123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498 |
- /* mpihelp-mul.c - MPI helper functions
- * Copyright (C) 1994, 1996, 1998, 1999,
- * 2000 Free Software Foundation, Inc.
- *
- * This file is part of GnuPG.
- *
- * GnuPG is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * GnuPG is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
- *
- * Note: This code is heavily based on the GNU MP Library.
- * Actually it's the same code with only minor changes in the
- * way the data is stored; this is to support the abstraction
- * of an optional secure memory allocation which may be used
- * to avoid revealing of sensitive data due to paging etc.
- * The GNU MP Library itself is published under the LGPL;
- * however I decided to publish this code under the plain GPL.
- */
- #include <linux/string.h>
- #include "mpi-internal.h"
- #include "longlong.h"
- #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \
- do { \
- if ((size) < KARATSUBA_THRESHOLD) \
- mul_n_basecase(prodp, up, vp, size); \
- else \
- mul_n(prodp, up, vp, size, tspace); \
- } while (0);
- #define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \
- do { \
- if ((size) < KARATSUBA_THRESHOLD) \
- mpih_sqr_n_basecase(prodp, up, size); \
- else \
- mpih_sqr_n(prodp, up, size, tspace); \
- } while (0);
- /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
- * both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are
- * always stored. Return the most significant limb.
- *
- * Argument constraints:
- * 1. PRODP != UP and PRODP != VP, i.e. the destination
- * must be distinct from the multiplier and the multiplicand.
- *
- *
- * Handle simple cases with traditional multiplication.
- *
- * This is the most critical code of multiplication. All multiplies rely
- * on this, both small and huge. Small ones arrive here immediately. Huge
- * ones arrive here as this is the base case for Karatsuba's recursive
- * algorithm below.
- */
- static mpi_limb_t
- mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
- {
- mpi_size_t i;
- mpi_limb_t cy;
- mpi_limb_t v_limb;
- /* Multiply by the first limb in V separately, as the result can be
- * stored (not added) to PROD. We also avoid a loop for zeroing. */
- v_limb = vp[0];
- if (v_limb <= 1) {
- if (v_limb == 1)
- MPN_COPY(prodp, up, size);
- else
- MPN_ZERO(prodp, size);
- cy = 0;
- } else
- cy = mpihelp_mul_1(prodp, up, size, v_limb);
- prodp[size] = cy;
- prodp++;
- /* For each iteration in the outer loop, multiply one limb from
- * U with one limb from V, and add it to PROD. */
- for (i = 1; i < size; i++) {
- v_limb = vp[i];
- if (v_limb <= 1) {
- cy = 0;
- if (v_limb == 1)
- cy = mpihelp_add_n(prodp, prodp, up, size);
- } else
- cy = mpihelp_addmul_1(prodp, up, size, v_limb);
- prodp[size] = cy;
- prodp++;
- }
- return cy;
- }
- static void
- mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
- mpi_size_t size, mpi_ptr_t tspace)
- {
- if (size & 1) {
- /* The size is odd, and the code below doesn't handle that.
- * Multiply the least significant (size - 1) limbs with a recursive
- * call, and handle the most significant limb of S1 and S2
- * separately.
- * A slightly faster way to do this would be to make the Karatsuba
- * code below behave as if the size were even, and let it check for
- * odd size in the end. I.e., in essence move this code to the end.
- * Doing so would save us a recursive call, and potentially make the
- * stack grow a lot less.
- */
- mpi_size_t esize = size - 1; /* even size */
- mpi_limb_t cy_limb;
- MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace);
- cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]);
- prodp[esize + esize] = cy_limb;
- cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]);
- prodp[esize + size] = cy_limb;
- } else {
- /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
- *
- * Split U in two pieces, U1 and U0, such that
- * U = U0 + U1*(B**n),
- * and V in V1 and V0, such that
- * V = V0 + V1*(B**n).
- *
- * UV is then computed recursively using the identity
- *
- * 2n n n n
- * UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V
- * 1 1 1 0 0 1 0 0
- *
- * Where B = 2**BITS_PER_MP_LIMB.
- */
- mpi_size_t hsize = size >> 1;
- mpi_limb_t cy;
- int negflg;
- /* Product H. ________________ ________________
- * |_____U1 x V1____||____U0 x V0_____|
- * Put result in upper part of PROD and pass low part of TSPACE
- * as new TSPACE.
- */
- MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize,
- tspace);
- /* Product M. ________________
- * |_(U1-U0)(V0-V1)_|
- */
- if (mpihelp_cmp(up + hsize, up, hsize) >= 0) {
- mpihelp_sub_n(prodp, up + hsize, up, hsize);
- negflg = 0;
- } else {
- mpihelp_sub_n(prodp, up, up + hsize, hsize);
- negflg = 1;
- }
- if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) {
- mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
- negflg ^= 1;
- } else {
- mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
- /* No change of NEGFLG. */
- }
- /* Read temporary operands from low part of PROD.
