123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795 |
- /*
- * linux/kernel/time.c
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- *
- * This file contains the interface functions for the various
- * time related system calls: time, stime, gettimeofday, settimeofday,
- * adjtime
- */
- /*
- * Modification history kernel/time.c
- *
- * 1993-09-02 Philip Gladstone
- * Created file with time related functions from sched/core.c and adjtimex()
- * 1993-10-08 Torsten Duwe
- * adjtime interface update and CMOS clock write code
- * 1995-08-13 Torsten Duwe
- * kernel PLL updated to 1994-12-13 specs (rfc-1589)
- * 1999-01-16 Ulrich Windl
- * Introduced error checking for many cases in adjtimex().
- * Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
- * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
- * (Even though the technical memorandum forbids it)
- * 2004-07-14 Christoph Lameter
- * Added getnstimeofday to allow the posix timer functions to return
- * with nanosecond accuracy
- */
- #include <linux/export.h>
- #include <linux/kernel.h>
- #include <linux/timex.h>
- #include <linux/capability.h>
- #include <linux/timekeeper_internal.h>
- #include <linux/errno.h>
- #include <linux/syscalls.h>
- #include <linux/security.h>
- #include <linux/fs.h>
- #include <linux/math64.h>
- #include <linux/ptrace.h>
- #include <asm/uaccess.h>
- #include <asm/unistd.h>
- #include <generated/timeconst.h>
- #include "timekeeping.h"
- /*
- * The timezone where the local system is located. Used as a default by some
- * programs who obtain this value by using gettimeofday.
- */
- struct timezone sys_tz;
- EXPORT_SYMBOL(sys_tz);
- #ifdef __ARCH_WANT_SYS_TIME
- /*
- * sys_time() can be implemented in user-level using
- * sys_gettimeofday(). Is this for backwards compatibility? If so,
- * why not move it into the appropriate arch directory (for those
- * architectures that need it).
- */
- SYSCALL_DEFINE1(time, time_t __user *, tloc)
- {
- time_t i = get_seconds();
- if (tloc) {
- if (put_user(i,tloc))
- return -EFAULT;
- }
- force_successful_syscall_return();
- return i;
- }
- /*
- * sys_stime() can be implemented in user-level using
- * sys_settimeofday(). Is this for backwards compatibility? If so,
- * why not move it into the appropriate arch directory (for those
- * architectures that need it).
- */
- SYSCALL_DEFINE1(stime, time_t __user *, tptr)
- {
- struct timespec tv;
- int err;
- if (get_user(tv.tv_sec, tptr))
- return -EFAULT;
- tv.tv_nsec = 0;
- err = security_settime(&tv, NULL);
- if (err)
- return err;
- do_settimeofday(&tv);
- return 0;
- }
- #endif /* __ARCH_WANT_SYS_TIME */
- SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
- struct timezone __user *, tz)
- {
- if (likely(tv != NULL)) {
- struct timeval ktv;
- do_gettimeofday(&ktv);
- if (copy_to_user(tv, &ktv, sizeof(ktv)))
- return -EFAULT;
- }
- if (unlikely(tz != NULL)) {
- if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
- return -EFAULT;
- }
- return 0;
- }
- /*
- * Indicates if there is an offset between the system clock and the hardware
- * clock/persistent clock/rtc.
- */
- int persistent_clock_is_local;
- /*
- * Adjust the time obtained from the CMOS to be UTC time instead of
- * local time.
- *
- * This is ugly, but preferable to the alternatives. Otherwise we
- * would either need to write a program to do it in /etc/rc (and risk
- * confusion if the program gets run more than once; it would also be
- * hard to make the program warp the clock precisely n hours) or
- * compile in the timezone information into the kernel. Bad, bad....
- *
- * - TYT, 1992-01-01
- *
- * The best thing to do is to keep the CMOS clock in universal time (UTC)
- * as real UNIX machines always do it. This avoids all headaches about
- * daylight saving times and warping kernel clocks.
- */
- static inline void warp_clock(void)
- {
- if (sys_tz.tz_minuteswest != 0) {
- struct timespec adjust;
- persistent_clock_is_local = 1;
- adjust.tv_sec = sys_tz.tz_minuteswest * 60;
- adjust.tv_nsec = 0;
- timekeeping_inject_offset(&adjust);
- }
- }
- /*
- * In case for some reason the CMOS clock has not already been running
- * in UTC, but in some local time: The first time we set the timezone,
- * we will warp the clock so that it is ticking UTC time instead of
- * local time. Presumably, if someone is setting the timezone then we
- * are running in an environment where the programs understand about
- * timezones. This should be done at boot time in the /etc/rc script,
- * as soon as possible, so that the clock can be set right. Otherwise,
- * various programs will get confused when the clock gets warped.
