pid.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_ns.h>
  39. #include <linux/proc_fs.h>
  40. #define pid_hashfn(nr, ns) \
  41. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  42. static struct hlist_head *pid_hash;
  43. static unsigned int pidhash_shift = 4;
  44. struct pid init_struct_pid = INIT_STRUCT_PID;
  45. int pid_max = PID_MAX_DEFAULT;
  46. #define RESERVED_PIDS 300
  47. int pid_max_min = RESERVED_PIDS + 1;
  48. int pid_max_max = PID_MAX_LIMIT;
  49. static inline int mk_pid(struct pid_namespace *pid_ns,
  50. struct pidmap *map, int off)
  51. {
  52. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  53. }
  54. #define find_next_offset(map, off) \
  55. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  56. /*
  57. * PID-map pages start out as NULL, they get allocated upon
  58. * first use and are never deallocated. This way a low pid_max
  59. * value does not cause lots of bitmaps to be allocated, but
  60. * the scheme scales to up to 4 million PIDs, runtime.
  61. */
  62. struct pid_namespace init_pid_ns = {
  63. .kref = {
  64. .refcount = ATOMIC_INIT(2),
  65. },
  66. .pidmap = {
  67. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  68. },
  69. .last_pid = 0,
  70. .nr_hashed = PIDNS_HASH_ADDING,
  71. .level = 0,
  72. .child_reaper = &init_task,
  73. .user_ns = &init_user_ns,
  74. .ns.inum = PROC_PID_INIT_INO,
  75. #ifdef CONFIG_PID_NS
  76. .ns.ops = &pidns_operations,
  77. #endif
  78. };
  79. EXPORT_SYMBOL_GPL(init_pid_ns);
  80. /*
  81. * Note: disable interrupts while the pidmap_lock is held as an
  82. * interrupt might come in and do read_lock(&tasklist_lock).
  83. *
  84. * If we don't disable interrupts there is a nasty deadlock between
  85. * detach_pid()->free_pid() and another cpu that does
  86. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  87. * read_lock(&tasklist_lock);
  88. *
  89. * After we clean up the tasklist_lock and know there are no
  90. * irq handlers that take it we can leave the interrupts enabled.
  91. * For now it is easier to be safe than to prove it can't happen.
  92. */
  93. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  94. static void free_pidmap(struct upid *upid)
  95. {
  96. int nr = upid->nr;
  97. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  98. int offset = nr & BITS_PER_PAGE_MASK;
  99. clear_bit(offset, map->page);
  100. atomic_inc(&map->nr_free);
  101. }
  102. /*
  103. * If we started walking pids at 'base', is 'a' seen before 'b'?
  104. */
  105. static int pid_before(int base, int a, int b)
  106. {
  107. /*
  108. * This is the same as saying
  109. *
  110. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  111. * and that mapping orders 'a' and 'b' with respect to 'base'.
  112. */
  113. return (unsigned)(a - base) < (unsigned)(b - base);
  114. }
  115. /*
  116. * We might be racing with someone else trying to set pid_ns->last_pid
  117. * at the pid allocation time (there's also a sysctl for this, but racing
  118. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  119. * We want the winner to have the "later" value, because if the
  120. * "earlier" value prevails, then a pid may get reused immediately.
  121. *
  122. * Since pids rollover, it is not sufficient to just pick the bigger
  123. * value. We have to consider where we started counting from.
  124. *
  125. * 'base' is the value of pid_ns->last_pid that we observed when
  126. * we started looking for a pid.
  127. *
  128. * 'pid' is the pid that we eventually found.
  129. */
  130. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  131. {
  132. int prev;
  133. int last_write = base;
  134. do {
  135. prev = last_write;
  136. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  137. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  138. }
  139. static int alloc_pidmap(struct pid_namespace *pid_ns)
  140. {
  141. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  142. struct pidmap *map;
  143. pid = last + 1;
  144. if (pid >= pid_max)
  145. pid = RESERVED_PIDS;
  146. offset = pid & BITS_PER_PAGE_MASK;
  147. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  148. /*
  149. * If last_pid points into the middle of the map->page we
  150. * want to scan this bitmap block twice, the second time
  151. * we start with offset == 0 (or RESERVED_PIDS).