- * Put result in low part of TSPACE using upper part of TSPACE
- * as new TSPACE.
- */
- MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize,
- tspace + size);
- /* Add/copy product H. */
- MPN_COPY(prodp + hsize, prodp + size, hsize);
- cy = mpihelp_add_n(prodp + size, prodp + size,
- prodp + size + hsize, hsize);
- /* Add product M (if NEGFLG M is a negative number) */
- if (negflg)
- cy -=
- mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace,
- size);
- else
- cy +=
- mpihelp_add_n(prodp + hsize, prodp + hsize, tspace,
- size);
- /* Product L. ________________ ________________
- * |________________||____U0 x V0_____|
- * Read temporary operands from low part of PROD.
- * Put result in low part of TSPACE using upper part of TSPACE
- * as new TSPACE.
- */
- MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
- /* Add/copy Product L (twice) */
- cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
- if (cy)
- mpihelp_add_1(prodp + hsize + size,
- prodp + hsize + size, hsize, cy);
- MPN_COPY(prodp, tspace, hsize);
- cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
- hsize);
- if (cy)
- mpihelp_add_1(prodp + size, prodp + size, size, 1);
- }
- }
- void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size)
- {
- mpi_size_t i;
- mpi_limb_t cy_limb;
- mpi_limb_t v_limb;
- /* Multiply by the first limb in V separately, as the result can be
- * stored (not added) to PROD. We also avoid a loop for zeroing. */
- v_limb = up[0];
- if (v_limb <= 1) {
- if (v_limb == 1)
- MPN_COPY(prodp, up, size);
- else
- MPN_ZERO(prodp, size);
- cy_limb = 0;
- } else
- cy_limb = mpihelp_mul_1(prodp, up, size, v_limb);
- prodp[size] = cy_limb;
- prodp++;
- /* For each iteration in the outer loop, multiply one limb from
- * U with one limb from V, and add it to PROD. */
- for (i = 1; i < size; i++) {
- v_limb = up[i];
- if (v_limb <= 1) {
- cy_limb = 0;
- if (v_limb == 1)
- cy_limb = mpihelp_add_n(prodp, prodp, up, size);
- } else
- cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
- prodp[size] = cy_limb;
- prodp++;
- }
- }
- void
- mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
- {
- if (size & 1) {
- /* The size is odd, and the code below doesn't handle that.
- * Multiply the least significant (size - 1) limbs with a recursive
- * call, and handle the most significant limb of S1 and S2
- * separately.
- * A slightly faster way to do this would be to make the Karatsuba
- * code below behave as if the size were even, and let it check for
- * odd size in the end. I.e., in essence move this code to the end.
- * Doing so would save us a recursive call, and potentially make the
- * stack grow a lot less.
- */
- mpi_size_t esize = size - 1; /* even size */
- mpi_limb_t cy_limb;
- MPN_SQR_N_RECURSE(prodp, up, esize, tspace);
- cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]);
- prodp[esize + esize] = cy_limb;
- cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]);
- prodp[esize + size] = cy_limb;
- } else {
- mpi_size_t hsize = size >> 1;
- mpi_limb_t cy;
- /* Product H. ________________ ________________
- * |_____U1 x U1____||____U0 x U0_____|
- * Put result in upper part of PROD and pass low part of TSPACE
- * as new TSPACE.
- */
- MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
- /* Product M. ________________
- * |_(U1-U0)(U0-U1)_|
- */
- if (mpihelp_cmp(up + hsize, up, hsize) >= 0)
- mpihelp_sub_n(prodp, up + hsize, up, hsize);
- else
- mpihelp_sub_n(prodp, up, up + hsize, hsize);
- /* Read temporary operands from low part of PROD.
- * Put result in low part of TSPACE using upper part of TSPACE
- * as new TSPACE. */
- MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
- /* Add/copy product H */
- MPN_COPY(prodp + hsize, prodp + size, hsize);
- cy = mpihelp_add_n(prodp + size, prodp + size,
- prodp + size + hsize, hsize);
- /* Add product M (if NEGFLG M is a negative number). */
- cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
- /* Product L. ________________ ________________
- * |________________||____U0 x U0_____|
- * Read temporary operands from low part of PROD.