- */
- int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
- {
- static int firsttime = 1;
- int error = 0;
- if (tv && !timespec64_valid(tv))
- return -EINVAL;
- error = security_settime64(tv, tz);
- if (error)
- return error;
- if (tz) {
- /* Verify we're witin the +-15 hrs range */
- if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
- return -EINVAL;
- sys_tz = *tz;
- update_vsyscall_tz();
- if (firsttime) {
- firsttime = 0;
- if (!tv)
- warp_clock();
- }
- }
- if (tv)
- return do_settimeofday64(tv);
- return 0;
- }
- SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
- struct timezone __user *, tz)
- {
- struct timeval user_tv;
- struct timespec new_ts;
- struct timezone new_tz;
- if (tv) {
- if (copy_from_user(&user_tv, tv, sizeof(*tv)))
- return -EFAULT;
- if (!timeval_valid(&user_tv))
- return -EINVAL;
- new_ts.tv_sec = user_tv.tv_sec;
- new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
- }
- if (tz) {
- if (copy_from_user(&new_tz, tz, sizeof(*tz)))
- return -EFAULT;
- }
- return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
- }
- SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
- {
- struct timex txc; /* Local copy of parameter */
- int ret;
- /* Copy the user data space into the kernel copy
- * structure. But bear in mind that the structures
- * may change
- */
- if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
- return -EFAULT;
- ret = do_adjtimex(&txc);
- return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
- }
- /**
- * current_fs_time - Return FS time
- * @sb: Superblock.
- *
- * Return the current time truncated to the time granularity supported by
- * the fs.
- */
- struct timespec current_fs_time(struct super_block *sb)
- {
- struct timespec now = current_kernel_time();
- return timespec_trunc(now, sb->s_time_gran);
- }
- EXPORT_SYMBOL(current_fs_time);
- /*
- * Convert jiffies to milliseconds and back.
- *
- * Avoid unnecessary multiplications/divisions in the
- * two most common HZ cases:
- */
- unsigned int jiffies_to_msecs(const unsigned long j)
- {
- #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
- return (MSEC_PER_SEC / HZ) * j;
- #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
- return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
- #else
- # if BITS_PER_LONG == 32
- return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
- HZ_TO_MSEC_SHR32;
- # else
- return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
- # endif
- #endif
- }
- EXPORT_SYMBOL(jiffies_to_msecs);
- unsigned int jiffies_to_usecs(const unsigned long j)
- {
- /*
- * Hz usually doesn't go much further MSEC_PER_SEC.
- * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
- */
- BUILD_BUG_ON(HZ > USEC_PER_SEC);
- #if !(USEC_PER_SEC % HZ)
- return (USEC_PER_SEC / HZ) * j;
- #else
- # if BITS_PER_LONG == 32
- return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
- # else
- return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
- # endif
- #endif
- }
- EXPORT_SYMBOL(jiffies_to_usecs);
- /**
- * timespec_trunc - Truncate timespec to a granularity
- * @t: Timespec
- * @gran: Granularity in ns.
- *
- * Truncate a timespec to a granularity. Always rounds down. gran must
- * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
- */
- struct timespec timespec_trunc(struct timespec t, unsigned gran)
- {
- /* Avoid division in the common cases 1 ns and 1 s. */
- if (gran == 1) {
- /* nothing */
- } else if (gran == NSEC_PER_SEC) {
- t.tv_nsec = 0;
- } else if (gran > 1 && gran < NSEC_PER_SEC) {
- t.tv_nsec -= t.tv_nsec % gran;
- } else {
- WARN(1, "illegal file time granularity: %u", gran);
- }
- return t;
- }
- EXPORT_SYMBOL(timespec_trunc);
- /*
- * mktime64 - Converts date to seconds.
- * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
- * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
- * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
- *
- * [For the Julian calendar (which was used in Russia before 1917,
- * Britain & colonies before 1752, anywhere else before 1582,
- * and is still in use by some communities) leave out the
- * -year/100+year/400 terms, and add 10.]