  152. */
  153. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  154. for (i = 0; i <= max_scan; ++i) {
  155. if (unlikely(!map->page)) {
  156. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  157. /*
  158. * Free the page if someone raced with us
  159. * installing it:
  160. */
  161. spin_lock_irq(&pidmap_lock);
  162. if (!map->page) {
  163. map->page = page;
  164. page = NULL;
  165. }
  166. spin_unlock_irq(&pidmap_lock);
  167. kfree(page);
  168. if (unlikely(!map->page))
  169. return -ENOMEM;
  170. }
  171. if (likely(atomic_read(&map->nr_free))) {
  172. for ( ; ; ) {
  173. if (!test_and_set_bit(offset, map->page)) {
  174. atomic_dec(&map->nr_free);
  175. set_last_pid(pid_ns, last, pid);
  176. return pid;
  177. }
  178. offset = find_next_offset(map, offset);
  179. if (offset >= BITS_PER_PAGE)
  180. break;
  181. pid = mk_pid(pid_ns, map, offset);
  182. if (pid >= pid_max)
  183. break;
  184. }
  185. }
  186. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  187. ++map;
  188. offset = 0;
  189. } else {
  190. map = &pid_ns->pidmap[0];
  191. offset = RESERVED_PIDS;
  192. if (unlikely(last == offset))
  193. break;
  194. }
  195. pid = mk_pid(pid_ns, map, offset);
  196. }
  197. return -EAGAIN;
  198. }
  199. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  200. {
  201. int offset;
  202. struct pidmap *map, *end;
  203. if (last >= PID_MAX_LIMIT)
  204. return -1;
  205. offset = (last + 1) & BITS_PER_PAGE_MASK;
  206. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  207. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  208. for (; map < end; map++, offset = 0) {
  209. if (unlikely(!map->page))
  210. continue;
  211. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  212. if (offset < BITS_PER_PAGE)
  213. return mk_pid(pid_ns, map, offset);
  214. }
  215. return -1;
  216. }
  217. void put_pid(struct pid *pid)
  218. {
  219. struct pid_namespace *ns;
  220. if (!pid)
  221. return;
  222. ns = pid->numbers[pid->level].ns;
  223. if ((atomic_read(&pid->count) == 1) ||
  224. atomic_dec_and_test(&pid->count)) {
  225. kmem_cache_free(ns->pid_cachep, pid);
  226. put_pid_ns(ns);
  227. }
  228. }
  229. EXPORT_SYMBOL_GPL(put_pid);
  230. static void delayed_put_pid(struct rcu_head *rhp)
  231. {
  232. struct pid *pid = container_of(rhp, struct pid, rcu);
  233. put_pid(pid);
  234. }
  235. void free_pid(struct pid *pid)
  236. {
  237. /* We can be called with write_lock_irq(&tasklist_lock) held */
  238. int i;
  239. unsigned long flags;
  240. spin_lock_irqsave(&pidmap_lock, flags);
  241. for (i = 0; i <= pid->level; i++) {
  242. struct upid *upid = pid->numbers + i;
  243. struct pid_namespace *ns = upid->ns;
  244. hlist_del_rcu(&upid->pid_chain);
  245. switch(--ns->nr_hashed) {
  246. case 2:
  247. case 1:
  248. /* When all that is left in the pid namespace
  249. * is the reaper wake up the reaper. The reaper
  250. * may be sleeping in zap_pid_ns_processes().
