGES)),
  792. K(get_mm_counter(victim->mm, MM_FILEPAGES)),
  793. K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
  794. task_unlock(victim);
  795. /*
  796. * Kill all user processes sharing victim->mm in other thread groups, if
  797. * any. They don't get access to memory reserves, though, to avoid
  798. * depletion of all memory. This prevents mm->mmap_sem livelock when an
  799. * oom killed thread cannot exit because it requires the semaphore and
  800. * its contended by another thread trying to allocate memory itself.
  801. * That thread will now get access to memory reserves since it has a
  802. * pending fatal signal.
  803. */
  804. rcu_read_lock();
  805. for_each_process(p) {
  806. if (!process_shares_mm(p, mm))
  807. continue;
  808. if (same_thread_group(p, victim))
  809. continue;
  810. if (is_global_init(p)) {
  811. can_oom_reap = false;
  812. set_bit(MMF_OOM_SKIP, &mm->flags);
  813. pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
  814. task_pid_nr(victim), victim->comm,
  815. task_pid_nr(p), p->comm);
  816. continue;
  817. }
  818. /*
  819. * No use_mm() user needs to read from the userspace so we are
  820. * ok to reap it.
  821. */
  822. if (unlikely(p->flags & PF_KTHREAD))
  823. continue;
  824. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
  825. }
  826. rcu_read_unlock();
  827. if (can_oom_reap)
  828. wake_oom_reaper(victim);
  829. mmdrop(mm);
  830. put_task_struct(victim);
  831. }
  832. #undef K
  833. /*
  834. * Determines whether the kernel must panic because of the panic_on_oom sysctl.
  835. */
  836. static void check_panic_on_oom(struct oom_control *oc,
  837. enum oom_constraint constraint)
  838. {
  839. if (likely(!sysctl_panic_on_oom))
  840. return;
  841. if (sysctl_panic_on_oom != 2) {
  842. /*
  843. * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
  844. * does not panic for cpuset, mempolicy, or memcg allocation
  845. * failures.
  846. */
  847. if (constraint != CONSTRAINT_NONE)
  848. return;
  849. }
  850. /* Do not panic for oom kills triggered by sysrq */
  851. if (is_sysrq_oom(oc))
  852. return;
  853. dump_header(oc, NULL);
  854. panic("Out of memory: %s panic_on_oom is enabled\n",
  855. sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
  856. }
  857. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  858. int register_oom_notifier(struct notifier_block *nb)
  859. {
  860. return blocking_notifier_chain_register(&oom_notify_list, nb);
  861. }
  862. EXPORT_SYMBOL_GPL(register_oom_notifier);
  863. int unregister_oom_notifier(struct notifier_block *nb)
  864. {
  865. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  866. }
  867. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  868. /**
  869. * out_of_memory - kill the "best" process when we run out of memory
  870. * @oc: pointer to struct oom_control
  871. *
  872. * If we run out of memory, we have the choice between either
  873. * killing a random task (bad), letting the system crash (worse)
  874. * OR try to be smart about which process to kill. Note that we
  875. * don't have to be perfect here, we just have to be good.
  876. */
  877. bool out_of_memory(struct oom_control *oc)
  878. {
  879. unsigned long freed = 0;
  880. enum oom_constraint constraint = CONSTRAINT_NONE;
  881. if (oom_killer_disabled)
  882. return false;
  883. if (!is_memcg_oom(oc)) {
  884. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  885. if (freed > 0)
  886. /* Got some memory back in the last second. */
  887. return true;
  888. }
  889. /*
  890. * If current has a pending SIGKILL or is exiting, then automatically
  891. * select it. The goal is to allow it to allocate so that it may
  892. * quickly exit and free its memory.
  893. */
  894. if (task_will_free_mem(current)) {
  895. mark_oom_victim(current);
  896. wake_oom_reaper(current);
  897. return true;
  898. }
  899. /*
  900. * The OOM killer does not compensate for IO-less reclaim.
  901. * pagefault_out_of_memory lost its gfp context so we have to
  902. * make sure exclude 0 mask - all other users should have at least
  903. * ___GFP_DIRECT_RECLAIM to get here.
  904. */
  905. if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
  906. return true;
  907. /*
  908. * Check if there were limitations on the allocation (only relevant for
  909. * NUMA and memcg) that may require different handling.
  910. */
  911. constraint = constrained_alloc(oc);
  912. if (constraint != CONSTRAINT_MEMORY_POLICY)
  913. oc->nodemask = NULL;
  914. check_panic_on_oom(oc, constraint);
  915. if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
  916. current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
  917. current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
  918. get_task_struct(current);
  919. oc->chosen = current;
  920. oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
  921. return true;
  922. }
  923. select_bad_process(oc);
  924. /* Found nothing?!?! Either we hang forever, or we panic. */
  925. if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
  926. dump_header(oc, NULL);
  927. panic("Out of memory and no killable processes...\n");
  928. }
  929. if (oc->chosen && oc->chosen != (void *)-1UL) {
  930. oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
  931. "Memory cgroup out of memory");
  932. /*
  933. * Give the killed process a good chance to exit before trying
  934. * to allocate memory again.
  935. */
  936. schedule_timeout_killable(1);
  937. }
  938. return !!oc->chosen;
  939. }
  940. /*
  941. * The pagefault handler calls here because it is out of memory, so kill a
  942. * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
  943. * killing is already in progress so do nothing.
  944. */
  945. void pagefault_out_of_memory(void)
  946. {
  947. struct oom_control oc = {
  948. .zonelist = NULL,
  949. .nodemask = NULL,
  950. .memcg = NULL,
  951. .gfp_mask = 0,
  952. .order = 0,
  953. };
  954. if (mem_cgroup_oom_synchronize(true))
  955. return;
  956. if (!mutex_trylock(&oom_lock))
  957. return;
  958. out_of_memory(&oc);
  959. mutex_unlock(&oom_lock);
  960. }