- * Put result in low part of TSPACE using upper part of TSPACE
- * as new TSPACE. */
- MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size);
- /* Add/copy Product L (twice). */
- cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
- if (cy)
- mpihelp_add_1(prodp + hsize + size,
- prodp + hsize + size, hsize, cy);
- MPN_COPY(prodp, tspace, hsize);
- cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
- hsize);
- if (cy)
- mpihelp_add_1(prodp + size, prodp + size, size, 1);
- }
- }
- int
- mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
- mpi_ptr_t up, mpi_size_t usize,
- mpi_ptr_t vp, mpi_size_t vsize,
- struct karatsuba_ctx *ctx)
- {
- mpi_limb_t cy;
- if (!ctx->tspace || ctx->tspace_size < vsize) {
- if (ctx->tspace)
- mpi_free_limb_space(ctx->tspace);
- ctx->tspace = mpi_alloc_limb_space(2 * vsize);
- if (!ctx->tspace)
- return -ENOMEM;
- ctx->tspace_size = vsize;
- }
- MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace);
- prodp += vsize;
- up += vsize;
- usize -= vsize;
- if (usize >= vsize) {
- if (!ctx->tp || ctx->tp_size < vsize) {
- if (ctx->tp)
- mpi_free_limb_space(ctx->tp);
- ctx->tp = mpi_alloc_limb_space(2 * vsize);
- if (!ctx->tp) {
- if (ctx->tspace)
- mpi_free_limb_space(ctx->tspace);
- ctx->tspace = NULL;
- return -ENOMEM;
- }
- ctx->tp_size = vsize;
- }
- do {
- MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace);
- cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize);
- mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize,
- cy);
- prodp += vsize;
- up += vsize;
- usize -= vsize;
- } while (usize >= vsize);
- }
- if (usize) {
- if (usize < KARATSUBA_THRESHOLD) {
- mpi_limb_t tmp;
- if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp)
- < 0)
- return -ENOMEM;
- } else {
- if (!ctx->next) {
- ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL);
- if (!ctx->next)
- return -ENOMEM;
- }
- if (mpihelp_mul_karatsuba_case(ctx->tspace,
- vp, vsize,
- up, usize,
- ctx->next) < 0)
- return -ENOMEM;
- }
- cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize);
- mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy);
- }
- return 0;
- }
- void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx)
- {
- struct karatsuba_ctx *ctx2;
- if (ctx->tp)
- mpi_free_limb_space(ctx->tp);
- if (ctx->tspace)
- mpi_free_limb_space(ctx->tspace);
- for (ctx = ctx->next; ctx; ctx = ctx2) {
- ctx2 = ctx->next;
- if (ctx->tp)
- mpi_free_limb_space(ctx->tp);
- if (ctx->tspace)
- mpi_free_limb_space(ctx->tspace);
- kfree(ctx);
- }
- }
- /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
- * and v (pointed to by VP, with VSIZE limbs), and store the result at
- * PRODP. USIZE + VSIZE limbs are always stored, but if the input
- * operands are normalized. Return the most significant limb of the
- * result.
- *
- * NOTE: The space pointed to by PRODP is overwritten before finished
- * with U and V, so overlap is an error.
- *
- * Argument constraints:
- * 1. USIZE >= VSIZE.
- * 2. PRODP != UP and PRODP != VP, i.e. the destination
- * must be distinct from the multiplier and the multiplicand.
- */
- int
- mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
- mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result)
- {
- mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
- mpi_limb_t cy;
- struct karatsuba_ctx ctx;
- if (vsize < KARATSUBA_THRESHOLD) {
- mpi_size_t i;
- mpi_limb_t v_limb;
- if (!vsize) {
- *_result = 0;
- return 0;
- }
- /* Multiply by the first limb in V separately, as the result can be
- * stored (not added) to PROD. We also avoid a loop for zeroing. */
- v_limb = vp[0];
- if (v_limb <= 1) {
- if (v_limb == 1)
- MPN_COPY(prodp, up, usize);
- else
- MPN_ZERO(prodp, usize);
- cy = 0;
- } else
- cy = mpihelp_mul_1(prodp, up, usize, v_limb);
- prodp[usize] = cy;
- prodp++;
- /* For each iteration in the outer loop, multiply one limb from
- * U with one limb from V, and add it to PROD. */
- for (i = 1; i < vsize; i++) {
- v_limb = vp[i];
- if (v_limb <= 1) {
- cy = 0;
- if (v_limb == 1)
- cy = mpihelp_add_n(prodp, prodp, up,
- usize);
- } else
- cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
- prodp[usize] = cy;
- prodp++;
- }
- *_result = cy;
- return 0;
- }
- memset(&ctx, 0, sizeof ctx);
- if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0)
- return -ENOMEM;
- mpihelp_release_karatsuba_ctx(&ctx);
- *_result = *prod_endp;
- return 0;
- }
|