  251. */
  252. wake_up_process(ns->child_reaper);
  253. break;
  254. case PIDNS_HASH_ADDING:
  255. /* Handle a fork failure of the first process */
  256. WARN_ON(ns->child_reaper);
  257. ns->nr_hashed = 0;
  258. /* fall through */
  259. case 0:
  260. schedule_work(&ns->proc_work);
  261. break;
  262. }
  263. }
  264. spin_unlock_irqrestore(&pidmap_lock, flags);
  265. for (i = 0; i <= pid->level; i++)
  266. free_pidmap(pid->numbers + i);
  267. call_rcu(&pid->rcu, delayed_put_pid);
  268. }
  269. struct pid *alloc_pid(struct pid_namespace *ns)
  270. {
  271. struct pid *pid;
  272. enum pid_type type;
  273. int i, nr;
  274. struct pid_namespace *tmp;
  275. struct upid *upid;
  276. int retval = -ENOMEM;
  277. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  278. if (!pid)
  279. return ERR_PTR(retval);
  280. tmp = ns;
  281. pid->level = ns->level;
  282. for (i = ns->level; i >= 0; i--) {
  283. nr = alloc_pidmap(tmp);
  284. if (nr < 0) {
  285. retval = nr;
  286. goto out_free;
  287. }
  288. pid->numbers[i].nr = nr;
  289. pid->numbers[i].ns = tmp;
  290. tmp = tmp->parent;
  291. }
  292. if (unlikely(is_child_reaper(pid))) {
  293. if (pid_ns_prepare_proc(ns)) {
  294. disable_pid_allocation(ns);
  295. goto out_free;
  296. }
  297. }
  298. get_pid_ns(ns);
  299. atomic_set(&pid->count, 1);
  300. for (type = 0; type < PIDTYPE_MAX; ++type)
  301. INIT_HLIST_HEAD(&pid->tasks[type]);
  302. upid = pid->numbers + ns->level;
  303. spin_lock_irq(&pidmap_lock);
  304. if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
  305. goto out_unlock;
  306. for ( ; upid >= pid->numbers; --upid) {
  307. hlist_add_head_rcu(&upid->pid_chain,
  308. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  309. upid->ns->nr_hashed++;
  310. }
  311. spin_unlock_irq(&pidmap_lock);
  312. return pid;
  313. out_unlock:
  314. spin_unlock_irq(&pidmap_lock);
  315. put_pid_ns(ns);
  316. out_free:
  317. while (++i <= ns->level)
  318. free_pidmap(pid->numbers + i);
  319. kmem_cache_free(ns->pid_cachep, pid);
  320. return ERR_PTR(retval);
  321. }
  322. void disable_pid_allocation(struct pid_namespace *ns)
  323. {
  324. spin_lock_irq(&pidmap_lock);
  325. ns->nr_hashed &= ~PIDNS_HASH_ADDING;
  326. spin_unlock_irq(&pidmap_lock);
  327. }
  328. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  329. {
  330. struct upid *pnr;
  331. hlist_for_each_entry_rcu(pnr,
  332. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  333. if (pnr->nr == nr && pnr->ns == ns)
  334. return container_of(pnr, struct pid,
  335. numbers[ns->level]);
  336. return NULL;
  337. }
  338. EXPORT_SYMBOL_GPL(find_pid_ns);
  339. struct pid *find_vpid(int nr)
  340. {
  341. return find_pid_ns(nr, task_active_pid_ns(current));
  342. }
  343. EXPORT_SYMBOL_GPL(find_vpid);
  344. /*
  345. * attach_pid() must be called with the tasklist_lock write-held.
  346. */
  347. void attach_pid(struct task_struct *task, enum pid_type type)
  348. {
  349. struct pid_link *link = &task->pids[type];
  350. hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
  351. }
  352. static void __change_pid(struct task_struct *task, enum pid_type type,
  353. struct pid *new)
  354. {
  355. struct pid_link *link;
  356. struct pid *pid;
  357. int tmp;
  358. link = &task->pids[type];
  359. pid = link->pid;
  360. hlist_del_rcu(&link->node);
  361. link->pid = new;
  362. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  363. if (!hlist_empty(&pid->tasks[tmp]))
  364. return;
  365. free_pid(pid);
  366. }
  367. void detach_pid(struct task_struct *task, enum pid_type type)
  368. {
  369. __change_pid(task, type, NULL);
  370. }
  371. void change_pid(struct task_struct *task, enum pid_type type,
  372. struct pid *pid)
  373. {
  374. __change_pid(task, type, pid);
  375. attach_pid(task, type);
  376. }
  377. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  378. void transfer_pid(struct task_struct *old, struct task_struct *new,
  379. enum pid_type type)
  380. {
  381. new->pids[type].pid = old->pids[type].pid;
  382. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  383. }
  384. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  385. {
  386. struct task_struct *result = NULL;
  387. if (pid) {
  388. struct hlist_node *first;
  389. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  390. lockdep_tasklist_lock_is_held());
  391. if (first)
  392. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  393. }
  394. return result;
  395. }
  396. EXPORT_SYMBOL(pid_task);
  397. /*
  398. * Must be called under rcu_read_lock().