- *
- * This algorithm was first published by Gauss (I think).
- *
- * A leap second can be indicated by calling this function with sec as
- * 60 (allowable under ISO 8601). The leap second is treated the same
- * as the following second since they don't exist in UNIX time.
- *
- * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
- * tomorrow - (allowable under ISO 8601) is supported.
- */
- time64_t mktime64(const unsigned int year0, const unsigned int mon0,
- const unsigned int day, const unsigned int hour,
- const unsigned int min, const unsigned int sec)
- {
- unsigned int mon = mon0, year = year0;
- /* 1..12 -> 11,12,1..10 */
- if (0 >= (int) (mon -= 2)) {
- mon += 12; /* Puts Feb last since it has leap day */
- year -= 1;
- }
- return ((((time64_t)
- (year/4 - year/100 + year/400 + 367*mon/12 + day) +
- year*365 - 719499
- )*24 + hour /* now have hours - midnight tomorrow handled here */
- )*60 + min /* now have minutes */
- )*60 + sec; /* finally seconds */
- }
- EXPORT_SYMBOL(mktime64);
- /**
- * set_normalized_timespec - set timespec sec and nsec parts and normalize
- *
- * @ts: pointer to timespec variable to be set
- * @sec: seconds to set
- * @nsec: nanoseconds to set
- *
- * Set seconds and nanoseconds field of a timespec variable and
- * normalize to the timespec storage format
- *
- * Note: The tv_nsec part is always in the range of
- * 0 <= tv_nsec < NSEC_PER_SEC
- * For negative values only the tv_sec field is negative !
- */
- void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
- {
- while (nsec >= NSEC_PER_SEC) {
- /*
- * The following asm() prevents the compiler from
- * optimising this loop into a modulo operation. See
- * also __iter_div_u64_rem() in include/linux/time.h
- */
- asm("" : "+rm"(nsec));
- nsec -= NSEC_PER_SEC;
- ++sec;
- }
- while (nsec < 0) {
- asm("" : "+rm"(nsec));
- nsec += NSEC_PER_SEC;
- --sec;
- }
- ts->tv_sec = sec;
- ts->tv_nsec = nsec;
- }
- EXPORT_SYMBOL(set_normalized_timespec);
- /**
- * ns_to_timespec - Convert nanoseconds to timespec
- * @nsec: the nanoseconds value to be converted
- *
- * Returns the timespec representation of the nsec parameter.
- */
- struct timespec ns_to_timespec(const s64 nsec)
- {
- struct timespec ts;
- s32 rem;
- if (!nsec)
- return (struct timespec) {0, 0};
- ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
- if (unlikely(rem < 0)) {
- ts.tv_sec--;
- rem += NSEC_PER_SEC;
- }
- ts.tv_nsec = rem;
- return ts;
- }
- EXPORT_SYMBOL(ns_to_timespec);
- /**
- * ns_to_timeval - Convert nanoseconds to timeval
- * @nsec: the nanoseconds value to be converted
- *
- * Returns the timeval representation of the nsec parameter.
- */
- struct timeval ns_to_timeval(const s64 nsec)
- {
- struct timespec ts = ns_to_timespec(nsec);
- struct timeval tv;
- tv.tv_sec = ts.tv_sec;
- tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
- return tv;
- }
- EXPORT_SYMBOL(ns_to_timeval);
- #if BITS_PER_LONG == 32
- /**
- * set_normalized_timespec - set timespec sec and nsec parts and normalize
- *
- * @ts: pointer to timespec variable to be set
- * @sec: seconds to set
- * @nsec: nanoseconds to set
- *
- * Set seconds and nanoseconds field of a timespec variable and
- * normalize to the timespec storage format
- *
- * Note: The tv_nsec part is always in the range of
- * 0 <= tv_nsec < NSEC_PER_SEC
- * For negative values only the tv_sec field is negative !
- */
- void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
- {
- while (nsec >= NSEC_PER_SEC) {
- /*
- * The following asm() prevents the compiler from
- * optimising this loop into a modulo operation. See
- * also __iter_div_u64_rem() in include/linux/time.h
- */
- asm("" : "+rm"(nsec));
- nsec -= NSEC_PER_SEC;
- ++sec;
- }
- while (nsec < 0) {
- asm("" : "+rm"(nsec));
- nsec += NSEC_PER_SEC;
- --sec;
- }
- ts->tv_sec = sec;
- ts->tv_nsec = nsec;
- }
- EXPORT_SYMBOL(set_normalized_timespec64);
- /**
- * ns_to_timespec64 - Convert nanoseconds to timespec64
- * @nsec: the nanoseconds value to be converted
- *
- * Returns the timespec64 representation of the nsec parameter.
- */
- struct timespec64 ns_to_timespec64(const s64 nsec)
- {
- struct timespec64 ts;
- s32 rem;
- if (!nsec)
- return (struct timespec64) {0, 0};
- ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
- if (unlikely(rem < 0)) {
- ts.tv_sec--;
- rem += NSEC_PER_SEC;
- }
- ts.tv_nsec = rem;
- return ts;
- }
- EXPORT_SYMBOL(ns_to_timespec64);
- #endif
- /**
- * msecs_to_jiffies: - convert milliseconds to jiffies
- * @m: time in milliseconds
- *
- * conversion is done as follows:
- *
- * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
- *
- * - 'too large' values [that would result in larger than
- * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
- *
- * - all other values are converted to jiffies by either multiplying
- * the input value by a factor or dividing it with a factor and
- * handling any 32-bit overflows.
- * for the details see __msecs_to_jiffies()
- *
- * msecs_to_jiffies() checks for the passed in value being a constant
- * via __builtin_constant_p() allowing gcc to eliminate most of the
- * code, __msecs_to_jiffies() is called if the value passed does not
- * allow constant folding and the actual conversion must be done at
- * runtime.
- * the _msecs_to_jiffies helpers are the HZ dependent conversion
- * routines found in include/linux/jiffies.h
- */
- unsigned long __msecs_to_jiffies(const unsigned int m)
- {
- /*
- * Negative value, means infinite timeout:
- */
- if ((int)m < 0)
- return MAX_JIFFY_OFFSET;
- return _msecs_to_jiffies(m);
- }
- EXPORT_SYMBOL(__msecs_to_jiffies);
- unsigned long __usecs_to_jiffies(const unsigned int u)
- {
- if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
- return MAX_JIFFY_OFFSET;
- return _usecs_to_jiffies(u);
- }
- EXPORT_SYMBOL(__usecs_to_jiffies);
- /*
- * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
- * that a remainder subtract here would not do the right thing as the
- * resolution values don't fall on second boundries. I.e. the line:
- * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
- * Note that due to the small error in the multiplier here, this
- * rounding is incorrect for sufficiently large values of tv_nsec, but
- * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
- * OK.
- *
- * Rather, we just shift the bits off the right.
- *
- * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
- * value to a scaled second value.
- */
- static unsigned long
- __timespec64_to_jiffies(u64 sec, long nsec)
- {
- nsec = nsec + TICK_NSEC - 1;
- if (sec >= MAX_SEC_IN_JIFFIES){
- sec = MAX_SEC_IN_JIFFIES;
- nsec = 0;
- }
- return ((sec * SEC_CONVERSION) +
- (((u64)nsec * NSEC_CONVERSION) >>
- (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
- }
- static unsigned long
- __timespec_to_jiffies(unsigned long sec, long nsec)
- {
- return __timespec64_to_jiffies((u64)sec, nsec);
- }
- unsigned long
- timespec64_to_jiffies(const struct timespec64 *value)
- {
- return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
- }
- EXPORT_SYMBOL(timespec64_to_jiffies);
- void
- jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
- {
- /*
- * Convert jiffies to nanoseconds and separate with
- * one divide.
- */
- u32 rem;
- value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
- NSEC_PER_SEC, &rem);
- value->tv_nsec = rem;
- }
- EXPORT_SYMBOL(jiffies_to_timespec64);
- /*
- * We could use a similar algorithm to timespec_to_jiffies (with a
- * different multiplier for usec instead of nsec). But this has a
- * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
- * usec value, since it's not necessarily integral.
- *
- * We could instead round in the intermediate scaled representation
- * (i.e. in units of 1/2^(large scale) jiffies) but that's also
- * perilous: the scaling introduces a small positive error, which
- * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
- * units to the intermediate before shifting) leads to accidental
- * overflow and overestimates.
- *
- * At the cost of one additional multiplication by a constant, just
- * use the timespec implementation.