  399. */
  400. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  401. {
  402. RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
  403. "find_task_by_pid_ns() needs rcu_read_lock() protection");
  404. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  405. }
  406. struct task_struct *find_task_by_vpid(pid_t vnr)
  407. {
  408. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  409. }
  410. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  411. {
  412. struct pid *pid;
  413. rcu_read_lock();
  414. if (type != PIDTYPE_PID)
  415. task = task->group_leader;
  416. pid = get_pid(rcu_dereference(task->pids[type].pid));
  417. rcu_read_unlock();
  418. return pid;
  419. }
  420. EXPORT_SYMBOL_GPL(get_task_pid);
  421. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  422. {
  423. struct task_struct *result;
  424. rcu_read_lock();
  425. result = pid_task(pid, type);
  426. if (result)
  427. get_task_struct(result);
  428. rcu_read_unlock();
  429. return result;
  430. }
  431. EXPORT_SYMBOL_GPL(get_pid_task);
  432. struct pid *find_get_pid(pid_t nr)
  433. {
  434. struct pid *pid;
  435. rcu_read_lock();
  436. pid = get_pid(find_vpid(nr));
  437. rcu_read_unlock();
  438. return pid;
  439. }
  440. EXPORT_SYMBOL_GPL(find_get_pid);
  441. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  442. {
  443. struct upid *upid;
  444. pid_t nr = 0;
  445. if (pid && ns->level <= pid->level) {
  446. upid = &pid->numbers[ns->level];
  447. if (upid->ns == ns)
  448. nr = upid->nr;
  449. }
  450. return nr;
  451. }
  452. EXPORT_SYMBOL_GPL(pid_nr_ns);
  453. pid_t pid_vnr(struct pid *pid)
  454. {
  455. return pid_nr_ns(pid, task_active_pid_ns(current));
  456. }
  457. EXPORT_SYMBOL_GPL(pid_vnr);
  458. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  459. struct pid_namespace *ns)
  460. {
  461. pid_t nr = 0;
  462. rcu_read_lock();
  463. if (!ns)
  464. ns = task_active_pid_ns(current);
  465. if (likely(pid_alive(task))) {
  466. if (type != PIDTYPE_PID) {
  467. if (type == __PIDTYPE_TGID)
  468. type = PIDTYPE_PID;
  469. task = task->group_leader;
  470. }
  471. nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
  472. }
  473. rcu_read_unlock();
  474. return nr;
  475. }
  476. EXPORT_SYMBOL(__task_pid_nr_ns);
  477. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  478. {
  479. return ns_of_pid(task_pid(tsk));
  480. }
  481. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  482. /*
  483. * Used by proc to find the first pid that is greater than or equal to nr.
  484. *
  485. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  486. */
  487. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  488. {
  489. struct pid *pid;
  490. do {
  491. pid = find_pid_ns(nr, ns);
  492. if (pid)
  493. break;
  494. nr = next_pidmap(ns, nr);
  495. } while (nr > 0);
  496. return pid;
  497. }
  498. /*
  499. * The pid hash table is scaled according to the amount of memory in the
  500. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  501. * more.
  502. */
  503. void __init pidhash_init(void)
  504. {
  505. unsigned int i, pidhash_size;
  506. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  507. HASH_EARLY | HASH_SMALL,
  508. &pidhash_shift, NULL,
  509. 0, 4096);
  510. pidhash_size = 1U << pidhash_shift;
  511. for (i = 0; i < pidhash_size; i++)
  512. INIT_HLIST_HEAD(&pid_hash[i]);
  513. }
  514. void __init pidmap_init(void)
  515. {
  516. /* Verify no one has done anything silly: */
  517. BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
  518. /* bump default and minimum pid_max based on number of cpus */
  519. pid_max = min(pid_max_max, max_t(int, pid_max,
  520. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  521. pid_max_min = max_t(int, pid_max_min,
  522. PIDS_PER_CPU_MIN * num_possible_cpus());
  523. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  524. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  525. /* Reserve PID 0. We never call free_pidmap(0) */
  526. set_bit(0, init_pid_ns.pidmap[0].page);
  527. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  528. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  529. SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
  530. }