- */
- unsigned long
- timeval_to_jiffies(const struct timeval *value)
- {
- return __timespec_to_jiffies(value->tv_sec,
- value->tv_usec * NSEC_PER_USEC);
- }
- EXPORT_SYMBOL(timeval_to_jiffies);
- void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
- {
- /*
- * Convert jiffies to nanoseconds and separate with
- * one divide.
- */
- u32 rem;
- value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
- NSEC_PER_SEC, &rem);
- value->tv_usec = rem / NSEC_PER_USEC;
- }
- EXPORT_SYMBOL(jiffies_to_timeval);
- /*
- * Convert jiffies/jiffies_64 to clock_t and back.
- */
- clock_t jiffies_to_clock_t(unsigned long x)
- {
- #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
- # if HZ < USER_HZ
- return x * (USER_HZ / HZ);
- # else
- return x / (HZ / USER_HZ);
- # endif
- #else
- return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
- #endif
- }
- EXPORT_SYMBOL(jiffies_to_clock_t);
- unsigned long clock_t_to_jiffies(unsigned long x)
- {
- #if (HZ % USER_HZ)==0
- if (x >= ~0UL / (HZ / USER_HZ))
- return ~0UL;
- return x * (HZ / USER_HZ);
- #else
- /* Don't worry about loss of precision here .. */
- if (x >= ~0UL / HZ * USER_HZ)
- return ~0UL;
- /* .. but do try to contain it here */
- return div_u64((u64)x * HZ, USER_HZ);
- #endif
- }
- EXPORT_SYMBOL(clock_t_to_jiffies);
- u64 jiffies_64_to_clock_t(u64 x)
- {
- #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
- # if HZ < USER_HZ
- x = div_u64(x * USER_HZ, HZ);
- # elif HZ > USER_HZ
- x = div_u64(x, HZ / USER_HZ);
- # else
- /* Nothing to do */
- # endif
- #else
- /*
- * There are better ways that don't overflow early,
- * but even this doesn't overflow in hundreds of years
- * in 64 bits, so..
- */
- x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
- #endif
- return x;
- }
- EXPORT_SYMBOL(jiffies_64_to_clock_t);
- u64 nsec_to_clock_t(u64 x)
- {
- #if (NSEC_PER_SEC % USER_HZ) == 0
- return div_u64(x, NSEC_PER_SEC / USER_HZ);
- #elif (USER_HZ % 512) == 0
- return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
- #else
- /*
- * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
- * overflow after 64.99 years.
- * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
- */
- return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
- #endif
- }
- /**
- * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
- *
- * @n: nsecs in u64
- *
- * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
- * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
- * for scheduler, not for use in device drivers to calculate timeout value.
- *
- * note:
- * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
- * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
- */
- u64 nsecs_to_jiffies64(u64 n)
- {
- #if (NSEC_PER_SEC % HZ) == 0
- /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
- return div_u64(n, NSEC_PER_SEC / HZ);
- #elif (HZ % 512) == 0
- /* overflow after 292 years if HZ = 1024 */
- return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
- #else
- /*
- * Generic case - optimized for cases where HZ is a multiple of 3.
- * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
- */
- return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
- #endif
- }
- EXPORT_SYMBOL(nsecs_to_jiffies64);
- /**
- * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
- *
- * @n: nsecs in u64
- *
- * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
- * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
- * for scheduler, not for use in device drivers to calculate timeout value.
- *
- * note:
- * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
- * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
- */
- unsigned long nsecs_to_jiffies(u64 n)
- {
- return (unsigned long)nsecs_to_jiffies64(n);
- }
- EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
- /*
- * Add two timespec values and do a safety check for overflow.
- * It's assumed that both values are valid (>= 0)
- */
- struct timespec timespec_add_safe(const struct timespec lhs,
- const struct timespec rhs)
- {
- struct timespec res;
- set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
- lhs.tv_nsec + rhs.tv_nsec);
- if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
- res.tv_sec = TIME_T_MAX;
- return res;
- }
- /*
- * Add two timespec64 values and do a safety check for overflow.
- * It's assumed that both values are valid (>= 0).
- * And, each timespec64 is in normalized form.
- */
- struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
- const struct timespec64 rhs)
- {
- struct timespec64 res;
- set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
- lhs.tv_nsec + rhs.tv_nsec);
- if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
- res.tv_sec = TIME64_MAX;
- res.tv_nsec = 0;
- }
- return res;
- }
|